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Fourier ring correlation simplifies image restoration
in fluorescence microscopy
Sami Koho 1,2, Giorgio Tortarolo1,3, Marco Castello1, Takahiro Deguchi4, Alberto Diaspro 4,5 &

Giuseppe Vicidomini 1

Fourier ring correlation (FRC) has recently gained popularity among fluorescence micro-

scopists as a straightforward and objective method to measure the effective image resolution.

While the knowledge of the numeric resolution value is helpful in e.g., interpreting imaging

results, much more practical use can be made of FRC analysis—in this article we propose

blind image restoration methods enabled by it. We apply FRC to perform image de-noising by

frequency domain filtering. We propose novel blind linear and non-linear image deconvolu-

tion methods that use FRC to estimate the effective point-spread-function, directly from the

images. We show how FRC can be used as a powerful metric to observe the progress of

iterative deconvolution. We also address two important limitations in FRC that may be of

more general interest: how to make FRC work with single images (within certain practical

limits) and with three-dimensional images with highly anisotropic resolution.
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R
eliable and realistic estimation of spatial resolution in
fluorescence microscopy images has for decades been a
subject of passionate scientific debate. With the develop-

ment of fluorescence nanoscopy techniques1 this debate has
resurfaced with new-found fervor, e.g., see refs. 2,3.

Typically resolution is estimated by measuring either the
minimum resolvable distance between two adjacent structures in
an image—as per the classical Rayleigh/Abbe/Sparrow resolution
definitions—or, alternatively it can be estimated from the inten-
sity profile analysis, such as simple full-width-half-maximum
(FWHM) or more complex fitting4 of subresolved sized struc-
tures. In order to perform either one of the two measurements,
suitable structures need to be subjectively identified and manually
measured; ideally, the measurements should be repeated at several
positions to gain some statistical basis for the estimate. This task
is both tedious and error-prone.

Fourier ring correlation (FRC)5,6 and Fourier shell correlation
(FSC)7—essentially, FRC generalized to 3D—have for decades been
used to estimate image resolution in electron cryomicroscopy.
Recently FRC was adapted for optical nanoscopy, by us8 and oth-
ers9,10, to address the issues with the traditional resolution assess-
ment methods. It is based on a normalized cross-correlation
histogram measure calculated in the frequency domain between two
images of the same region-of-interest, with independent noise
realizations. For FRC/FSC calculation, the spatial frequency spectra
of the two images are divided into bins, which produces a series of
concentric rings/shells in the polar-form frequency domain images
(hence the names). The FRC/FSC histogram is formed by calcu-
lating a correlation value for each bin according to

FRC=FSC12ðriÞ ¼

P

r2ri
F1ðrÞ � F2ðrÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

r2ri
F2
1ðrÞ �

P

r2ri
F2
2ðrÞ

r ð1Þ

where F1 and F2 are the Fourier transforms of the two images and ri
the ith frequency bin. The image resolution in FRC/FSC is defined
from the histogram, as a cut off frequency at which the cross-
correlation value drops below a preset threshold value. Advantages
of the FRC/FSC are that it is fully automatic, quantitative, and
depends both on sample and microscope characteristics. It is also
less prone to subjective bias and measurement errors, although the
choice of the appropriate resolution threshold criterion still requires
some input from the researcher, as no single solution seems to be
correct in all applications9,11.

While the resolution estimation certainly is an interesting
application in itself, in our view, the true potential of FRC/FSC is
in much more practical tasks. In this paper we show several
examples of advanced image restoration methods that leverage
FRC/FSC measures. We apply FRC to perform image denoising
by frequency domain filtering. We propose novel blind linear and
iterative image deconvolution methods that use FRC/FSC mea-
surements to estimate the effective point-spread-function (PSF)
of the microscope, directly from the images, with no need for
prior knowledge of the instrument characteristics. The decon-
volution is shown to work exquisitely with both two- and three-
dimensional (2D/3D) images. We also show how FRC can be
used as a powerful metric to observe the progress of iterative
deconvolution tasks.

Results
The role of FRC in image restoration. In image restoration
tasks, in one way or another, one tries to improve the quality of
an image, by increasing the contrast between signal and noise, i.e.,
the signal-to-noise ratio (SNR). The FRC measure defines a cut
off frequency in the frequency domain, beyond which (at higher

frequencies than the cutoff), there are no details with sufficient
SNR to be discernible. The knowledge of the cut off frequency
alone (i.e., resolution in the spatial domain), can already help in
several image restoration and analysis tasks, such as frequency
domain filtering, autofocusing and image quality assessment. On
the other hand, it is a common practice to interrelate the spatial
resolution with the FWHM of the microscope’s PSF. Thus, once
one knows the resolution (FRC), it is possible to form an estimate
of the PSF. Naturally, an assumption needs to be made regarding
the shape of the PSF—here, we approximate the PSF as a simple
Gaussian function, which should be reasonable in most cases12.
This makes it possible to implement blind image deconvolution
(deblurring) algorithms that leverage FRC to obtain an estimate
of the PSF. In iterative deconvolution tasks it may also be of
interest to update the PSF after each iteration, or to evaluate the
quality of the deconvolution results. The principle of using FRC
in image restoration and tasks is illustrated in Fig. 1a. The list of
tasks mentioned in the Fig. 1a is by no means intended to be
exhaustive, but it just simply reflects subjects that we touch upon
in this paper.

In Fig. 1b,c an example is shown about the use of FRC in
Fourier domain low-pass filtering with a noisy confocal image of
HeLa cell tubulin cytoskeleton (pixel size 51 nm). The result
shown in Fig. 1c was obtained with an ideal low-pass filter, which
simply removes all the frequencies that are higher than then FRC
cutoff (183 nm−1). The ideal filter works excellently: it is able to
practically remove all the high-frequency noise, with a faint low-
frequency noise pattern visible in the background (from scanning,
laser fluctuation etc.). The use of an ideal filter is not typically
recommended, as introducing such sharp edges into the
frequency domain may produce artefacts (ringing effects) in the
filtering results. No such effects can be seen here, supposedly
because signal power is very low at frequencies higher than the
FRC threshold. In Supplementary Fig. 1 results obtained with
three different Fourier domain filters ideal, Butterworth and
Gaussian are compared. In addition a result for the ideal filter
with a theoretical cut off value is shown. All the filters were able
to significantly reduce the noise, with no apparent effect on the
fine image details, but the ideal filter with FRC cutoff is clearly
the most effective.

In Fig. 1d an example is shown, of 2D blind Wiener
deconvolution, with FRC-based PSF. The PSF is based on a
simple Gaussian model, in which the FRC resolution is used as

FWHM value (FWHM ¼ 2
ffiffiffiffiffiffiffiffiffi

2ln2
p

σ). The Wiener deconvolution
result shows dramatic enhancement of contrast and apparent
resolution, but Wiener filtering does not really have any effect on
the background level. It is possible to further tune the
performance of a Wiener filter with the regularization parameter
value. In Fig. 1d rather gentle regularization (SNR= 0.1) was
used to produce the crisp looking result; the value was chosen
subjectively.

FRC enabled blind iterative deconvolution. For traditional FRC
analysis two images of the very same region-of-interest and with
independent noise realizations are needed. There are various ways
to obtain these two images, as discussed, e.g., in reference8. In
iterative image deconvolution, however, especially if one wants to
explore the feedback connection illustrated in Fig. 1a—for pro-
gress estimation or iterative PSF updates—the two-image
requirement is not optimal, as it would require simultaneously,
in a synchronous manner, running deconvolution on two images.
This translates into complex software implementation, a sig-
nificant computational overhead, and possible hardware resource
issues, especially when dealing with large images. And of course,
one does not always have two identical images in the first place.
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For this reason, we wanted to figure out, whether it would be
possible to find a method to calculate FRC from a single image
(one-image FRC), with reasonable compromises, in terms of
frequency bandwidth and accuracy.

In order to perform FRC analysis on a single image, one needs
to find a way to form statistically independent image subsets—
that share the same details, but different noise realizations—by
some form of subsampling. As described in Fig. 2a, we propose to
do this by dividing a single image into four subsets, i.e., two-
image pairs. The first pair is formed by taking every pixel with
(even, even) row/column indexes to form one subimage and (odd,
odd) indexes to the other. The second image pair is formed from
pixels at (even, odd) and (odd, even) indexes. The dimensions of
the four subimages are identical, exactly half of the size of the
original image. FRC can be calculated from either one of the
image pairs alone, but we noticed that averaging two measure-
ments helps to deal with special spectral domain symmetries
(Supplementary Fig. 2) that arise when details in an image are
oriented predominantly in one direction. With 3D images (FSC)
the same splitting method is used, except that in the axial
direction (z), layers are summed pairwise to maintain image
proportions; we get back to the 3D measurements later.

Because subsampling inevitably leads to loss of information,
one might be keen to think that such a method is only feasible on
significantly oversampled data, i.e., with sampling density much
higher than the Nyquist limit (dpixel � dmin=2

ffiffiffi

2
p

; dpixel for pixel

size; dmin for expected image resolution); we use the
ffiffiffi

2
p

factor in
our Nyquist limit definition to ensure sufficient sampling in all
directions, assuming square pixels on a rectangular sampling
grid13. However, as illustrated by the diagonal lines in Fig. 1a, the
proposed subsampling pattern introduces a shift between the two
subimages in each of the two-image pairs, which as described in
detail in Supplementary Note 1, demonstrates itself as a rather
interesting exponential modulation in the frequency domain. This
modulation has the property of compressing the FRC curve; by

compression one means that details are shifted to a lower
frequency than where they actually should be. In order to make
any use of this effect, however, we needed to figure out how
the compression works, i.e., where are the frequencies shifted. We
achieved this by calibrating the one-image FRC, against the “gold
standard” two-image FRC, at the cut off frequency defined by the
1/7 resolution threshold8,9; the same threshold was used in both
one- and two-image FRC. The principle of the calibration is
explained in detail in Supplementary Note 2, and the results are
shown in Supplementary Fig. 3. After the calibration, the one-
and two-image FRC work in a very similar manner, as shown in
Fig. 2b, up to the Nyquist limit. It should be noted that the
calibration is only valid for the stated 1/7 threshold; we do not
attempt to correct the entire FRC curves. For a different
threshold, a similar process should be repeated. This however
does not stand in the way of using one-image FRC in the image
restoration applications that we envision for it here.

Having established how to calculate FRC on single images, we
then put the method to work in iterative Richardson–Lucy (RL)
devonvolution. In our RL implementation, the FRC is calculated
after each iteration in order to assess the effective resolution of
the deconvolution results, similar to what was done in14. We
implemented the RL algorithm in two ways: in regular RL the
same FRC-based PSF is used throughout the iteration process,
whereas in the Adjustive RL the PSF is updated after each
iteration based on FRC. The latter case was inspired by classical
iterative blind deconvolution algorithms15,16, in which one starts
with some sort of a rough PSF estimate that is updated at every
iteration. Such a scheme may be beneficial if the initial guess does
not fit the data very well. When using FRC for the PSF estimation,
the first guess is always based on the actual data, but for example
when the original data is very noisy (low SNR), FRC may initially
underestimate the resolution. Updating the PSF throughout the
iteration process may however lead to overestimation of the PSF,
and thus using some sort of a constraint may be beneficial. To
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that end, in Adjustive RL-TV we added total variation (TV)
regularization (λTV= 5 × 10−4)17 to the Adjustive RL algorithm.

The blind RL deconvolution results with the three methods are
shown in Fig. 3a with a microtubules-stained HeLa cell confocal
image (pixel size 56 nm). The regular RL deconvolution, with
fixed PSF produces the sharpest looking results. The Adjustive RL
and Adjustive RL-TV both improve the quality of the original
image, but at least in this instance, there seems to be no benefit
from updating the PSF during iteration. In Fig. 3b the FRC
resolution is plotted as a function of iteration count, for each of
the three algorithms. The measures confirm the subjective
observations: the regular RL produces the highest resolution
results. It is also interesting to observe that the TV regularization
helps the Adjustive RL algorithm to converge much more quickly,
but the improvement stops at a similar level with the
nonregularized Adjustive RL.

From the FRC measures overall, it is evident that the effective
resolution in the deconvolution results tends to converge to a
nearly fixed value after a number of iterations. This insight
motivated us to look into another long-standing problem with RL
and other iterative deconvolution algorithms: that one does not
really know when the algorithm should be stopped17–19. Quite
commonly this is decided by trial and error, by running the
algorithm with different iteration counts, and picking the best
looking result. Several parameters have been proposed as well to
observe the progress of deconvolution, but sadly, they are not
very reliable or commonly used. Therefore we wanted to see, if we
could use FRC for that, and found out that the first derivative
(∇Resolution) of the curve shown in Fig. 3c is very well suited for
that—it quantifies the rate of change of the FRC resolution as a
function of deconvolution iterations. The most obvious iteration
to stop the deconvolution would be at the maximum resolution,
i.e., when the derivative reaches zero. In Fig. 3 Adjustive RL
converges after 27 iterations, Adjustive RL-TV after 17, and
RL after 92 iterations. However, as is evident from the RL
deconvolution, reaching the maximum resolution may take a long
time, and on the other hand, very little improvement is made
(based on the FRC measures) as the deconvolution approaches
convergence. Thus, the derivative zero may be an overly stringent
condition. Therefore we highlight two alternative thresholds in
Fig. 3c (∇ Resolution ≥−1 nm it−1, ∇ Resolution ≥−0.2 nm it−1)
that one may want to use instead. The first threshold stops the
iteration, when most of the resolution gain has been made,
whereas at the second threshold, the deconvolution approaches

nearly complete convergence. The specified resolution thresholds
assume a nanometer length scale, which is meaningful in optical
microscopy. One of course needs to adjust for appropriate
physical units, when working with images with significantly
higher or lower resolution. The 1 nm it−1 threshold corresponds
to roughly 0.5% and 0.02 nm it−1 to 1 permille of the resolution.
In Supplementary Fig. 4 the deconvolution results with
the RL algorithm at the three thresholds are compared
(∇ Resolution ≥−1 nm it−1, −0.2 nm it−1, and 0 nm it−1).
Already at the lower −1 nm it−1 threshold the results are very
good. In Supplementary Fig. 5 similar results were obtained with
a vimentin stained cell image (confocal, pixel size 29 nm) and in
Supplementary Fig. 6 with a widefield image of a vimentin
stained cell. In all of the three examples (Fig. 3d, e; Supplementary
Fig. 5e, f; Supplementary Fig. 6e, f) two alternative deconvolution
progress parameters τ1 and ηk are plotted as well: both indicate
some sort of convergence, but no other qualitative information
can be derived from them. The ηk measure in Fig. 3d works
exactly the same with all three algorithms; τ1 reacts to the
regularization, but cannot tell a difference between the RL and
Adjustive RL algorithms.

Having established that the FRC-based deconvolution progress
observation works rather well, we then wanted to test its
robustness to strong background noise, which is known to affect
the performance of RL (and other iterative deconvolution
algorithms)20; the algorithm(s) cannot make a difference between
signal and background noise, and thus, as the deconvolution
progresses, it eventually starts to fit the noise in the background
as well as the signal21,22. In order to assess how this effect
becomes visible in the FRC measures, we devised a worst case
simulation of sorts with an image containing mainly background
noise (Supplementary Fig. 7). After the very first iteration a
separate second peak appears in the FRC curves that grows in
intensity as the RL algorithm tries to fit the noise into a sparse
solution, which results into the dotty pattern that is shown after
30 iterations. In this case, as shown in Supplementary Fig. 7b,c,
the FRC does not get caught into the second peak, but manages to
measure the actual resolution, and the deconvolution stops after
one iteration. It is however possible that a situation would arise,
in which the noise peak is not as clearly separated from the signal,
and thus we wanted to devise some sort of an indicator for
abnormal behavior of the FRC measures during deconvolution.
For this purpose in Supplementary Fig. 7d, we propose the
derivative of the ∇ Resolution curve ∇2 Resolution. The
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against the two-image FRC with a series of confocal images of a cell with vimentin staining. The field of view and focal plane in each image is the same; this

made it possible to evaluate FRC measures at a nearly fixed resolution, with different sampling densities (pixel sizes vary from 29 to 113 nm). The

calibration results are shown in Supplementary Fig. 3. b Calibrated one-image and two-image FRC measures are compared. The uncalibrated curves were

plotted assuming the same pixel size with the two-image FRC, hence the apparent shift of the FRC curves to the right; the calibration curve also corrects for

the different pixel pitch. The dminðrefÞ = 242 nm; 12 nm (μ; σ) denotes the average resolution measured with two-image FRC
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reasoning behind this is that as the deconvolution converges, the
slope of the ∇ Resolution should approach zero; i.e., it should not
significantly increase, after it has decreased previously. The ∇2

Resolution crosses zero every time ∇ Resolution changes
direction, thus indicating abnormal convergence behavior—it
works as a failsafe of sorts.

In Supplementary Fig. 8 an RL deconvolution example of a
mictotubulin-labeled HeLa cell with strong noise background is
shown. It is possible to improve the performance of the RL
algorithm with images with strong background, as discussed in
ref. 20, by adding an estimate of the background to the algorithm

as a prior information. To that end in Supplementary Fig. 8, a
(blind) method for estimating the background is introduced, and
it is shown to greatly enhance the quality of the deconvolution
result. As shown in Supplementary Fig. 8b the strong background
demonstrates itself as a shoulder in the FRC curves, which
appears after seven iterations. Unlike in the simulation, the
background does not form a separate peak, but rather gets mixed
with the signal spectrum. The FRC curves with the background
estimation do not show a similar effect, and the RL deconvolution
also seems to reach a much higher resolution (degree of
convergence). This is confirmed by FRC measurements, shown
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Adjustive RL the initial PSF estimate is updated after every iteration. In Adjustive RL-TV in addition total variation regularization is used (λTV= 5 × 10−4).

The deconvolution of each algorithm was stopped at the iteration of maximal FRC resolution, which is plotted in b as a function of the iteration count
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RL results at these thresholds are compared in Supplementary Fig. 4. d, e The τ1 and ηk curves are shown. Scale bars 3 μm
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in Supplementary Fig. 8d. The appearance of the shoulder in the
FRC curves shows up as an edge in the ∇ Resolution curve
(Supplementary Fig. 8d), and as a zero crossing ∇2 Resolution
(Supplementary Fig. 8e), which is in agreement with the
simulations. The ηk (Supplementary Fig. 8f) and τ1 (Supplemen-
tary Fig. 8g) do not react to the background fitting in any way.

Working with 3D images. In fluorescence microscopy the image
resolution is highly anisotropic: due to limited numerical aperture
of the single objective lens microscope systems, the axial resolu-
tion (direction of the optical axis) is typically at least factor of
three inferior to the lateral resolution. For this reason FSC, the
simple 3D expansion of FRC, is of only limited value in fluor-
escence microscopy applications. In order to address this issue,
we developed a FSC-based method in which each Fourier Shell is
divided into wedges. A single Sectioned FSC (SFSC) indexing
shape consists of two such wedges that are each others mirror
images (Supplementary Fig. 9b)—this is to take advantage of the
symmetries in Fourier space. In order to calculate resolution
values for the whole sphere, the dual-wedge structure is rotated in
increments of α (Supplementary Fig. 9a) around an axis located
on the XY plane—for each orientation a separate cross-
correlation histogram and resolution value are calculated; the α
also matches the angular size of the wedge. At α= 2π the SFSC
simplifies into normal FSC. As a concept the SFSC is very similar
to the recently proposed Conical FSC measure23. They essentially
differ in the way that the Fourier sphere is indexed to produce the
directional resolution measures. The SFSC is especially tuned to
observe variation of resolution, when rotating around a single
axis, which makes it rather fast to calculate (few sections/volume)
as well as robust (large number of voxels on every section).

We compared our new SFSC measure with FRC on a
stimulated emission depletion (STED) microscopy24 image stack
of a microtubules stained HeLa cell. The FRC measures were
made by identifying apparently in-focus planes in the 3D images
and then calculating separate resolution values for the XY and XZ
orientations. We also compared our SFSC measure against
Fourier Plane Correlation (FPC) that was proposed for 3D image
analysis in9. In order to facilitate the manual FRC measurement
and to limit the computational load in SFSC and FPC the
resolution measurements were done on a cropped 300 × 300 × 30
pixel central section of the STED image (about 1/3 of the image
size, 300 × 300 × 300 pixels after resampling and zero padding).
As shown in Supplementary Fig. 10, the FRC and SFSC
measurements are in rather good agreement. SFSC measurement
at SNRe= 0.5 threshold (one-bit11), corresponds to FRC
measurement at 1/7 threshold; the one-bit threshold was used
in all SFSC measurements. The FPC works rather well as well, but
appears to suffer from the interpolation, scanning and other
artefacts in the axial direction, which as shown in Supplementary
Fig. 10a, c causes it to somewhat underestimate the resolution in
the axial direction.

In Fig. 4, blind Wiener filtering results with two 3D images are
shown. The new SFSC measure is leveraged to produce the
resolution estimates, necessary for generating the PSFs. In Fig. 4a,
results obtained with a STED microscope super-resolution image
are shown. The images were acquired with relatively low STED
depletion intensity to ensure good contrast, and to reduce
photobleaching. As is typical to a STED microscope image, the
resolution anisotropy between lateral (XY) and axial (Z)
directions is considerable, as shown in the SFSC resolution plot
in Fig. 4a. The polar plot illustrates the resolution point in
micrometers, and it was calculated by rotating the SFSC section at
15° increments around the y-axis. Because STED is a bandwidth
unlimited technique, the power spectrum in STED images often

contains very high frequencies that unfortunately, are often
hidden by noise. However, the simple blind Wiener filtering, as
shown in Fig. 4a, is able to recover a surprisingly large amount of
fine details. The axial haze is clearly reduced, and the effective
resolution is drastically improved with previously blurred
filaments, clearly visible in the results.

In Fig. 4b, the same blind Wiener filtering approach was
applied to a much larger (deep) image of Pollen recorded with a
confocal microscope. Only single image was available for analysis,
so the diagonal splitting was used in the SFSC calculations. The
deconvolution results show dramatic improvement of contrast
and details—and axial haze is effectively reduced, as indicated by
the depth coloring. Even crispier details can be obtained by
decreasing the Wiener regularization; SNR= 0.005 was used in
Fig. 4b to produce a smooth result.

Discussion
In this paper several blind image restoration methods were
introduced that leverage FRC resolution measurements in dif-
ferent ways. In frequency domain denoising methods FRC was
used to find a cut off frequency point for low-pass filtering. In
deconvolution tasks, both linear (Wiener) and iterative (RL), FRC
measurements were used to estimate the effective PSF, directly
from the image data. There are several clear benefits of
estimating the PSF with FRC. Firstly, no prior knowledge—even
theoretical—is needed of the microscope or the sample. Secondly,
the PSF generated via FRC is always tailored to every given image.
Thirdly, the PSF estimation with FRC is a single-step process,
although it can also be updated iteratively if necessary. This
advantage specifically made it possible to perform linear blind
Wiener filtering in a very straightforward way, both in 2D and
3D. With larger images it might be of interest to divide the images
into several smaller blocks25, to adapt the PSF in the blind
deconvolution to local changes of resolution (Supplementary
Fig. 11).

In iterative deconvolution (RL), FRC measures were also
leveraged to observe the progress and quality of the deconvolu-
tion. No other such metric to our knowledge exists in the lit-
erature. The τ1 and ηk, as well as many other measures that can be
found in the literature, mainly quantify the convergence of
the deconvolution algorithm, but cannot really quantitatively
analyze the quality of the deconvolution results, in absence of a
ground truth image. It was shown that FRC can be used to
identify the deconvolution iteration at which the effective reso-
lution is maximal—or near to it, if using the proposed thresholds.
It was also shown that FRC measures can provide additional
qualitative information of the deconvolution progress, e.g., related
to the effect of the image background to the deconvolution
quality.

In addition to deconvolution and image denoising that was the
focus of this paper, there are several other image processing/
analysis tasks that FRC/SFSC could be applied to. In Supple-
mentary Fig. 12, we entertain the idea of combining FRC with
other image quality assessment parameters, to produce quanti-
tative measures of image quality for e.g., high-content screening
applications; a similar method was recently proposed for asses-
sing the quality of localization super-resolution microscopy image
reconstructions26. FRC is also very sensitive to the de-focus: as
shown in Supplementary Fig. 13, it actually behaves rather
similarly to several autofocus metrics, which might be an inter-
esting future application—and of course, a good way to identify
an in-focus plane at postprocessing stage. Our open-source
MIPLIB software library that was used to perform all the
demonstrated image analysis and processing tasks, may help in
such future applications.
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Methods
One and two-image resolution measurements with 2D images. One- and two-
image FRC measurements were both done according to

FRC=FSC12ðriÞ ¼

P

r2ri
F1ðrÞ � F2ðrÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

r2ri
F2
1 ðrÞ �

P

r2ri
F2
2 ðrÞ

r ð2Þ

where F1 and F2 are the Fourier transforms of the two images and ri the ith
frequency bin. Prior to the FRC calculations, in two-image case, the two images
were registered by a phase-correlation based method27; in single-image case the
splitting was performed to produce the four subimages. A Hamming window was
applied to each image to suppress edge effects and other spurious correlations.
With both one- and two-image FRC the 1/7 resolution threshold8,9 was used to
determine the numerical resolution value.

Resolution measurements with 3D images. Measurements on 3D images were
done with our SFSC measure

SFSC12ðri; αiÞ ¼

P

r2ri ;α2αi
F1ðr; α; ϕÞ � F2ðr; α;ϕÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

r2ri ;α2αi
F2
1 ðr; α; ϕÞ �

P

r2ri ;α2αi
F2
2 ðr; α; ϕÞ

r ð3Þ

where F1(r, α, ϕ) and F2(r, α, ϕ) denote the voxels in two Fourier transformed
images that are located (I) at a given distance ri from the origin and (II) within an
orientation sector, defined by α and ϕ (Supplementary Fig. 9a). We compared the
SFSC measures against FPC9 as well as FRC measures.

The SFSC/FPC/FRC analyses with the 3D images were performed with the same
logic as the FRC measures on the 2D images. Before data analysis each 3D image
was resampled to isotropic spacing using linear interpolation. Single image splitting
was achieved similarly to the 2D case; only one diagonal was used to limit the
computational effort in SFSC/FPC. In the axial direction two consecutive (z) layers

were simply added together, to maintain the image proportions, and to not
introduce additional offsets. Threshold curve based on SNRe= 0.5 (one-bit) was
used with SFSC, whereas with both FPC and FRC, 1/7 threshold produced more
reasonable numerical values. The SNRe thresholds, proposed in11 can be calculated
from

TðriÞ ¼
SNRe þ 2

ffiffiffiffiffiffiffiffiffiffiffi

SNRe

p

þ 1
� �

=
ffiffiffiffiffiffiffiffiffiffiffi

NðriÞ
p

SNRe þ 1þ 2
ffiffiffiffiffiffiffiffiffiffiffi

SNRe

p

=
ffiffiffiffiffiffiffiffiffiffiffi

NðriÞ
p ð4Þ

where T(ri) is the threshold value, N(ri) the number of pixels/voxels at ith Fourier
ring/shell, and SNRe the expected SNR value at the cut off point.

Because of the anisotropic sampling that is typical to 3D fluorescence
microscopy images, the frequency axes in SFSC and FRC curves need to be
corrected to compensate for it. In this paper this was achieved by multiplying the
image pixel/voxel size by factor k(θ):

kðθÞ ¼ ð1þ ðz � 1ÞÞ � jsinðθÞj ð5Þ
where z is the sampling anisotropy factor (e.g., two for an image sampled with half
the sampling rate in depth (Z) with respect to the lateral (XY) direction) and θ
denotes the rotation angle with respect to the XY plane, which in case of SFSC is a
multiple of α. If no such correction is made, all the numerical resolution values
calculated with FPC/FRC/SFSC at orientations θ ≠ 0+ nπ will be
unrealistically high.

Frequency domain low-pass filtering. The frequency domain filtering was per-
formed by first estimating the effective image resolution with FRC and then using it
as a cut off frequency for a low-pass Fourier domain filter. Three different types of
Fourier space filters were used in this work: (I) an ideal low-pass filter (ILPF), (II) a
Butterworth low-pass filter, and (III) a Gaussian low-pass filter.

An ILPF can be defined as:

HðriÞ ¼
1; if ri<rth
0; otherwise

�

ð6Þ

b

a
Original Wiener filtered (SNR = 0.02)
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Fig. 4 Blind Wiener deconvolution in 3D with PSF estimated from SFSC measurements. a Results of Wiener deconvolution of a super-resolution 3D image

recorded with a STED microscope are shown. The results show dramatically improved effective resolution and reduction of axial haze. The SFSC estimate

was calculated with two images. b Blind Wiener deconvolution result of a confocal image of Pollen are shown. The depth coded colormap reveals dramatic

reduction of axial haze, and in general contrast and effective resolution are clearly improved. The polar plots illustrate the resolution point in micrometers,

and it was calculated by rotating the SFSC section at 15° increments around the y-axis. Scale bars in a 3 μm, b 4 μm; depth color coding in b 20 μm
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where ri is a polar distance from the center of the frequency domain filter (zero
frequency) and rth is the distance at the cut off frequency, obtained with FRC.
Frequencies after the cutoff are simply clipped to zero.

A Butterworth low-pass filter (BLPF) on the other hand is defined as:

HðriÞ ¼
1

1þ ½ri=rth�2n
ð7Þ

where n denotes the degree of the filter, which controls how sharply the transition
from pass-band (allowed frequencies) to stop-band (filtered frequencies) is made.
When compared to ILPF, BLPF has nearly equally flat (unity) response in the pass-
band, but transitions to stop-band more smoothly, thus avoiding a strong
discontinuity at the cutoff; at the rth, H(ri)= 0.5.

A Gaussian low-pass filter (GLPF) is defined as:

HðriÞ ¼ e�r2i =2r
2
th ð8Þ

Similarly to BLPF, the GLPF has a smooth transition from pass-band to stop-
band. The Gaussian function however, is not flat in the pass-band and transitions
more slowly from pass-band to stop-band, which means that it may in some cases
blur the filtered images and perform less than optimally, when filtering out noise.
At the rth, H(ri)= 0.607.

Image deconvolution. Image formation in a microscope can be described as a
convolution of every object sample point with the PSF:

iðx; y; zÞ ¼ hðx; y; zÞ � oðx; y; zÞ ð9Þ
where i(x, y, z), h(x, y, z), and o(x, y, z) are the measured image, the PSF and the
original sample object, respectively. By image deconvolution28 one attempts to
revert the blurring effect of the microscope, and thus increase image contrast and
effective resolution, by using the PSF as a prior information. Deconvolution can be
performed in a single step, e.g., by Wiener or Tikhonov filtering29—or then
iteratively, e.g., by RL30–32. In this paper we use the Wiener and RL algorithms.

The Wiener deconvolution algorithm is based on inverse filtering, and takes
advantage of the fact that a convolution operation in the spatial domain, becomes a
multiplication in the frequency domain—and thus a relatively simple single-step
deconvolution can be realized as follows:

Oðu; v;wÞ ¼ 1

Hðu; v;wÞ
jHðu; v;wÞj2

jHðu; v;wÞj2 þ 1=SNR

" #

Iðu; v;wÞ ð10Þ

where O(u, v, w), I(u, v, w), and H(u, v, w) are the Fourier space representations of
the estimate for the original object, the observed image and the PSF. |H(u, v, w)|2 is
the power spectrum of the PSF. The regularization term SNR−1 can also be written
as |N(u, v, w)|2/|O(u, v, w)|2, where |N(u, v, w)|2 is the power spectrum of the noise
and |O(u, v, w)|2 is the power spectrum of the original object; neither of the two
terms are known, which means that usually the value is decided on case-by-case
basis, based on the subjective quality of the deconvolution results. The
regularization factor is weighted by the power spectrum of the PSF. It will have a
stronger effect at high frequencies, as the power spectrum approaches zero value.

The iterative RL algorithm can be described by

okþ1 ¼
i

h� ok þ b
� h�

� �

ok ð11Þ

where ok and ok+1 are the current and next object estimates, i is the original image,
h is the PSF, h* its mirrored version (complex conjugate) and b a background term.
In the equation, the pixel indexes have been omitted to allow a simple presentation
of the algorithm. b is typically set to zero, but a nonzero value can be used to
correct for a strong background signal. In our example (Supplementary Fig. 8) the
background was estimated by first dividing an image into two segments (signal and
background) with a simple intensity based spatial mask33, after which the mean
intensity value of the background segment was calculated and then used as b in
deconvolution.

With both Wiener filtering and RL, PSF estimate was generated on the basis of
an FRC measurement on the original image data: the FRC resolution value was
simply used as an FWHM value for a Gaussian PSF. With 3D images, separate
values were used for lateral and axial directions. In the Adjustive RL algorithm the
PSF is updated during RL iteration, by calculating the FRC resolution for each
intermediate deconvolution estimate.

In addition to updating the PSF estimates (when so desired) the FRC measures
of the intermediate estimates were used to observe the progress of the RL
deconvolution. The deconvolution can be considered fully converged, when
effective resolution reached its maximum value. However, as reaching the full
convergence may take a large amount of iterations, we proposed two more practical
thresholds based on the rate of change of the effective resolution (−1 nm it−1 and
−0.2 nm it−1). We compared the FRC metric against two previously published
ones τ1 and ηk17–19,34.

With τ1 the relative difference between two subsequent deconvolution estimates
is measured:

τ1 ¼
P

v jok � ok�1j
P

v ok
ð12Þ

where ok is the current estimate and ok−1 the previous one. ηk is a measure of
convergence

ηk ¼
NðuÞ
N

;

u 2 i
h�ok

� h�ju<ð0� εÞ _ ð0þ εÞ<u<ð1� εÞ _ u>ð1þ εÞ
n o ð13Þ

where N is the total number of pixels, N(u) is the number of pixels that are not
currently converging and ε is the convergence epsilon.

TV regularization17 with fixed λTV= 5 × 10−4 was used as a smoothness
constraint in our Adjustive RL-TV algorithm.

Test images. The test images consist of various types of confocal as well as STED
microscope images that were acquired with a variety of commercial and custom-
built microscopes. None of the samples was specifically prepared for this paper, but
a short description for each is given in Supplementary Note 3.

Data availability
The image data that supports the findings of this study are available in the figshare

repository, https://doi.org/10.6084/m9.figshare.c.4511663.

Code availability
The FRC/FSC measurement functions as well as all the image processing, analysis and data
visualization tools used in this paper are available as open-source Python software library,
called Microscope Image Processing Library (MIPLIB) at https://github.com/sakoho81/
miplib. Please see Supplementary Note 4 for additional information about the software.
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