
THEORY OF COMPUTING, Volume 15 (11), 2019, pp. 1–13

www.theoryofcomputing.org

Fourier Sparsity and Dimension

Swagato Sanyal

Received December 29, 2018; Revised August 19, 2019; Published October 27, 2019

Abstract: We prove that the Fourier dimension of any Boolean function with Fourier

sparsity s is at most O(
√

s logs). This bound is tight up to a factor of O(logs) since the

Fourier dimension and sparsity of the address function are quadratically related. We obtain

our result by bounding the non-adaptive parity decision tree complexity, which is known to

be equivalent to the Fourier dimension. A consequence of our result is that any XOR function

has a protocol of complexity O(
√

r logr) in the simultaneous communication model, where

r is the rank of its communication matrix.

ACM Classification: F.2.3

AMS Classification: 68Q17

Key words and phrases: Boolean functions, Fourier analysis, Boolean complexity, decision tree, query

complexity

1 Introduction

The study of Boolean functions involves studying various complexity measures and their inter-relation-

ships. Two such measures, which we investigate in this article, are the Fourier dimension and the Fourier

sparsity. Let f : Fn
2→{1,−1} be a Boolean function with Fourier expansion

f (x) = ∑
γ∈Fn

2

f̂ (γ)χγ(x).

where χγ(x) := (−1)∑
n
i=1 γixi are the characters and the f̂ (γ)’s are real numbers, called the Fourier coeffi-

cients of f . The Fourier dimension and Fourier sparsity are defined as follows.

A conference version of this paper appeared in the Proceedings of the 42nd International Colloquium on Automata,

Languages, and Programming (ICALP 2015) [12].

© 2019 Swagato Sanyal
cb Licensed under a Creative Commons Attribution License (CC-BY) DOI: 10.4086/toc.2019.v015a011

http://dx.doi.org/10.4086/toc
http://www.kurims.kyoto-u.ac.jp/icalp2015/
http://www.kurims.kyoto-u.ac.jp/icalp2015/
http://theoryofcomputing.org/copyright2009.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4086/toc.2019.v015a011

SWAGATO SANYAL

Definition 1.1 (Fourier sparsity and dimension). For a Boolean function f : Fn
2→{1,−1} with Fourier

expansion

f (x) = ∑
γ∈Fn

2

f̂ (γ)χγ(x),

the Fourier support of f , denoted by supp(f̂), is defined as

supp(f̂) := {γ ∈ Fn
2 : f̂ (γ) 6= 0}.

The Fourier sparsity of f , denoted by sparsity(f̂), is defined as the size of the Fourier support of f , i. e.,

sparsity(f̂) := |supp(f̂)|,

while the Fourier dimension dim(f̂) of f is defined as the dimension of the span of supp(f̂).

Note that the Fourier expansion of f is a multilinear polynomial in the variables yi := (−1)xi . With

respect to this view, Fourier sparsity of a Boolean function f is the number of monomials that appear in

the Fourier expansion of f . Fourier dimension, on the other hand, is the smallest number of monomials,

or equivalently parity functions, whose values always determine f . It is natural to investigate the power

and limitation of polynomials with low Fourier sparsity or Fourier dimension. Fourier sparsity and

Fourier dimension were studied by Gopalan et al. [4] in the context of property testing. More recently

these quantities have been studied in the context of learning [7, 1]. An approximate analog of Fourier

dimension has been shown to characterize the randomized one-way communication complexity of an

important and well-studied subclass of functions called the XOR functions, over uniformly distributed

inputs [8]. A Boolean function F(x,y) on two n-bit inputs is an XOR function if there exists a Boolean

function f on n bits such that F(x,y) = f (x⊕ y).
Besides, the study on Fourier sparsity has attracted attention of complexity theorists due to its intimate

connection to the log-rank conjecture of communication complexity. Fourier dimension is related to a

simultaneous communication game. This connection is discussed in more detail later in this section.

The following inequalities easily follow from the definition of Fourier sparsity and dimension.

log2 sparsity(f̂)≤ dim(f̂)≤ sparsity(f̂). (1.1)

There are functions (e.g., indicator functions of subspaces) for which the first inequality is tight (i. e.,

holds with equality). In this note we examine the tightness of the second inequality. Note that the

Fourier transform of a Boolean function is a polynomial with a very special property; it evaluates to

1 or −1 on all inputs from {1,−1}n. It is thus natural to expect that there is always a good amount of

dependency amongst its monomials. The gap between Fourier sparsity and Fourier dimension is one way

of quantifying this dependency.

For the second inequality, the address function is one function having asymptotically the closest

gap between Fourier dimension and sparsity.1 Let s be a power of 2. The address function Adds :

{0,1}(1/2) logs+
√

s→{1,−1} is defined as

Adds(x,y1,y2, . . . ,y√s) := (−1)yx , x ∈ {0,1} 1
2

logs,yi ∈ {0,1},
1Recently Khalyavin, Lobanov and Tarannikov have constructed a function for which the gap between Fourier dimension

and Fourier sparsity is closer by a constant factor than in the address function [9].

THEORY OF COMPUTING, Volume 15 (11), 2019, pp. 1–13 2

http://dx.doi.org/10.4086/toc

FOURIER SPARSITY AND DIMENSION

where x is interpreted as an address in {1, . . . ,√s}. In other words, on every input (x,y), Adds(x,y) is

the value of the addressed input bit yx indexed by the addressing variables x. The address function has

Fourier sparsity s and Fourier dimension at least
√

s. To see this, note that

Adds(x,y) = ∑
x̃∈{0,1}(1/2) logs

1x=x̃ · (−1)yx̃ .

Each indicator function 1x=x̃ has Fourier sparsity2
√

s. Since the summation is over
√

s terms, and since

there is no cancellation due to the presence of a character corresponding to a fresh variable yx̃ in each

term, the Fourier sparsity of the address function is equal to
√

s ·√s = s. To see that the dimension is at

least
√

s, note that for each x̃ ∈ {0,1}(1/2) logs, the character (−1)yx̃ appears in the Fourier transform. We

prove that for any Boolean function, this is the asymptotically highest possible value of dim(f̂) in terms

of sparsity(f̂), up to a factor of O(logs). This was presented as an open problem at the Simons workshop

on Real Analysis in Testing, Learning and Inapproximability, 2013 by John Wright.

Our main result is the following.

Theorem 1.2. Let f be a Boolean function with sparsity(f̂) = s. Then, dim(f̂) = O(
√

s logs).

In a preliminary version of this article, posted on arXiv and ECCC, we proved an upper bound of

O(s2/3) on dim(f̂). Avishay Tal observed that the analysis can be tightened to obtain the near-optimal

upper bound of O(
√

s logs).
Prior to this work, Gavinsky et al. [3] had proved that the dimension of any Boolean function with

Fourier sparsity s is O(s/ logs).
Theorem 1.2 is proved using a lemma of Tsang et al. [14] bounding the codimension of an affine

subspace restricted to which the function is constant, in terms of the Fourier sparsity of the function. The

following result is a corollary to [14, Lemma 28].

Lemma 1.3 (Tsang, Wong, Xie, and Zhang). Let f : Fn
2→{1,−1} be a Boolean function with Fourier

sparsity s. Then there is an affine subspace V of Fn
2 of codimension O(

√
s) such that f is constant on V .

Proof idea of Theorem 1.2. We begin with a simple but crucial observation made by Gopalan et al. [4],

that the Fourier dimension of a Boolean function is equivalent to its non-adaptive parity decision tree

complexity (see Proposition 2.7). This offers us a potential approach towards an upper bound on the

Fourier dimension of a Boolean function: exhibiting a shallow non-adaptive parity decision tree of the

function. We recall that the character functions essentially compute the parities of various subsets of the

input bits. Thus a parity decision tree can be thought of as querying various character functions. Parity

functions, in turn, are linear functions from Fn
2 to F2; thus affine subspaces can be described by specifying

a set of parities that are set to various values.

Towards this end, we first recall the construction of an (adaptive) parity decision tree for a Boolean

function f of Fourier sparsity s by Tsang et al. [14], which in turn improves on an earlier construction

due to Shpilka et al. [13, Theorem 1.1]. The broad idea of their construction is as follows. At any point

in time, a partial tree is maintained whose leaves are functions which are restrictions of f on different

2Note that the indicator functions evaluate to {0,1} instead of {1,−1}. However, the theory of Fourier analysis extends to

such functions as well.

THEORY OF COMPUTING, Volume 15 (11), 2019, pp. 1–13 3

http://arxiv.org/abs/1407.3500
https://eccc.weizmann.ac.il/report/2014/088/
http://dx.doi.org/10.4086/toc

SWAGATO SANYAL

affine subspaces. Then a non-constant leaf τ is picked arbitrarily, and a small set of linear restrictions is

obtained by invoking Lemma 1.3, such that the restricted function f |τ at that leaf becomes constant. The

next step is observing that if f |τ is further restricted to all the affine subspaces obtained by setting the

same set of parities in all possible ways, then the Fourier sparsity of each of the corresponding restricted

functions is at most half of that of f |τ . This is because, in the former restriction, since the function

becomes constant, the Fourier coefficients corresponding to non-constant characters must disappear in

the restricted space. This can only happen if every non-constant character gets identified with at least one

other character. This identification leads to halving of the Fourier support. Note that by Lemma 1.3 the

number of queries we have spent to achieve this reduction in Fourier sparsity is

O

(√
sparsity(f̂ |τ)

)
.

A calculation gives us that proceeding in this way a parity decision tree of depth O(
√

s) is obtained.

Note that the choice of parities restricted at various steps depends on the leaf (function) chosen, and

hence on the outcomes of the preceding queries. Thus the constructed tree is an adaptive one. In this

article, we make this tree non-adaptive, at the cost of a logarithmic increase in depth. At each step, we

choose an appropriate function (leaf) of the partial tree constructed thus far, invoke Lemma 1.3, and

obtain restrictions which make it constant. Then we query the same set of parities at every leaf. Note

that doing that in each step results in a non-adaptive tree, as the set of parities queried at each step is the

same for all the leaves of the current partial tree, and hence independent of the responses to the previous

queries. Then we argue that this leads to a significant reduction of Fourier sparsity. Let s(i) be the Fourier

sparsity of the function (leaf) chosen at the i-th step. It can be shown that, in the next step, the size ℓ(i) of

the union of the Fourier supports of all the leaves falls at least by s(i)/2. From Lemma 1.3, the number of

queries spent in the i-th step is O(
√

s(i)). Using the Uncertainty Principle (Theorem 2.4) we show that

s(i) ≥
(
ℓ(i)
)2
/s (see Lemma 3.3). We combine all these facts to show that continuing in this fashion, in a

small number of steps and making at most O(
√

s logs) queries, all the leaves become constant functions.

The details of the construction of the non-adaptive parity decision tree, and its analysis, are given in

Section 3.

Connections to communication complexity and the log-rank conjecture. The log-rank conjecture

is a long-standing and important conjecture in communication complexity. The statement of the conjecture

is that the deterministic communication complexity of a Boolean function is asymptotically bounded

above by some fixed polylogarithm of the rank (over the real numbers) of its communication matrix. The

best known upper bound of deterministic communication complexity of a function in terms of the rank

is O(
√

ranklogrank) due to Lovett [10].3 The rank of the communication matrix of an XOR function

F(x,y) := f (x⊕ y) is known to be equal to the Fourier sparsity s of f . For the special case of XOR

functions the result by Lovett also follows from a result of of Tsang et al. [14],4 which improves on a

result by Shpilka et al. [13]. A consequence of Theorem 1.2 is that XOR functions admit a protocol

3We note here that the related log approximate-rank conjecture has recently been refuted by Chattopadhyay et al. [2], and

the function they use is an XOR function.
4For XOR functions, the communication complexity upper bound is in fact O(

√
rank) which is better than O(

√
ranklogrank)

by a logarithmic factor. It follows from the parity decision tree complexity upper bound proved by Tsang et al. [14].

THEORY OF COMPUTING, Volume 15 (11), 2019, pp. 1–13 4

http://dx.doi.org/10.4086/toc

FOURIER SPARSITY AND DIMENSION

of complexity O(
√

ranklogrank) = O(
√

s logs) in the simultaneous communication model.5 We note

that both the earlier protocols [10, 14] are two-way. The simultaneous protocol is as follows. Alice and

Bob a priori agree on a set S of O(
√

s logs) parities that span the Fourier support of F(x,y) = f (x⊕ y).
The existence of S is guaranteed by Theorem 1.2. The character corresponding to each parity P in S

is a product of a character Mx in variables in x and a character My in variables in y. Upon receiving

inputs x and y, Alice and Bob compute the values of Mx and My, respectively, for each P ∈ S, and send

the evaluations to the referee. The referee then can evaluate the characters corresponding to each parity

P ∈ S on the input x⊕ y. Since every other character in the Fourier expansion of F is determined by the

characters in S, the referee can compute the value of all those characters. Finally, the referee evaluates

F(x,y) from its Fourier expansion and outputs it.

Some remarks about Lemma 1.3. Lemma 1.3 is not believed to be tight. Tsang et al. [14] investigated

this question while studying the log-rank conjecture for XOR functions. They suggested a direction

towards proving the log-rank conjecture for XOR functions. In particular, they proposed a protocol for an

XOR function F(x,y) = f (x⊕y) based on a parity decision tree of f and showed that the communication

complexity of the proposed protocol is polylogarithmic in the rank of the communication matrix if the

following related conjecture, stated as [14, Conjecture 27], is true.

Conjecture 1.4 (Tsang et al.). There exists a constant c > 0 such that for every Boolean function f with
Fourier sparsity s, there exists an affine subspace of codimension O(logc s) on which f is constant.

Even before, Montanaro and Osborne [11] had conjectured that the parity decision tree complexity

of a function is polylogarithmic in its Fourier sparsity. Tsang et al. showed that this seemingly stronger

conjecture follows from Conjecture 1.4.

Tsang et al. proved the above conjecture for certain classes of functions, which include functions

with constant F2 degree, and proved Lemma 1.3 for general functions. It follows from subsequent result

by Hatami, Hosseini and Lovett [6] that Conjecture 1.4 is equivalent to the log-rank conjecture for XOR

functions (and also to the conjecture by Montanaro and Osborne).

We remark that the bound of Theorem 1.2 is near-optimal; so any significant improvement to it

assuming Conjecture 1.4 would be a contradiction, and hence would serve to refute Conjecture 1.4. We

note that with our proof technique and analysis, any improvement to Lemma 1.3 (in particular a positive

resolution of Conjecture 1.4), does not yield a better than logarithmic improvement to Theorem 1.2. Our

result, thus, does not seem to throw any light on the truth of Conjecture 1.4. For further discussion on this

topic, the reader is referred to Section 3.

2 Preliminaries

Let f : Fn
2 → {1,−1} be a Boolean function. For γ = (γ1, . . . ,γn),x = (x1, . . . ,xn) ∈ Fn

2, let χγ(x) :=
(−1)∑

n
i=1 γixi be the character associated with γ . It is well known that every Boolean function f (x) can be

5We thank the anonymous referee for pointing this out.

THEORY OF COMPUTING, Volume 15 (11), 2019, pp. 1–13 5

http://dx.doi.org/10.4086/toc

SWAGATO SANYAL

uniquely written as

f (x) = ∑
γ∈Fn

2

f̂ (γ)χγ(x). (2.1)

The right-hand side of Equation (2.1) is called the Fourier expansion of f , and the real coefficients f̂ (γ)
are called the Fourier coefficients.

We review some standard definitions and facts about the Fourier coefficients.

Definition 2.1. Let f (x) = ∑γ∈Fn
2

f̂ (γ)χγ(x) be a Boolean function, and p≥ 1. The p-th spectral norm

‖̂ f ‖̂p of f is defined as

‖̂ f ‖̂p =

(
∑

γ∈Fn
2

∣∣∣ f̂ (γ)
∣∣∣

p
)1/p

.

Lemma 2.2 (A special case of Parseval’s identity). For a Boolean function f , ‖̂ f ‖̂2 = 1.

The 1st spectral norm of a Boolean function can be bounded in terms of sparsity as follows.

Claim 2.3. For a Boolean function f with Fourier sparsity s, ‖̂ f ‖̂1 ≤
√

s.

Proof.

‖̂ f ‖̂1 ≤ ‖̂ f ‖̂2 ·
√

s =
√

s.

The first inequality is the Cauchy-Schwarz inequality while the second equality follows from Lemma 2.2.

In order to prove our results, we shall use the following version of the Uncertainty Principle. See,

e.g., [5] for a proof.

Theorem 2.4 (Uncertainty Principle). Let p : Rn→R be a real multilinear non-zero n-variate polynomial
with sparsity s (i. e., it has s monomials with non-zero coefficients). Let Un denote the uniform distribution
on {1,−1}n. Then

Pr
x∼Un

[p(x) 6= 0]≥ 1

s
.

As mentioned in the Introduction, we need the following result by Tsang et al. [14, Lemma 28].

Theorem 2.5 (Tsang et al.). Let f : Fn
2→{1,−1} be such that ‖̂ f ‖̂1 = A. Then there is an affine subspace

V of Fn
2 of codimension O(A) such that f is constant on V .

Lemma 1.3 is a simple corollary of this theorem via Claim 2.3.

In our proof we crucially use the observation made by Gopalan et al. [4] about the equivalence of the

non-adaptive parity decision tree complexity of a function (defined below) and its Fourier dimension. We

state it in Proposition 2.7.

Definition 2.6 (Non-adaptive parity decision tree complexity). Let f be a Boolean function. The non-
adaptive parity decision tree complexity of f (denoted by NADT⊕(f)) is defined as the minimum

integer t such that there exist γ1, . . . ,γt ∈ Fn
2 such that f is determined by the evaluation of the characters

χγ1
, . . . ,χγt .

Proposition 2.7 (Gopalan et al. [4]). For every Boolean function f , NADT⊕(f) = dim(f̂).

THEORY OF COMPUTING, Volume 15 (11), 2019, pp. 1–13 6

http://dx.doi.org/10.4086/toc

FOURIER SPARSITY AND DIMENSION

3 Upper bound on parity decision tree complexity

In this section, we prove an upper bound on the non-adaptive parity decision tree complexity of a Boolean

function f in terms of its Fourier sparsity s. For B⊆ Fn
2, let f |B denote the restriction of the function f

to the set B. We will often identify vectors γ ∈ Fn
2 with the linear function that maps a vector x ∈ Fn

2 to

γ(x) := ∑
n
i=1 γixi mod 2 ∈ F2. We first formally present a procedure NADT that constructs a non-adaptive

parity decision tree of f . We then provide a description of the procedure in words (in particular, the roles

of the various variables used) and a formal analysis of the same, leading up to the proof of Theorem 1.2.

NADT(f)

Input: Boolean function f : Fn
2→{1,−1};

Output: A set Γ of parities, whose evaluations determine the value of f ;

1. Set Γ←∅, S← supp(f̂) and F←{ f}.
2. While S 6= { /0}, do

(a) Let g be a function in F with the largest Fourier sparsity. Let A be a largest affine

subspace on which g is constant (breaking ties arbitrarily), with codimension ng. Let

γ1, . . . ,γng ∈ Fn
2 and b1, . . . ,bng ∈ F2 be such that

A = {x ∈ Fn
2 : γ1(x) = b1, . . . ,γng(x) = bng}.

(b) Set Γ← Γ∪{γ1, . . . ,γng}.
(c) For each b = (bγ)γ∈Γ ∈ F

|Γ|
2 , let Vb be the affine subspace {x ∈ Fn

2 : ∀γ ∈ Γ,γ(x) = bγ}.
Set

F←
⋃

b∈F|Γ|2

{ f |Vb}.

(d) S←⋃
h∈F supp(ĥ).

3. Return Γ.

Notation. After each iteration of the while loop in the procedure, Γ is the set of parities that have been

queried so far, F is the set of all restrictions of f to the affine subspaces obtained by different assignments

to parities in Γ, and S is the union of the Fourier supports of functions in F. Throughout this section, i will

stand for the index of an arbitrary iteration of NADT. Let Γ(i),F(i) and S
(i) denote Γ,F and S respectively

at the end of the i-th iteration of the while loop. Let Γ(0) =∅, F(0) = { f} and S
(0) = supp(f̂).

For each i, let b = (bγ)γ∈Γ(i) ∈ F
|Γ(i)|
2 and let Vb be the affine subspace defined by the linear constraints

{γ(x) = bγ : γ ∈ Γ(i)}. In Vb, more than one linear function of the original space may get identified,

namely, the restrictions of these linear functions to the sub-domain subdomain Vb are either the same

function or negations of each other. More specifically, δ1 and δ2 get identified in Vb if and only if

δ1 + δ2 ∈ spanΓ(i) (i. e., they belong to the same coset of the subspace spanΓ(i)). This equivalence

relation induces a partition on supp(f̂) into equivalence classes. Note that this partition is determined by

THEORY OF COMPUTING, Volume 15 (11), 2019, pp. 1–13 7

http://dx.doi.org/10.4086/toc

SWAGATO SANYAL

Γ(i) alone. Further, for each equivalence class, for every b ∈ F
|Γ(i)|
2 , the linear functions belonging to that

class get identified with one another in Vb.

Let ℓ(i) denote the number of such equivalence classes.6 For all j ∈ [ℓ(i)], let β
(i)
j be an arbitrarily

picked representative element in the j-th equivalence class. Let

β
(i)
j +α

(i)
j,1, . . . ,β

(i)
j +α

(i)

j,k(i)j

be the k(i)j elements in the j-th equivalence class, where α
(i)
j,1, . . . ,α

(i)

j,k(i)j

are in spanΓ(i). Now define

functions

P(i)
j (x) :=

k(i)j

∑
l=1

f̂
(

β
(i)
j +α

(i)
j,l

)
χ

α
(i)
j,l
(x).

Note that the functions P(i)
j are non-zero. As we will soon see, it will be helpful to think of the P(i)

j ’s as

multilinear polynomials in variables yi = (−1)xi .

Given this notation, we can then write the Fourier expansion of f in the following form:

f (x) =
ℓ(i)

∑
j=1

P(i)
j (x)χ

β
(i)
j
(x).

Note that the value of each P(i)
j is fixed once the evaluation of each linear form γ ∈ Γ(i) is specified.

In other words, each P(i)
j is a constant function on each Vb.

Observation 3.1.
ℓ(i)

∑
j=1

k(i)j = s.

Proof. The size of the Fourier support of f is the sum of the sizes of its equivalence classes defined

above.

Proposition 3.2. |S(i)|= ℓ(i).

Proof. Clearly |S(i)| ≤ ℓ(i), as each term in the Fourier expansion of f |Vb corresponds to a distinct

equivalence class (and this correspondence is independent of b). Now, for j ∈ [ℓ(i)], since P(i)
j is a

non-zero function, there exists an assignment b to the parities in Γ(i) on which P(i)
j evaluates to a non-zero

value. Thus the coefficient of β
(i)
j is non-zero in the restriction of f to the affine subspace obtained

by assigning b to the parities in Γ(i). Thus for all j ∈ [ℓ(i)], β
(i)
j ∈ S

(i) which, together with |S(i)| ≤ ℓ(i),

implies |S(i)|= ℓ(i).

We now argue that after every iteration of the while loop, there exists a function h ∈ F
(i) which has

large Fourier support.

6ℓ(i) is in fact the number of cosets of the subspace spanΓ(i) with which supp(f̂) has non-empty intersection.

THEORY OF COMPUTING, Volume 15 (11), 2019, pp. 1–13 8

http://dx.doi.org/10.4086/toc

FOURIER SPARSITY AND DIMENSION

Lemma 3.3. After the i-th iteration, there exists an h ∈ F
(i) such that |supp(ĥ)| is at least

(
ℓ(i)
)2
/s.

Proof. Consider any function f |Vb ∈ F
(i). The Fourier decomposition of f |Vb is given by

f |Vb =
ℓ(i)

∑
j=1

P(i)
j (b) ·χ

β
(i)
j
(x).

Thus, |supp(f̂ |Vb)| is exactly the number of functions P(i)
j , j ∈ [ℓ(i)] such that P(i)

j (b) is non-zero. We

analyze this quantity as follows. Pick a b ∈ F
|Γ(i)|
2 uniformly at random. Now, note that for each j ∈ [ℓ(i)],

P(i)
j is a non-zero multilinear polynomial in variables {(−1)bγ : γ ∈ Γ(i)}. Thus by Theorem 2.4,

Pr
b
[P(i)

j (b) 6= 0]≥ 1

k(i)j

.

Thus,

Eb

[
|supp(f̂ |Vb)|

]
≥

ℓ(i)

∑
j=1

1

k(i)j

≥ ℓ(i) · 1(
∑
ℓ(i)
j=1 k(i)j

)
/ℓ(i)

[By Jensen’s inequality applied to 1/x]

=

(
ℓ(i)
)2

s
[By Observation 3.1].

Hence, there exists an h ∈ F
(i) such that |supp(ĥ)| is at least

(
ℓ(i)
)2
/s.

Let g(i) be the function chosen in step 2a of the i-th iteration of NADT. Let sparsity(ĝ(i)) = s(i), and

∆ℓ(i) = ℓ(i−1)− ℓ(i) for i ≥ 1. The next lemma proves that, if a function with large Fourier support is

picked in step 2a, then that leads to a large reduction in the size of S.

Lemma 3.4. Assume that neither f nor 1− f is a character, and NADT(f) runs for t iterations. Then
for all i ∈ [t], ∆ℓ(i) ≥ s(i)/2.

Proof. Let γ1, . . . ,γn
g(i)

be the parities queried in iteration i. Hence there is a b = (b1, . . . ,bn
g(i)
) ∈ (F2)

n
g(i)

such that g(i) is constant on the affine subspace Vb obtained by setting γ j to b j for all j ∈ [ng(i)]. Now,

consider the following cases.

Case 1. s(i) ≥ 2. Since g(i) is constant on Vb, each Fourier coefficient of g(i) |Vb must be either 0 or

±1. This is possible only if for every α1 ∈ supp(ĝ(i)) there is another α2 ∈ supp(ĝ(i)) such that

α1 +α2 ∈ span{γ1, . . . ,γn
g(i)
}, i. e., they get identified. This implies that for every

b′ = (b′) j ∈ (F2)
n

g(i) ,

THEORY OF COMPUTING, Volume 15 (11), 2019, pp. 1–13 9

http://dx.doi.org/10.4086/toc

SWAGATO SANYAL

in the affine space Vb′ obtained by restricting each γ j to b′j, every parity in supp(ĝ(i)) is identified

with some other parity in supp(ĝ(i)). Since supp(ĝ(i)) ⊆ S
(i−1), it follows that |S(i)| is at least

|supp(ĝ(i))|/2 less than |S(i−1)|. By Proposition 3.2 this implies ∆ℓ(i) ≥ s(i)/2.

Case 2. s(i) = 1 (i. e., g(i) is either a parity function or the complement of a parity function). Since neither

f nor 1− f is a character, we have that s(1) = sparsity(f̂)≥ 2. Hence we conclude that i≥ 2. Note

that for i≥ 1, /0 ∈ S
(i). Hence for i≥ 2, ∆ℓ(i) = 1≥ s(i)/2.

The lemma follows from the two cases.

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. If either f or 1− f is a character, the theorem follows immediately. Hence assume

that neither f nor 1− f is a character.

We obtain a non-adaptive parity decision tree for f by running NADT. Assume that the while loop

runs for t iterations. Let the number of queries made in step 2a in the i-th iteration of the procedure be

q(i). By Lemma 1.3, q(i) = O(
√

s(i)). By Lemma 3.4, ∆ℓ(i) ≥ s(i)/2. Hence,

q(i)

∆ℓ(i)
=

1

Ω(
√

s(i))
.

From Lemma 3.3 we have s(i) ≥
(
ℓ(i−1)

)2
/s. Hence q(i) =

√
s ·O

(
∆ℓ(i)/ℓ(i−1)

)
. Thus the total number

of queries made within the while loop of the procedure is

t

∑
i=1

q(i) =
√

s ·
t

∑
i=1

O

(
∆ℓ(i)

ℓ(i−1)

)
=
√

s ·
t

∑
i=1

O

∆ℓ(i)

s−
i−1

∑
j=1

∆ℓ(j)

≤
√

s ·
t

∑
i=1

O

1

s−
i−1

∑
j=1

∆ℓ(j)

+
1

s−
i−1

∑
j=1

∆ℓ(j)−1

+ · · ·+ 1

s−
i−1

∑
j=1

∆ℓ(j)− (∆ℓ(i)−1)

≤
√

s ·O
(

s

∑
k=1

1

k

)
= O(

√
s logs).

From Proposition 2.7 it follows that dim(f̂) = O(
√

s logs).

Discussion. As mentioned in the introduction, a potential approach towards disproving Conjecture 1.4

is to assume it to be true, and prove that it implies a o(
√

s) upper bound on Fourier dimension. This will

refute the conjecture, since, for the address function (see Section 1),

dim(Âdds) = Θ

(√
sparsity(Âdds)

)
.

THEORY OF COMPUTING, Volume 15 (11), 2019, pp. 1–13 10

http://dx.doi.org/10.4086/toc

FOURIER SPARSITY AND DIMENSION

However, we cannot disprove the conjecture by an analysis of the NADT, assuming the conjecture. To see

this let us consider the execution of NADT on the address function. Recall that Adds(x,y1,y2, . . . ,y√s) =

yx,x ∈ {0,1}(1/2) logs,yi ∈ {0,1}. One easily sees that a largest affine subspace V on which the function

is constant is the one defined by the constraints x = x′, yx′ = b where x′ ∈ {0,1}(1/2) logs and b ∈ {0,1}.
The function takes the value b everywhere in V . Also, if the address bits x and the bit yx′ are set to other

values than x′ and b, then the restricted functions in the respective affine subspaces are all constants (if

x is set to x′) or dictators (on the addressed bits). The subsequent steps query different dictators on the

addressed bits.

The address function clearly satisfies Conjecture 1.4, and all the intermediate functions that are

given rise to by NADT are dictators, which also trivially satisfy the conjecture. Thus this rules out the

possibility of refuting Conjecture 1.4 by analyzing NADT assuming the conjecture. We note, however,

that if we assume the conjecture, then we can improve the upper bound by a factor of O(logs), to the

optimal O(
√

s).

Acknowledgements

I thank Avishay Tal for observing that an earlier analysis of NADT which proved a O(s2/3) upper bound

can be tightened to obtain the O(
√

s logs) upper bound, and bringing it to my notice. I thank the anony-

mous referees for pointing out that Theorem 1.2 implies the existence of simultaneous communication

protocols for XOR functions, for suggesting simplifications of some proofs, and for suggestions that

helped to improve the presentation. I thank Arkadev Chattopadhyay and Prahladh Harsha for many

helpful discussions. I thank Prahladh Harsha for his help in significantly improving the presentation of

this article.

References

[1] SRINIVASAN ARUNACHALAM, SOURAV CHAKRABORTY, TROY LEE, MANASWI PARAASHAR,

AND RONALD DE WOLF: Two new results about quantum exact learning. In Proc. 46th Internat.
Colloq. on Automata, Languages and Programming (ICALP’19), pp. 16:1–16:15. Schloss Dagstuhl–

Leibniz-Zentrum fuer Informatik, 2019. [doi:10.4230/LIPIcs.ICALP.2019.16, arXiv:1810.00481]

2

[2] ARKADEV CHATTOPADHYAY, NIKHIL S. MANDE, AND SUHAIL SHERIF: The log-

approximate-rank conjecture is false. In Proc. 50th STOC, pp. 42–53. ACM Press, 2019.

[doi:10.1145/3313276.3316353] 4

[3] DMITRY GAVINSKY, NAOMI KIRSHNER, ALEX SAMORODNITSKY, AND RONALD DE WOLF:

Private communication, 2014. 3

[4] PARIKSHIT GOPALAN, RYAN O’DONNELL, ROCCO A. SERVEDIO, AMIR SHPILKA, AND KARL

WIMMER: Testing Fourier dimensionality and sparsity. SIAM J. Comput., 40(4):1075–1100, 2011.

Preliminary version in ICALP’09. [doi:10.1137/100785429] 2, 3, 6

THEORY OF COMPUTING, Volume 15 (11), 2019, pp. 1–13 11

http://dx.doi.org/10.4230/LIPIcs.ICALP.2019.16
http://arxiv.org/abs/1810.00481
http://dx.doi.org/10.1145/3313276.3316353
https://link.springer.com/chapter/10.1007/978-3-642-02927-1_42
http://dx.doi.org/10.1137/100785429
http://dx.doi.org/10.4086/toc

SWAGATO SANYAL

[5] TOM GUR AND OMER TAMUZ: Testing Booleanity and the uncertainty principle. Chicago J.
Theoret. Computer Sci., 2013(14), 2013. [doi:10.4086/cjtcs.2013.014, arXiv:1204.0944] 6

[6] HAMED HATAMI, KAAVE HOSSEINI, AND SHACHAR LOVETT: Structure of protocols for

XOR functions. SIAM J. Comput., 47(1):208–217, 2018. Preliminary version in FOCS’16.

[doi:10.1137/17M1136869] 5

[7] ISHAY HAVIV AND ODED REGEV: The list-decoding size of Fourier-sparse Boolean func-

tions. ACM Trans. Comput. Theory, 8(3):10:1–10:14, 2016. Preliminary version in CCC’15.

[doi:10.1145/2898439, arXiv:1504.01649] 2

[8] SAMPATH KANNAN, ELCHANAN MOSSEL, SWAGATO SANYAL, AND GRIGORY YAROSLAVTSEV:

Linear sketching over F2. In Proc. 33rd Computational Complexity Conf. (CCC’18), pp. 8:1–

8:37. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018. [doi:10.4230/LIPIcs.CCC.2018.8,

arXiv:1611.01879] 2

[9] ANDREI VYACHESLAVOVICH KHALYAVIN, MIKHAIL SERGEEVICH LOBANOV, AND YURIY VA-

LERIEVICH TARANNIKOV: On plateaued Boolean functions with the same spectrum support. Sib.
Èlektron. Mat. Izv., 13:1346–1368, 2016. [doi:10.17377/semi.2016.13.105] 2

[10] SHACHAR LOVETT: Communication is bounded by root of rank. J. ACM, 63(1):1:1–1:9, 2016.

Preliminary version in STOC’14. [doi:10.1145/2724704, arXiv:1306.1877] 4, 5

[11] ASHLEY MONTANARO AND TOBIAS OSBORNE: On the communication complexity of XOR

functions, 2009. [arXiv:0909.3392] 5

[12] SWAGATO SANYAL: Near-optimal upper bound on Fourier dimension of Boolean functions in terms

of Fourier sparsity. In Proc. 42nd Internat. Colloq. on Automata, Languages and Programming
(ICALP’15), pp. 1035–1045. Springer, 2015. [doi:10.1007/978-3-662-47672-7_84] 1

[13] AMIR SHPILKA, AVISHAY TAL, AND BEN LEE VOLK: On the structure of Boolean functions with

small spectral norm. Comput. Complexity, 26(1):229–273, 2017. Preliminary version in ITCS’14.

[doi:10.1145/2591796.2591799, arXiv:1304.0371] 3, 4

[14] HING YIN TSANG, CHUNG HOI WONG, NING XIE, AND SHENGYU ZHANG: Fourier sparsity,

spectral norm, and the Log-rank Conjecture. In Proc. 54th FOCS, pp. 658–667. IEEE Comp. Soc.

Press, 2013. [doi:10.1109/FOCS.2013.76, arXiv:1304.1245] 3, 4, 5, 6

THEORY OF COMPUTING, Volume 15 (11), 2019, pp. 1–13 12

http://dx.doi.org/10.4086/cjtcs.2013.014
http://arxiv.org/abs/1204.0944
https://ieeexplore.ieee.org/document/7782941
http://dx.doi.org/10.1137/17M1136869
http://drops.dagstuhl.de/opus/volltexte/2015/5060/
http://dx.doi.org/10.1145/2898439
http://arxiv.org/abs/1504.01649
http://dx.doi.org/10.4230/LIPIcs.CCC.2018.8
http://arxiv.org/abs/1611.01879
http://dx.doi.org/10.17377/semi.2016.13.105
http://doi.org/10.1145/2591796.2591799
http://dx.doi.org/10.1145/2724704
http://arxiv.org/abs/1306.1877
http://arxiv.org/abs/0909.3392
http://dx.doi.org/10.1007/978-3-662-47672-7_84
https://dl.acm.org/citation.cfm?doid=2554797.2554803
http://dx.doi.org/10.1145/2591796.2591799
http://arxiv.org/abs/1304.0371
http://dx.doi.org/10.1109/FOCS.2013.76
http://arxiv.org/abs/1304.1245
http://dx.doi.org/10.4086/toc

FOURIER SPARSITY AND DIMENSION

AUTHOR

Swagato Sanyal

Assistant professor

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

India

swagato cs iitkgp ac in

http://cse.iitkgp.ac.in/~swagato/

ABOUT THE AUTHOR

SWAGATO SANYAL graduated from the Tata Institute of Fundamental Research, Mumbai,

India in 2017; his advisor was Prahladh Harsha. The subject of his thesis was analysis of

Boolean functions and query complexity. The work presented in this paper was done as

part of his Ph. D. dissertation.

THEORY OF COMPUTING, Volume 15 (11), 2019, pp. 1–13 13

http://cse.iitkgp.ac.in/~swagato/
www.tifr.res.in
www.tifr.res.in
http://www.tcs.tifr.res.in/~prahladh/
http://dx.doi.org/10.4086/toc

	Introduction
	Preliminaries
	Upper bound on parity decision tree complexity
	References

