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Abstract

This paper contributes to the theory of photograph formation from
light fields. The main result is a theorem that, in the Fourier do-
main, a photograph formed by a full lens aperture is a 2D slice in
the 4D light field. Photographs focused at different depths corre-
spond to slices at different trajectories in the 4D space. The paper
demonstrates the utility of this theorem in two different ways. First,
the theorem is used to analyze the performance of digital refocus-
ing, where one computes photographs focused at different depths
from a single light field. The analysis shows in closed form that
the sharpness of refocused photographs increases linearly with di-
rectional resolution. Second, the theorem yields a Fourier-domain
algorithm for digital refocusing, where we extract the appropriate
2D slice of the light field’s Fourier transform, and perform an in-
verse 2D Fourier transform. This method is faster than previous
approaches.

Keywords: Digital photography, Fourier transform, projection-
slice theorem, digital refocusing, plenoptic camera.

1 Introduction

A light field is a representation of the light flowing along all rays in
free-space. We can synthesize pictures by computationally tracing
these rays to where they would have terminated in a desired imag-
ing system. Classical light field rendering assumes a pin-hole cam-
era model [Levoy and Hanrahan 1996; Gortler et al. 1996], but we
have seen increasing interest in modeling a realistic camera with
a lens that creates finite depth of field [Isaksen et al. 2000; Vaish
et al. 2004; Levoy et al. 2004]. Digital refocusing is the process by
which we control the film plane of the synthetic camera to produce
photographs focused at different depths in the scene (see bottom of
Figure 8).

Digital refocusing of traditional photographic subjects, including
portraits, high-speed action and macro close-ups, is possible with a
hand-held plenoptic camera [Ng et al. 2005]. The cited report de-
scribes the plenoptic camera that we constructed by inserting a mi-
crolens array in front of the photosensor in a conventional camera.
The pixels under each microlens measure the amount of light strik-
ing that microlens along each incident ray. In this way, the sensor
samples the in-camera light field in a single photographic exposure.

This paper presents a new mathematical theory about photo-
graphic imaging from light fields by deriving its Fourier-domain
representation. The theory is derived from the geometrical op-
tics of image formation, and makes use of the well-known
Fourier Slice Theorem [Bracewell 1956]. The end result is the
Fourier Slice Photography Theorem (Section 4.2), which states that
in the Fourier domain, a photograph formed with a full lens aper-
ture is a 2D slice in the 4D light field. Photographs focused at dif-

ferent depths correspond to slices at different trajectories in the 4D
space. This Fourier representation is mathematically simpler than
the more common, spatial-domain representation, which is based
on integration rather than slicing.

Sections 5 and 6 apply the Fourier Slice Photography Theorem
in two different ways. Section 5 uses it to theoretically analyze
the performance of digital refocusing with a band-limited plenoptic
camera. The theorem enables a closed-form analysis showing that
the sharpness of refocused photographs increases linearly with the
number of samples under each microlens.

Section 6 applies the theorem in a very different manner to de-
rive a fast Fourier Slice Digital Refocusing algorithm. This algo-
rithm computes photographs by extracting the appropriate 2D slice
of the light field’s Fourier transform and performing an inverse
Fourier transform. The asymptotic complexity of this algorithm
is O(n2 log n), compared to the O(n4) approach of existing algo-
rithms, which are essentially different approximations of numerical
integration in the 4D spatial domain.

2 Related Work

The closest related Fourier analysis is the plenoptic sampling work
of Chai et al. [2000]. They show that, under certain assumptions,
the angular band-limit of the light field is determined by the closest
and furthest objects in the scene. They focus on the classical prob-
lem of rendering pin-hole images from light fields, whereas this
paper analyzes the formation of photographs through lenses.

Imaging through lens apertures was first demonstrated by Isak-
sen et al. [2000]. They qualitatively analyze the reconstruction ker-
nels in Fourier space, showing that the kernel width decreases as
the aperture size increases. This paper continues this line of inves-
tigation, explicitly deriving the equations for full-aperture imaging
from the radiometry of photograph formation.

More recently, Stewart et al. [2003] have developed a hybrid
reconstruction kernel that combines full-aperture imaging with
band-limited reconstruction. This allows them to optimize for
maximum depth-of-field without distortion. In contrast, this paper
focuses on fidelity with full-aperture photographs that have finite
depth of field.

The plenoptic camera analyzed in this report was described by
Adelson and Wang [1992]. It has its roots in the integral photog-
raphy methods pioneered by Lippman [1908] and Ives [1930]. Nu-
merous variants of integral cameras have been built over the last
century, and many are described in books on 3D imaging [Javidi
and Okano 2002; Okoshi 1976]. For example, systems very sim-
ilar to Adelson and Wang’s were built by Okano et al. [1999] and
Naemura et al. [2001], using graded-index (GRIN) microlens ar-
rays. Another integral imaging system is the Shack-Hartmann sen-
sor used for measuring aberrations in a lens [Tyson 1991]. A dif-
ferent approach to capturing light fields in a single exposure is an
array of cameras [Wilburn et al. 2005].

3 Background

Consider the light flowing along all rays inside the camera. Let
LF be a two-plane parameterization of this light field, where



Figure 1: We parameterize the 4D light field, LF , inside the camera by two

planes. The uv plane is the principal plane of the lens, and the xy plane is

the sensor plane. LF (x, y, u, v) is the radiance along the given ray.
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Figure 2: Reparameterizing the light field by moving the sensor plane from

F to F ′ = (α · F ). The diagram shows the simplified 2D case involving

only x and u. By similar triangles, the illustrated ray that intersects the lens

at u, and the F ′ plane at x, also intersects the F plane at u + (x − u)/α.

LF (x, y, u, v) is the radiance along the ray traveling from posi-
tion (u, v) on the lens plane to position (x, y) on the sensor plane
(see Figure 1). F is the distance between the lens and the sensor.
Let us consider how photographs are formed from the light field in
conventional cameras and plenoptic cameras.

Conventional Camera The image that forms inside a con-
ventional camera is proportional to the irradiance [Stroebel et al.
1986], which is equal to a weighted integral of the radiance coming
through the lens:

EF (x, y) =
1

F 2

∫ ∫

LF (x, y, u, v) cos4φ du dv, (1)

where F is the separation between the lens and the film, EF (x, y)
is the irradiance on the film at (x, y), and φ is the angle between ray
(x, y, u, v) and the film plane normal. The integration is a physical
process that takes place on the sensor surface, such as the accumu-
lation of electrons in a pixel of a CCD that is exposed to light.

The derivations below assume that the uv and xy planes are infi-
nite in extent, and that L is simply zero beyond the physical bounds
of the lens and sensor. To shorten the equations, they also absorb
the cos4φ into the light field itself, be defining L(x, y, u, v) =

L(x, y, u, v) cos4φ. This contraction is possible because φ depends
only on the angle that the ray makes with the light field planes.

As a final note about Eq. 1, it is worth mentioning that the light
field inside the camera is related to the light field in the world via
the focal length of the lens and the thin lens equation. To keep
the equations as simple as possible, however, the derivations deal
exclusively with light fields inside the camera.

Plenoptic Camera In the case of a plenoptic camera that mea-
sures light fields, image formation involves two steps: measurement
and processing. For measurement, this kind of camera uses a flat
sensor that provides a directional sampling of the radiance passing
through each point on the sensor. Hence, if the sensor is at a depth
F from the lens, it samples LF directly. During processing, this
light field can be used to compute the conventional photograph at
any depth EF ′ , where F ′ need not be the same as F . This is done
by reparameterizing LF to produce LF ′ and then applying Eq. 1.

A simple geometric construction (see Figure 2) shows that if we
let α = F ′/F ,

LF ′(x, y, u, v) = L(α·F )(x, y, u, v)

= LF (u + (x − u)/α, v + (y − v)/α, u, v)

= LF (u(1 − 1/α) + x/α, v(1 − 1/α) + y/α, u, v). (2)

In other words, LF ′ is a 4D shear of LF , a fact that was derived pre-
viously by Isaksen et al. [2000] in the first demonstration of digital
refocusing. Combining Eqs. 1 and 2 leads to the central definition
of this section, which codifies the fundamental relationship between
photographs and light fields:

Photography Operator Let Pα be the operator that transforms a
light field at a sensor depth F into the photograph formed on
film at depth (α · F ). If Pα [LF ] represents the application of
Pα to light field LF , then

Pα [LF ] (x, y) = E(α·F )(x, y) = (3)

1

α2F 2

∫ ∫

LF (u(1−1/α)+ x/α, v(1−1/α)+ y/α, u, v) du dv.

This definition is the basis for digital refocusing, in that it explains
how to compute photographs at different depths from a single mea-
surement of the light field inside the camera. The photography op-
erator can be thought of as shearing the 4D space, and then project-
ing down to 2D.

4 Photographic Imaging in Fourier-Space

The key to analyzing Eq. 3 in the Fourier domain is the Fourier
Slice Theorem (also known as the Fourier Projection-Slice The-
orem), which was discovered by Bracewell [1956] in the context
of radio astronomy. This theorem is the theoretical foundation of
many medical imaging techniques [Macovski 1983]. The classical
version of the Fourier Slice Theorem [Deans 1983] states that a 1D
slice of a 2D function’s Fourier spectrum is the Fourier transform
of an orthographic integral projection of the 2D function. The pro-
jection and slicing geometry is illustrated in Figure 3.

Conceptually, the theorem works because the value at the ori-
gin of frequency space gives the DC value (integrated value) of
the signal, and rotations do not fundamentally change this fact.
From this perspective, it makes sense that the theorem generalizes
to higher dimensions. For a different kind of intuition, see Figure 3
in Malzbender’s paper [1993]. It also makes sense that the theorem
works for shearing operations as well as rotations, because shearing
a space is equivalent to rotating and dilating the space.

These observations mean that we can expect that the photogra-
phy operator, which we have observed is a shear followed by pro-
jection, should be proportional to a dilated 2D slice of the light
field’s 4D Fourier transform. With this intuition in mind, Sec-
tion 4.1 and 4.2 are simply the mathematical derivations in spec-
ifying this slice precisely, culminating in Eqs. 8 and 9.

4.1 Generalization of the Fourier Slice Theorem

Let us first digress to study a generalization of the theorem to higher
dimensions and projections, so that we can apply it in our 4D space.



A closely related generalization is given by the partial Radon trans-
form [Liang and Munson 1997], which handles orthographic pro-
jections from N dimensions down to M dimensions.

The generalization presented here formulates a broader class of
projections and slices of a function as canonical projection or slic-
ing following an appropriate change of basis (e.g. a 4D shear). This
approach is embodied in the following operator definitions.

Integral Projection Let IN
M be the canonical projection opera-

tor that reduces an N -dimensional function down to M -
dimensions by integrating out the last N − M dimensions:
IN

M [f ] (x1, . . . , xM ) =
∫

f(x1, . . . , xN ) dxM+1 . . . dxN .

Slicing Let SN
M be the canonical slicing operator that re-

duces an N -dimensional function down to an M dimen-
sional one by zero-ing out the last N − M dimensions:
SN

M [f ] (x1, . . . , xM ) = f(x1, . . . , xM , 0, . . . , 0).

Change of Basis Let B denote an operator for an arbitrary change
of basis of an N -dimensional function. It is convenient to
also allow B to act on N -dimensional column vectors as an
N×N matrix, so that B [f ] (x) = f(B−1

x), where x is an
N -dimensional column vector, and B−1 is the inverse of B.

Fourier Transform Let FN denote the N -dimensional Fourier
transform operator, and let F−N be its inverse.

With these definitions, we can state a generalization of the Fourier
slice theorem as follows:

THEOREM (GENERALIZED FOURIER SLICE). Let f be an N -
dimensional function. If we change the basis of f , integral-project
it down to M of its dimensions, and Fourier transform the resulting
function, the result is equivalent to Fourier transforming f , chang-
ing the basis with the normalized inverse transpose of the original
basis, and slicing it down to M dimensions. Compactly in terms of
operators, the theorem says:

FM ◦ IN
M ◦ B ≡ SN

M ◦
B−T

|B−T |
◦ FN , (4)

where the transpose of the inverse of B is denoted by B−T , and
∣

∣B−T
∣

∣ is its scalar determinant.

A proof of the theorem is presented in Appendix A.

Figure 4 summarizes the relationships implied by the theorem
between the N -dimensional signal, M -dimensional projected sig-
nal, and their Fourier spectra. One point to note about the theorem
is that it reduces to the classical version (compare Figures 3 and 4)
for N = 2, M = 1 and the change of basis being a 2D rotation ma-
trix (B = Rθ). In this case, the rotation matrix is its own inverse
transpose (Rθ = Rθ

−T ), and the determinant
∣

∣Rθ
−T

∣

∣ equals 1.

The theorem states that when the basis change is not orthonor-
mal, then the slice is taken not with the same basis, but rather with
the normalized transpose of the inverse basis, (B−T /

∣

∣B−T
∣

∣). In
2D, this fact is a special case of the so-called Affine Theorem for
Fourier transforms [Bracewell et al. 1993].

4.2 Fourier Slice Photography

This section derives the equation at the heart of this paper, the
Fourier Slice Photography Theorem, which factors the Photogra-
phy Operator (Eq. 3) using the Generalized Fourier Slice Theo-
rem (Eq. 4).

Figure 3: Classical Fourier Slice Theorem, using the operator notation de-

veloped in Section 4.1. Here Rθ is a basis change given by a 2D rotation of

angle θ. Computational complexities for each transform are given in square

brackets, assuming n samples in each dimension.
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Figure 4: Generalized Fourier Slice Theorem (Eq. 4). Transform relation-

ships between an N -dimensional function GN , an M -dimensional integral

projection of it, GM , and their respective Fourier spectra, GN and GM . n
is the number of samples in each dimension.

Figure 5: Fourier Slice Photography Theorem (Eq. 9). Transform relation-

ships between the 4D light field LF , a lens-formed 2D photograph Eα·F ,

and their respective Fourier spectra, LF and Eα·F . n is the number of

samples in each dimension.

The first step is to recognize that the photography operator
(Eq. 3) indeed corresponds to integral projection of the light field
following a change of basis (shear):

Pα [LF ] ≡
1

α2F 2
I4

2 ◦ Bα [LF ] , (5)

which relies on the following specific change of basis:

Photography Change of Basis Bα is a 4D change of basis de-
fined by the following matrices:

Bα =









α 0 1 − α 0

0 α 0 1 − α

0 0 1 0

0 0 0 1









Bα

−1
=









1

α
0 1 −

1

α
0

0
1

α
0 1 −

1

α

0 0 1 0

0 0 0 1











Directly applying this definition and the definition for I4
2 verifies

that Eq. 5 is consistent with Eq. 3.
We can now apply the Fourier Slice Theorem (Eq. 4) to turn the

integral projection in Eq. 5 into a Fourier-domain slice. Substituting
(F−2 ◦S4

2 ◦ (Bα
−T /

∣

∣Bα
−T

∣

∣)◦F4) for (I4
2 ◦Bα), and noting that

∣

∣Bα
−T

∣

∣ = 1/α2, we arrive at the following result:

Pα ≡
1

α2F 2
F−2 ◦ S4

2 ◦
Bα

−T

∣

∣Bα
−T

∣

∣

) ◦ F4

≡
1

F 2
F−2 ◦ S4

2 ◦ Bα
−T ◦ F4

(6)

namely that a lens-formed photograph is obtained from the 4D
Fourier spectrum of the light field by: extracting an appropriate 2D
slice (S4

2 ◦ Bα
−T ), applying an inverse 2D transform (F−2), and

scaling the resulting image (1/F 2).
Before stating the final theorem, let us define one last operator

that combines all the action of photographic imaging in the Fourier
domain:

Fourier Photography Operator

Pα ≡
1

F 2
S4

2 ◦ Bα
−T . (7)

It is easy to verify that Pα has the following explicit form,
directly from the definitions of S4

2 and Bα. This explicit form
is required for calculations:

Pα[G](kx, ky) (8)

=
1

F 2
G(α · kx, α · ky, (1 − α) · kx, (1 − α) · ky).

Applying Eq. 7 to Eq. 6 brings us, finally, to our goal:

THEOREM (FOURIER SLICE PHOTOGRAPHY).

Pα ≡ F−2 ◦ Pα ◦ F4. (9)

A photograph is the inverse 2D Fourier transform of a dilated 2D
slice in the 4D Fourier transform of the light field.

Figure 5 illustrates the relationships implied by this theorem.
From an intellectual standpoint, the value of the theorem lies in

the fact that Pα, a slicing operator, is conceptually simpler than
Pα, an integral operator. This point is made especially clear by re-
viewing the explicit definitions of Pα (Eq. 8) and Pα (Eq. 3). By
providing a frequency-based interpretation, the theorem contributes
insight by providing two equivalent but very different perspectives
on the physics of image formation. In this regard, the Fourier Slice
Photography Theorem is not unlike the Fourier Convolution The-
orem, which provides equivalent but very different perspectives of
convolution in the two domains.

From a practical standpoint, the theorem provides a faster com-
putational pathway for certain kinds of light field processing. The
computational complexities for each transform are illustrated in
Figure 5, but the main point is that slicing via Pα (O(n2)) is
asymptotically faster than integration via Pα (O(n4)). This fact
is the basis for the algorithm in Section 6.

5 Theoretical Limits of Digital Refocusing

The overarching goal of this section is to demonstrate the theoret-
ical utility of the Fourier Slice Photography Theorem. Section 5.1
presents a general signal-processing theorem, showing exactly what
happens to photographs when a light field is distorted by a convo-
lution filter. Section 5.2 applies this theorem to analyze the perfor-
mance of a band-limited light field camera. In these derivations, we
will often use the Fourier Slice Photography Theorem to move the
analysis into the frequency domain, where it becomes simpler.

Figure 6: Filtered Light Field Photograph Theorem (Eq. 10). LF is the

input 4D light field, and LF is a 4D filtering of it with 4D kernel k. Eα·F

and Eα·F are the best photographs formed from the two light fields, where

the photographs are focused with focal plane depth (α · F ). The theorem

shows that Eα·F is a 2D filtering of Eα·F , where the 2D kernel is the

photograph of the 4D kernel, k.

5.1 Photographic Effect of Filtering the Light Field

A light field produces exact photographs focused at various depths
via Eq. 3. If we distort the light field by filtering it, and then
form photographs from the distorted light field, how are these pho-
tographs related to the original, exact photographs? The following
theorem provides the answer to this question.

THEOREM (FILTERED LIGHT FIELD PHOTOGRAPHY). A 4D
convolution of a light field results in a 2D convolution of each pho-
tograph. The 2D filter kernel is simply the photograph of the 4D
filter kernel focused at the same depth. Compactly in terms of op-
erators,

Pα ◦ C4
k ≡ C2

Pα[k] ◦ Pα, (10)

where we have expressed convolution with the following operator:

Convolution CN
k is an N -dimensional convolution operator with

filter kernel k (an N -dimensional function), such that
CN

k [F ](x) =
∫

F (x − u) k(u) du where x and u are N -
dimensional vector coordinates and F is an N -dimensional
function.

Figure 6 illustrates the theorem diagramatically. It is worth not-
ing that in spite of its plausibility, the theorem is not obvious, and
proving it in the spatial domain is quite difficult. Appendix B
presents a proof of the theorem in the frequency-domain. At a high
level, the approach is to apply the Fourier Slice Photography The-
orem and the Convolution Theorem to move the analysis into the
frequency domain. In that domain, photograph formation turns into
a simpler slicing operator, and convolution turns into a simpler mul-
tiplication operation.

This theorem is useful because it is simple and general. The
next section contains a concrete example of how to use the theo-
rem, but it should be emphasized that the theorem is much more
broadly applicable. It will be worth exploiting it in general analy-
sis of light field acquisition, where the system impulse response is
the filter kernel, k(x, y, u, v), and light field processing, where the
resampling strategy defines k(x, y, u, v).

5.2 Band-Limited Plenoptic Camera

This section analyzes digital refocusing from a plenoptic camera,
to answer the following questions. What is the quality of the pho-
tographs refocused from the acquired light fields? How are these
photographs related to the exact photographs, such as those that
might be taken by a conventional camera that were optically fo-
cused at the same depth?



The central assumption here, from which we will derive signifi-
cant analytical leverage, is that the plenoptic camera captures band-
limited light fields. While perfect band-limiting is physically im-
possible, it is a plausible approximation in this case because the
camera system blurs the incoming signal through imperfections in
its optical elements, through area integration over the physical ex-
tent of microlenses and photosensor pixels, and ultimately through
diffraction.

The band-limited assumption means that the acquired light field,

L̂FL
, is a simply the exact light field, LFL

, convolved by a perfect
low-pass filter, a 4D sinc:

L̂FL
= C4

lowpass [LFL
] , where (11)

lowpass(kx, ky, ku, kv) =

1/(∆x∆u)2 · sinc(kx/∆x, ky/∆x, ku/∆u, kv/∆u). (12)

In this equation, ∆x and ∆u are the linear spatial and direc-
tional sampling rates of the integrated light field camera, respec-
tively. The 1/(∆x∆u)2 is an energy-normalizing constant to
account for dilation of the sinc. Also note that, for compact-
ness, we use multi-dimensional notation so that sinc(x, y, u, v) =
sinc(x) sinc(y) sinc(u) sinc(v).

5.2.1 Analytic Form for Refocused Photographs

Our goal is an analytic solution for the digitally refocused photo-

graph, ÊF , computed from the band-limited light field, LFL
. This

is where we apply the Filtered Light Field Photography Theorem.
Letting , α = F/FL,

ÊF = Pα

[

L̂FL

]

= Pα

[

C4
lowpass [LFL

]
]

= C2
Pα[lowpass] [Pα [LFL

]] = C2
Pα[lowpass] [EF ] , (13)

where EF is the exact photograph at depth F . This derivation
shows that the digitally refocused photograph is a 2D-filtered ver-
sion of the exact photograph. The 2D kernel is simply a photograph
of the 4D sinc function interpreted as a light field, Pα [lowpass].

It turns out that photographs of a 4D sinc light field are simply
2D sinc functions:

Pα [lowpass]

= Pα

[

1/(∆x∆u)2 · sinc(kx/∆x, ky/∆x, ku/∆u, kv/∆u)
]

= 1/D2
x · sinc(kx/Dx, ky/Dx), (14)

where the Nyquist rate of the 2D sinc depends on the amount of
refocusing, α:

Dx = max(α∆x, |1 − α|∆u). (15)

This fact is difficult to derive in the spatial domain, but applying
the Fourier Slice Photography Theorem moves the analysis into the
frequency domain, where it is easy (see Appendix C).

The end result here is that, since the 2D kernel is a sinc, the
band-limited camera produces digitally refocused photographs that
are just band-limited versions of the exact photographs. The per-
formance of digital refocusing is defined by the variation of the 2D
kernel band-width (Eq. 15) with the extent of refocusing.

5.2.2 Interpretation of Refocusing Performance

Notation Recall that the spatial and directional sampling rates of
the camera are ∆x and ∆u. Let us further define the width of
the camera sensor as Wx, and the width of the lens aperture as
Wu. With these definitions, the spatial resolution of the sensors
is Nx = Wx/∆x and the directional resolution of the light field
camera is Nu = Wu/∆u.

Exact Refocusing Since α = (F/FL) and ∆u = Wu/Nu, it is
easy to verify that

|α∆x| ≥ |(1 − α)∆u|

⇔ |F − FL| ≤ ∆x(NuF/Wu). (16)

The claim here is that this is the range of focal depths, FL, where
we can achieve “exact” refocusing, i.e. compute a sharp rendering
of the photograph focused at that depth. What we are interested
in is the Nyquist-limited resolution of the photograph, which is the
number of band-limited samples within the field of view.

Precisely, by applying Eq. 16 to Eq. 15, we see that the band-
width of the computed photograph is (α∆x). Next, the field of
view is not simply the size of the light field sensor, Wx, but rather
(αWx). This dilation is due to the fact that digital refocusing scales
the image captured on the sensor by a factor of α in projecting it
onto the refocus focal plane (see Eq. 3). If α > 1, for example,
the light field camera image is zoomed in slightly compared to the
conventional camera. Figure 7 illustrates this effect.

Thus, the Nyquist resolution of the computed photograph is

(αWx)/(α∆x) = Wx/∆x. (17)

This is simply the spatial resolution of the camera, the maximum
possible resolution for the output photograph. This justifies the as-
sertion that the refocusing is “exact” for the range of depths defined
by Eq. 16. Note that this range of exact refocusing increases lin-
early with the directional resolution, Nu.

Inexact Refocusing If we exceed the exact refocusing range, i.e.

|F − FL| > ∆x(NuF/Wu). (18)

then the band-limit of the computed photograph, ÊF , is
|1 − α|∆u > α∆x (see Eq. 15), and the resulting resolution is
not maximal, but rather (αWx)/(|1 − α|∆u), which is less than
Wx/∆x. In other words, the resulting photograph is blurred, with
reduced Nyquist-limited resolution.

Re-writing this resolution in a slightly different form provides
a more intuitive interpretation of the amount of blur. Since α =
F/FL and ∆u = Wu/Nu, the resolution is

αWx

|1 − α|∆u
=

Wx

Wu/(Nu · F ) · |F − FL|
. (19)

Since ((NuF )/Wu) is the f -number of a lens Nu times smaller
than the actual lens used on the camera, we can now interpret
Wu/(Nu · F ) · |F − FL| as the size of the conventional circle of
confusion cast through this smaller lens when the film plane is mis-
focused by a distance of |F − FL|.

In other words, when refocusing beyond the exact range, we can
only make the desired focal plane appear as sharp as it appears in a
conventional photograph focused at the original depth, with a lens
Nu times smaller. Note that the sharpness increases linearly with
the directional resolution, Nu.

5.3 Summary

It is worth summarizing the point of the analysis in Section 5. On
a meta-level, this section has demonstrated the theoretical utility of
the Fourier Slice Photography Theorem, applying it several times
in deriving Eqs. 10, 13 and 14.

At another level, this section has derived two end results that are
of some importance. The first is the Filtered Light Field Photogra-
phy Theorem, which is a simple but general signal-processing tool
for analyzing light field imaging systems. The second is the fact that
making a simple band-limited assumption about plenoptic cameras
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Figure 7: Photographs produced by an f/4 conventional and an f/4
plenoptic [Ng et al. 2005] camera, using digital refocusing (via Eq. 3) in

the latter case. The sensor depth is given as a fraction of the film depth that

brings the target into focus. Note that minor refocusing provides the plenop-

tic camera with a wider effective depth of focus than the conventional sys-

tem. Also note how the field of view changes slightly with the sensor depth,

a change due to divergence of the light rays from the lens aperture.

yields an analytic proof that limits on digital refocusing improve
linearly with directional resolution. Experiments with the plenoptic
camera that we built achieved refocusing performance within a fac-
tor of 2 of this theory [Ng et al. 2005]. With Nu = 12, this enables
sharp refocusing of f/4 photographs within the wide depth of field
of an f/22 aperture.

6 Fourier Slice Digital Refocusing

This section applies the Fourier Slice Photography Theorem in a
very different way, to derive an asymptotically fast algorithm for
digital refocusing. The presumed usage scenario is as follows: an
in-camera light field is available (perhaps having been captured by a
plenoptic camera). The user wishes to digitally refocus in an inter-
active manner, i.e. select a desired focal plane and view a synthetic
photograph focused on that plane (see bottom row of Figure 8).

In previous approaches to this problem [Isaksen et al. 2000;
Levoy et al. 2004; Ng et al. 2005], spatial integration via Eq. 3
results in an O(n4) algorithm, where n is the number of samples in
each of the four dimensions. The algorithm described in this sec-
tion provides a faster O(n2 log n) algorithm, with the penalty of a
single O(n4 log n) pre-processing step.

6.1 Algorithm

The algorithm follows trivially from the Fourier Slice Photography
Theorem:

Preprocess Prepare the given light field, LF , by pre-computing its
4D Fourier transform, F4 [L], via the Fast Fourier Transform.
This step takes O(n4 log n) time.

Refocusing For each choice of desired world focus plane, W ,

• Compute the conjugate virtual film plane depth, F ′, via the
thin lens equation: 1/F ′ + 1/W = 1/f , where f is the focal
length of the lens.

• Extract the dilated Fourier slice (via Eq. 8) of the pre-
processed Fourier transform, to obtain (Pα ◦ F4) [L], where
α = F ′/F . This step takes O(n2) time.

• Compute the inverse 2D Fourier transform of the slice, to ob-
tain (F−2 ◦Pα ◦ F4) [L]. By the theorem, this final result is
Pα [LF ] = EF ′ the photo focused on world plane W . This
step takes O(n2 log n) time.

Figure 8 illustrates the steps of the algorithm.

6.2 Implementation and Results

The complexity in implementing this simple algorithm has to do
with ameliorating the artifacts that result from discretization, re-
sampling and Fourier transformation. These artifacts are concep-
tually the same as the artifacts tackled in Fourier volume render-
ing [Levoy 1992; Malzbender 1993], and Fourier-based medical
reconstruction techniques [Jackson et al. 1991] such as those used
in CT and MR. The interested reader should consult these citations
and their bibliographies for further details.

6.2.1 Sources of Artifacts

In general signal-processing terms, when we sample a signal it is
replicated periodically in the dual domain. When we reconstruct
this sampled signal with convolution, it is multiplied in the dual
domain by the Fourier transform of the convolution filter. The goal
is to perfectly isolate the original, central replica, eliminating all
other replicas. This means that the ideal filter is band-limited: it is
of unit value for frequencies within the support of the light field,
and zero for all other frequencies. Thus, the ideal filter is the sinc
function, which has infinite extent.

In practice we must use an imperfect, finite-extent filter, which
will exhibit two important defects (see Figure 9). First, the filter
will not be of unit value within the band-limit, gradually decaying
to smaller fractional values as the frequency increases. Second, the
filter will not be truly band-limited, containing energy at frequen-
cies outside the desired stop-band.

The first defect leads to so-called rolloff artifacts [Jackson et al.
1991], the most obvious manifestation of which is a darkening of
the borders of computed photographs (see Figure 10). Decay in the
filter’s frequency spectrum with increasing frequency means that
the spatial light field values, which are modulated by this spectrum,
also “roll off” to fractional values towards the edges.

The second defect, energy at frequencies above the band-limit,
leads to aliasing artifacts (postaliasing, in the terminology of
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Figure 8: Fourier Slice Digital Refocusing algorithm. Row 1: 4D light field

captured from a plenoptic camera, with four close-ups. Row 2: 4D Fourier

transform of the light field, with four close-ups. Row 3: Three 2D slices of

the 4D Fourier transform, extracted by Pα (Eq. 8) with different values of

α. Row 4: Inverse 2D transforms of row 3. These images are conventional

photographs focused on the closest, middle and furthest crayons. Row 5:

Same images as row 4 except computed with brute-force integration in the

spatial domain via Eq. 3, for comparison.

Mitchell and Netravali [1998]) in computed photographs (see Fig-
ure 10). The non-zero energy beyond the band-limit means that the
periodic replicas are not fully eliminated, leading to two kinds of
aliasing. First, the replicas that appear parallel to the slicing plane
appear as 2D replicas of the image encroaching on the borders of
the final photograph. Second, the replicas positioned perpendicu-
lar to this plane are projected and summed onto the image plane,
creating ghosting and loss of contrast.

6.2.2 Correcting Rolloff Error

Rolloff error is a well understood effect in medical imaging and
Fourier volume rendering. The standard solution is to multiply the
affected signal by the reciprocal of the filter’s inverse Fourier spec-
trum, to nullify the effect introduced during resampling. In our
case, directly analogously to Fourier volume rendering [Malzben-
der 1993], the solution is to spatially pre-multiply the input light
field by the reciprocal of the filter’s 4D inverse Fourier transform
(see Figure 11). This is performed prior to taking its 4D Fourier
transform in the pre-processing step of the algorithm.

Unfortunately, this pre-multiplication tends to accentuate the en-
ergy of the light field near its borders, maximizing the energy that
folds back into the desired field of view as aliasing.

6.2.3 Suppressing Aliasing Artifacts

The three main methods of suppressing aliasing artifacts are
oversampling, superior filtering and zero-padding. Oversampling
within the extracted 2D Fourier slice (PF ◦ F4) [L] increases the
replication period in the spatial domain. This means that less en-
ergy in the tails of the in-plane replicas will fall within the borders
of the final photograph.

Exactly what happens computationally will be familiar to those
experienced in discrete Fourier transforms. Specifically, increasing
the sampling rate in one domain leads to an increase in the field of
view in the other domain. Hence, by oversampling we produce an
image that shows us more of the world than desired (see Figure 12),
not a magnified view of the desired portion. Aliasing energy from
neighboring replicas falls into these outer regions, which we crop
away to isolate the central image of interest.

Oversampling is appealing because of its simplicity, but over-
sampling alone cannot produce good quality images. The problem
is that it cannot eliminate the replicas that appear perpendicular to
the slicing plane, which are projected down onto the final image as
described in the previous section.

This brings us to the second major technique of combating alias-
ing: superior filtering. As already stated, the ideal filter is a sinc
function with a band-limit matching the spatial bounds of the light
field. Our goal is to use a finite-extent filter that approximates
this perfect spectrum as closely as possible. The best methods for
producing such filters use iterative techniques to jointly optimize
the band-limit and narrow spatial support, as described in Jack-
son et al. [1991] in the medical imaging community, and Malzben-
der [1993] in the Fourier volume rendering community.

Jackson et al. show that a much simpler, and near-optimal, ap-
proximation is the Kaiser-Bessel function. They also provide opti-
mal Kaiser-Bessel parameter values for minimizing aliasing. Fig-
ure 13 illustrates the striking reduction in aliasing provided by such
optimized Kaiser-Bessel filters compared to inferior quadrilinear
interpolation. Surprisingly, a Kaiser-Bessel window of just width
2.5 suffices for excellent results.

The third and final method to combat aliasing is to pad the light
field with a small border of zero values before pre-multiplication
and taking its Fourier transform [Levoy 1992; Malzbender 1993].
This pushes energy slightly further from the borders, and minimizes
the amplification of aliasing energy by the pre-multiplication de-
scribed in 6.2.2.
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Figure 9: Source of artifacts. Left: Triangle reconstruction filter. Right:

Frequency spectrum of this filter (solid line) compared to ideal spectrum

(dotted line). Shaded regions show deviations that lead to artifacts.

Figure 10: Two main classes of artifacts. Left: Gold-standard image pro-

duced by spatial integration via Eq. 3. Middle: Rolloff artifacts using

Kaiser-Bessel filter. Right: Aliasing artifacts using quadrilinear filter.

Figure 11: Rolloff correction by pre-multiplying the input light field by the

reciprocal of the resmpling filter’s inverse Fourier transform. Left: Kaiser-

Bessel filtering without pre-multiplication. Right: With pre-multiplication.

Figure 12: Aliasing reduction by oversampling. Quadrilinear filter used to

emphasize aliasing effects for didactic purposes. Top left pair: 2D Fourier

slice and inverse-transformed photograph, with unit sampling. Bottom:

Same as top left pair, except with 2× oversampling in the frequency do-

main. Top right: Cropped version of bottom right. Note that aliasing is

reduced compared to version with unit sampling.

Figure 13: Aliasing reduction by superior filtering. Rolloff correction is

applied. Left: Quadrilinear filter (width 2). Middle: Kaiser-Bessel filter,

width 1.5. Right: Kaiser-Bessel filter, width 2.5.

6.2.4 Implementation Summary

We directly discretize the algorithm presented in 6.1, applying the
following four techniques (from 6.2.2 and 6.2.3) to suppress arti-
facts. In the pre-processing phase,

1. We pad the light field with a small border (5% of the width in
that dimension) of zero values.

2. We pre-multiply the light field by the reciprocal of the Fourier
transform of the resampling filter.

In the refocusing step where we extract the 2D Fourier slice,

3. We use a linearly-separable Kaiser-Bessel resampling filter.
width 2.5 produces excellent results. For fast previewing, an
extremely narrow filter of width 1.5 produces results that are
superior to (and faster than) quadrilinear interpolation.

4. We oversample the 2D Fourier slice by a factor of 2. After
Fourier inversion, we crop the resulting photograph to isolate
the central quadrant.

The bottom two rows of Figure 8 compare this implementation
of the Fourier Slice algorithm with spatial integration.

6.2.5 Performance Summary

This section compares the performance of our algorithm compared
to spatial-domain methods. Tests were performed on a 3.0 Ghz
Pentium IV processor. The FFTW-3 library [Frigo and Johnson
1998] was used to compute Fourier transforms efficiently.

For a light field with 256×256 st resolution and 16×16 uv resolu-
tion, spatial-domain integration achieved 1.68 fps (frames per sec-
ond) using nearest-neighbor quadrature and 0.13 fps using quadri-
linear interpolation. In contrast, the Fourier Slice method presented
in this paper achieved 2.84 fps for previewing (Kaiser-Bessel fil-
ter, width 1.5 and no oversampling) and 0.54 fps for higher quality
(width 2.5 and 2x oversampling). At these resolutions, performance
between spatial-domain and Fourier-domain methods are compara-
ble. The pre-processing time, however, was 47 seconds.

The Fourier Slice method outperforms the spatial methods as the
directional uv resolution increases, because the number of light
field samples that must be summed increases for the spatial inte-
gration methods, but the cost of slicing stays constant per pixel.
For a light field with 128×128 st resolution and 32×32 uv reso-
lution, spatial-domain integration achieved 1.63 fps using nearest-
neighbor, and 0.10 fps using quadrilinear interpolation. The Fourier
Slice method achieved 15.58 fps for previewing and 2.73 fps for
higher quality. At these resolutions, the Fourier slice methods are
an order of magnitude faster. In this case, the pre-processing time
was 30 seconds.



7 Conclusions and Future Work

The main contribution of this paper is the Fourier Slice Photogra-
phy Theorem. By describing how photographic imaging occurs in
the Fourier domain, this simple but fundamental result provides a
versatile tool for algorithm development and analysis of light field
imaging systems. This paper tries to present concrete examples of
this utility in analyzing a band-limited plenoptic camera, and in de-
veloping the Fourier Slice Digital Refocusing algorithm.

The band-limited analysis provides theoretical backing for recent
experimental results demonstrating exciting performance of digi-
tal refocusing from plenoptic camera data [Ng et al. 2005]. The
derivations also yield a general-purpose tool (Eq. 10) for analyzing
plenoptic camera systems.

The Fourier Slice Digital Refocusing algorithm is asymptotically
faster than previous approaches. It is also efficient in a practical
sense, thanks to the optimized Kaiser-Bessel resampling strategy
borrowed directly from the tomography literature. Continuing to
exploit this connection with tomography will surely yield further
benefits in light field processing.

A clear line of future work would extend the algorithm to in-
crease its focusing flexibility. Presented here in its simplest form,
the algorithm is limited to full-aperture refocusing. Support for dif-
ferent apertures could be provided by appropriate convolution in
the Fourier domain that results in a spatial multiplication masking
out the undesired portion of the aperture. This is related to work in
Fourier volume shading [Levoy 1992].

A very different class of future work might emerge from looking
at the footprint of photographs in the 4D Fourier transform of the
light field. It is a direct consequence of the Fourier Slice Photog-
raphy Theorem (consider Eq. 9 for all α) that the footprint of all
full-aperture photographs lies on the following 3D manifold in the
4D Fourier space:

{

(α · kx, α · ky, (1 − α) · kx, (1 − α) · ky)

where α ∈ [0,∞), and kx, ky ∈ R
}

(20)

Two possible lines of research are as follows.
First, it might be possible to optimize light field camera designs

to provide greater fidelity on this manifold, at the expense of the
vast remainder of the space that does not contribute to refocused
photographs. One could also compress light fields for refocusing
by storing only the data on the 3D manifold.

Second, photographs focused at a particular depth will contain
sharp details (hence high frequencies) only if an object exists at that
depth. This observation suggests a simple Fourier Range Finding
algorithm: search for regions of high spectral energy on the 3D
manifold at a large distance from the origin. The rotation angle
of these regions gives the depth (via the Fourier Slice Photography
Theorem) of focal planes that intersect features in the visual world.
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Appendices: Proofs and Derivations

A Generalized Fourier Slice Theorem

Theorem (Generalized Fourier Slice).

FM ◦ IN
M ◦ B ≡ SN

M ◦
(

B−T /
∣

∣

∣
B−T

∣

∣

∣

)

◦ FN

Proof. The following proof is inspired by one common approach
to proving the classical 2D version of the theorem. The first step is
to note that

FM ◦ IN
M = SN

M ◦ FN , (21)

because substitution of the basic definitions shows that for an
arbitrary function, f , both (FM ◦ IN

M ) [f ] (u1, . . . , uM ) and

(SN
M ◦ FN ) [f ] (u1, . . . , uM ) are equal to

∫

f(x1, . . . , xN ) exp (−2πi (x1u1 + · · · + xMuM )) dx1 . . . dxN .

The next step is to observe that if basis change operators commute
with Fourier transforms via FN ◦ B ≡ (B−T /

∣

∣B−T
∣

∣) ◦ FN , then
the proof of the theorem would be complete because for every func-
tion f we would have

(FM ◦ IN
M ◦ B) [f ] = (SN

M ◦ FN ) [B [f ]] (by Eq. 21)

=
(

SN
M ◦

(

B−T /
∣

∣

∣
B−T

∣

∣

∣

)

◦ FN
)

[f ] . (commute) (22)

Thus, the final step is to show that FN ◦ B ≡ (B−T /
∣

∣B−T
∣

∣) ◦

FN . Directly substituting the operator definitions establishes these
two equations:

(B ◦ FN ) [f ] (u) =

∫

f(x) exp
(

−2πi
(

x
T

(

B−1
u

)

))

dx; (23)

(

FN◦
B−T

|B−T |

)

[f ] (u) (24)

=
1

|B−T |

∫

f
(

BT
x
′
)

exp
(

−2πi
(

x
′ · u

))

dx′.

In these equations, x and u are N -dimensional column vectors, and
the integral is taken over all of N -dimensional space.

Let us now apply the change of variables x = BT
x
′ to Eq. 24,

noting that x
′ = B−T

x, and dx =
(

1/
∣

∣B−T
∣

∣

)

dx. Making these
substitutions,
(

FN◦
B−T

|B−T |

)

[f ] (u) =

∫

f (x) exp

(

−2πi

(

(

B−T
x

)T
u

))

dx

=

∫

f (x) exp
(

−2πi
(

x
TB−1

u

))

dx

(25)

where the last line relies on the linear algebra rule for trans-
posing matrix products. Equations 23 and 25 show that
FN ◦ B ≡ (B−T /

∣

∣B−T
∣

∣) ◦ FN , completing the proof.

B Filtered Light Field Photography Thm.

Theorem (Filtered Light Field Photography).

PF ◦ C4
k ≡ C2

PF [k] ◦ PF ,

To prove the theorem, let us first establish a lemma involving the
closely-related modulation operator:

Modulation MN
β is an N -dimensional modulation operator, such

that MN
β [F ] (x) = F (x)·β(x) where x is an N -dimensional

vector coordinate.

Lemma. Multiplying an input 4D function by another one, k, and
transforming the result by PF , the Fourier photography operator,
is equivalent to transforming both functions by PF and then multi-
plying the resulting 2D functions. In operators,

PF ◦M4
k ≡ M2

PF [k] ◦ PF (26)

Algebraic verification of the lemma is direct given the basic def-
initions, and is omitted here. On an intuitive level, however, the
lemma makes sense because Pα is a slicing operator: multiplying
two functions and then slicing them is the same as slicing each of
them and multiplying the resulting functions.

Proof of theorem. The first step is to translate the classical Fourier
Convolution Theorem (see, for example, Bracewell [1986]) into
useful operator identities. The Convolution Theorem states that a
multiplication in the spatial domain is equivalent to convolution in
the Fourier domain, and vice versa. As a result,

FN ◦ CN
k ≡ MN

FN [k] ◦ F
N

(27)

and FN ◦MN
k ≡ CN

FN [k] ◦ F
N . (28)

Note that these equations also hold for negative N , since the Con-
volution Theorem also applies to the inverse Fourier transform.

With these facts and the lemma in hand, the proof of the theorem
proceeds swiftly:

PF ◦ C4
k ≡ F−2 ◦ PF ◦ F4 ◦ C4

k

≡ F−2 ◦ PF ◦M4
F4[k]

◦ F4

≡ F−2 ◦M2
(PF ◦F4)[k]

◦ PF ◦ F4

≡ C2
(F−2◦PF ◦F4)[k]

◦ F−2 ◦ PF ◦ F4

≡ C2
PF [k] ◦ PF ,

where we apply the Fourier Slice Photography Theorem (Eq. 9) to
derive the first and last lines, the Convolution Theorem (Eqs. 27
and 28) for the second and fourth lines, and the lemma (Eq. 26) for
the third line.

C Photograph of a 4D Sinc Light Field

This appendix derives Eq. 14, which states that a photo from a 4D
sinc light field is a 2D sinc function. The first step is to apply the
Fourer Slice Photography Theorem to move the derivation into the
Fourier domain.

Pα

[

1/(∆x∆u)2 · sinc(x/∆x, y/∆x, u/∆u, v/∆u)
]

=1/(∆x∆u)2 · (F−2 ◦ Pα ◦ F4) [sinc(x/∆x, y/∆x, u/∆u, v/∆u)]

=(F−2 ◦ Pα) [⊓(kx∆x, ky∆x, ku∆u, kv∆u)] . (29)

Now we apply the definition for the Fourier photography operator
Pα (Eq. 7), to arrive at

Pα

[

1/(∆x∆u)2 · sinc(x/∆x, y/∆x, u/∆u, v/∆u)
]

(30)

= F−2 [⊓(αkx∆x, αky∆x, (1 − α)kx∆u, (1 − α)ky∆u)] .

Note that the 4D rect function now depends only on kx and ky , not
ku or kv . Since the product of two dilated rect functions is equal to
the smaller rect function,

Pα

[

1/(∆x∆u)2 · sinc(x/∆x, y/∆x, u/∆u, v/∆u)
]

= F−2 [⊓(kxDx, kyDx)] (31)

where Dx = max(α∆x, |1 − α|∆u). (32)

Applying the inverse 2D Fourier transform completes the proof:

Pα

[

1/(∆x∆u)2 · sinc(x/∆x, y/∆x, u/∆u, v/∆u)
]

= 1/D2
x · sinc(kx/Dx, ky/Dx). (33)


