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Abstract

Fractional differential equations are becoming increasingly used as a power-
ful modelling approach for understanding the many aspects of nonlocality and
spatial heterogeneity. However, the numerical approximation of these models
is computationally demanding and imposes a number of computational con-
straints. In this paper, we introduce Fourier spectral methods as an attractive
and easy-to-code alternative for the integration of fractional-in-space reaction-
diffusion equations. The main advantages of the proposed schemes is that they
yield a fully diagonal representation of the fractional operator, with increased
accuracy and efficiency when compared to low-order counterparts, and a com-
pletely straightforward extension to two and three spatial dimensions. Our
approach is show-cased by solving several problems of practical interest, in-
cluding the fractional Allen–Cahn, FitzHugh–Nagumo and Gray–Scott models,
together with an analysis of the properties of these systems in terms of the
fractional power of the underlying Laplacian operator.
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1. Introduction

Fractional differential equations are becoming increasingly used as a mod-
elling tool for diffusive processes associated with sub-diffusion (fractional in
time), super-diffusion (fractional in space) or both, and have a long history in,
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for example, physics, finance, mathematical biology and hydrology. In water re-
sources, fractional models have been used to describe chemical and contaminant
transport in heterogeneous aquifers [1, 2, 3]. In finance, they have been used
because of the relationship with certain option pricing mechanisms and heavy
tailed stochastic processes [4]. More recently, fractional models of the Bloch–
Torrey equation have been used in magnetic resonance [5]. In this paper we
will only consider super-diffusion effects (space-fractional models) in spatially
extended structures, such as those possessing spatial connectivity, where the
movement of particles may thus be facilitated within a certain scale.

In this context, the spatial complexity of the environment imposes geometric
constraints on the transport processes on all length scales, which can be inter-
preted as temporal correlations on all time scales. Non-homogeneities of the
medium may fundamentally alter the laws of Markov diffusion, leading to long
range fluxes, and non-Gaussian, heavy tailed profiles [6, 7], and these motions
may no longer obey Fick’s Law [8]. It is in this setting that fractional models
can offer insights that traditional approaches do not offer.

A space-fractional diffusion equation can be derived by replacing Fick’s Law
for the flux V (the rate at which mass is transported through an unit area against
the concentration gradient) by its fractional counterpart (cf. Meerschaert et al.
[9]):

V = −K∇βu, 0 < β ≤ 1, (1)

where K is the conductivity or diffusion tensor, and ∇β =
(

∂β

∂xβ ,
∂β

∂yβ ,
∂β

∂zβ

)T

is

the Riemann–Louiville fractional gradient, where

∂β

∂xβ
u(x, y, z) =

1

Γ(1− β)

∂

∂x

∫ x

0

u(s, y, z)

(x− s)β
ds, (2)

with similar expressions for ∂β

∂yβ and ∂β

∂zβ [10]. The fractional Fick’s Law (1)
naturally implies spatial and temporal nonlocality, and can be derived from
rigorous approaches using spatial averaging theorems and measurable functions
[11]. Combining this with a conservation of mass equation for the concentration
of particles u(x, t)

∂tu = −∇ · V, (3)

finally leads to
∂tu = −∇ · (−K∇βu). (4)

Equivalently, in the isotropic setting [12] the space fractional reaction-diffusion
equation can be written as

∂tu = −K(−∆)α/2u+ f(u, t), 1 < α ≤ 2, (5)

where (−∆)α/2 is the fractional Laplacian operator.
A standard approach for solving problems of the form (5) is to apply a finite

difference, finite element or finite volume discretisation of the fractional oper-
ator, and then use a semi-implicit Euler formulation for the time evolution of
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the solution. This requires the solution of a linear system of equations at each
time step, whose left-hand-side matrix has a fractional power. Various authors
such as Meerschaert et al. [13], Roop [14], Ilic et al., [15], Liu et al. [16] and
Pang et al. [17] have considered the numerical solution of such problems using
various discretisations, but most of these approaches either do not scale well
or their scalability has not been demonstrated. Very recently, two approaches
have been developed that use Krylov approaches [18] or fast numerical integra-
tion in conjunction with effective preconditioners [19] –see Section 2.1 for more
details– that allow for problems in two or three spatial dimensions to be tack-
led. However, even these latter approaches do not scale perfectly as the spatial
dimension increases to three and their effectiveness still depends on the mesh
discretisation.

In this paper we introduce Fourier spectral methods as an efficient alterna-
tive approach to solving fractional reaction-diffusion problems in the form of
(5). The main advantage of this approach is that it gives a full diagonal repre-
sentation of the fractional operator, being able to achieve spectral convergence
regardless of the fractional power in the problem. An additional advantage is
that the application to two and three spatial dimensions is essentially the same
as the one dimensional problem.

The outline of the paper is as follows. In Section 2 we discuss different nu-
merical methods for the solution of problems with non-local diffusion processes.
Section 3 gives the main elements of our spectral approach and presents some
convergence analysis for different types of initial and boundary conditions. In
Section 4 we present the applicability of these ideas to a number of important
problems, involving metastability (the Allen–Cahn equation), excitable media
(the FitzHugh–Nagumo model) and pattern formation in two and three dimen-
sional space (the Gray–Scott model). Finally, Section 5 offers some conclusions
and thoughts for future work.

2. Numerical approaches for fractional diffusion

Several numerical approaches have been suggested in the literature to over-
come the nonlocal restrictions of space fractional operators. A brief survey of
such methods is presented in this section.

2.1. Finite element methods

The main advantage of using a finite element approach is the flexibility the
method offers. In particular, the ability to model complex geometries and to
improve approximations by using adaptive local refinement. The main hurdle to
overcome is the non-local nature of the fractional operator and thus a straight
application of finite elements would lead to large dense matrices. Even the
construction off such matrices presents difficulties, especially in efficiency, see,
for example, [14].

One choice is to truncate the kernel, so that local interactions are only con-
sidered. When using this approach it is not a trivial exercise to obtain reliable
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approximations. Furthermore, to obtain optimal convergence would require
the radius of truncation to increase, leading back to the original dense matrix
structure. A second choice is to produce the standard discrete finite element
Laplacian operator, A, and use a partial diagonalisation of this matrix. This
approach will suffer from the same issues as the first one. Finally, in the case
of the fractional Laplacian, take the matrix representation, A, of the Laplacian
and raise it to the desired fractional power. An alternative approach to the
latter method, known as the Matrix Transfer Technique (MTT), is to compute
the direct product of the function of a matrix times a vector. This avoids raising
the matrix A to the fractional power, thus retaining the sparse structure of the
finite element approximation of the operator. Yang et al. [18] have solved the
time-space fractional diffusion equation in two spatial dimensions with homoge-
neous Dirichlet boundary conditions using the MTT either by a preconditioned
Lanczos (symmetric) or a M-Lanczos (non-symmetric) technique. Recently,
Burrage et al. [19] have developed a robust, efficient MTT approach that can
be equally applicable to fractional-in-space problems in two or three spatial
dimensions on structured and unstructured grids. They considered three tech-
niques: the contour integral method, Extended Krylov subspace methods, and
the pre-assigned poles and interpolation nodes method, and found precondition-
ers that allow almost mesh independent convergence and which thus scale to
solving three dimensional problems.

2.2. Finite difference methods

Finite differences are typically defined on well structured grids. In the case
of the fractional operator two approaches may be taken. The first is to apply the
fractional power to the finite difference Laplacian matrix using the techniques
mentioned above. Alternatively a finite difference formula on tensor grids using
a shifted Grünwald discretisation may be applied [13, 15, 16, 20]. When applied
in two and three space dimensions this approach leads to relatively sparse,
well structured, positive definite matrices. The solution of these linear systems
can be approximated efficiently using a combination of multigrid and conjugate
gradient methods, see [17, 21]. As well as relying on having simple geometries,
finite difference approximations are not capable of exploiting solutions with high
regularity.

2.3. Spectral methods

Despite their higher order of convergence when compared to low order sten-
cils and being in nature nonlocal, little use has been done of spectral methods
for the solution of fractional-in-space equations. Li and Xu [22] have considered
a spectral approach for the weak solution of the space-time fractional diffu-
sion equation. Khader [23] proposes a Chebyshev Galerkin method for the
discretisation of the fractional diffusion equation where the spatial derivatives
are considered in the Caputo sense, similar to the results of Li and Xu [24]
for the time-fractional diffusion equation. Hanert [25] also has considered the
use of a Chebyshev spectral element method for the numerical solution of the
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fractional Riemann–Louiville advection-diffusion equation for tracer transport.
However, all previous works were restricted to one-dimensional simulations, and
to our knowledge there is no rigorous study on the application of Fourier spec-
tral methods to fractional-in-space reaction-diffusion equations. This will be the
main contribution of this paper. We will show that fractional-in-space reaction-
diffusion equations, with simple geometries and boundary conditions, can be
solved efficiently and accurately using this approach.

3. Fourier spectral method for fractional diffusion

Spectral decomposition plays a central role in the interpretation of the frac-
tional Laplacian – see [15] and [20]. Suppose the Laplacian (−∆) has a com-
plete set of orthonormal eigenfunctions {ϕj} satisfying standard boundary con-
ditions on a bounded region D ⊂ R

d, with corresponding eigenvalues λj , i.e.,
(−∆)ϕj = λjϕj on D, and let

Uα :=







u =

∞
∑

j=0

ûjϕj , ûj = 〈u, ϕj〉,

∞
∑

j=0

|ûj |
2|λj |

α/2 < ∞, 1 < α ≤ 2







. (6)

Then, for any u ∈ Uα, it holds

(−∆)α/2u =

∞
∑

j=0

ûjλ
α/2
j ϕj . (7)

Therefore, (−∆)α/2 has the same interpretation as (−∆) in terms of its spectral
decomposition. Furthermore, the former result suggests that a spectral approach
may be feasible for solving problems in the form of (5).

3.1. Space discretisation

In order to present the bases of the method, let us consider for simplicity the
one-dimensional space fractional heat equation in the absence of source term

∂tu = −K(−∆)α/2u, (8)

subject to u(x, 0) = u0(x) and any of the standard homogeneous boundary
conditions in x ∈ [a, b]. By using (6)-(7), we can easily derive the analytical
solution of (8) as

u(x, t) =

∞
∑

j=0

ûj(t)ϕj(x) =

∞
∑

j=0

ûj(0)e
−Kλ

α/2
j t ϕj(x), (9)

with ûj(0) = 〈u0(x), ϕj(x)〉. Eigenfunctions and eigenvalues will depend on the

specified boundary conditions: λj =
(

(j+1)π
L

)2

, ϕj =
√

2
L sin

(

(j+1)π(x−a)
L

)

for
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Code 1: Fractional heat equation (homogeneous Dirichlet boundary conditions).

1 function u = f r a c t i o n a l h e a t d i r i c h l e t (L ,Nx,K, alpha , t )
2 lambda = ( ( ( 1 :Nx)∗pi/L ) . ˆ 2 ) . ˆ ( alpha /2 ) ; % Eigenva lues

3 dx = L/(Nx+1); x = −L/2+(1:Nx)∗dx ; % Mesh genera t ion

4 k = 25 ; u = exp(−k∗x .ˆ2./(1−x . ˆ 2 ) ) ; % I n i t i a l cond i t i on

5 u = i d s t (exp(−K∗ lambda∗ t ) . ∗ dst (u ) ) ; % Spec t r a l s o l u t i o n

Code 2: Fractional heat equation (homogeneous Neumann boundary conditions).

1 function u = frac t i ona l heat neumann (L ,Nx,K, alpha , t )
2 lambda = ( ( ( 0 :Nx−1)∗pi/L ) . ˆ 2 ) . ˆ ( alpha /2 ) ; % Eigenva lues

3 dx = L/Nx ; x = −L/2+(0:Nx−1)∗dx+dx /2 ; % Mesh genera t ion

4 k = 25 ; u = tanh ( k∗x . / sqrt(1−x . ˆ 2 ) ) ; % I n i t i a l cond i t i on

5 u = id c t (exp(−K∗ lambda∗ t ) . ∗ dct (u ) ) ; % Spec t r a l s o l u t i o n

homogeneous Dirichlet; λj =
(

jπ
L

)2
, ϕj =

√

2
L cos

(

jπ(x−a)
L

)

for homogeneous

Neumann; and λj =
(

2πj
L

)2
, ϕj = ei

2πj
L (x−a) for periodic ones, where L = b− a.

Fourier spectral methods represent the truncated series expansion of (9)
when a finite number of orthonormal trigonometric eigenfunctions {ϕj} (equal
to the number of discretisation points) are considered

û(x, t) ≈

N−1
∑

j=0

ûj(t)ϕj(x) =

N−1
∑

j=0

ûj(0)e
−Kλ

α/2
j t ϕj(x). (10)

For each of the specified types of boundary data, coefficients ûj in (10), as well
as the inverse reconstruction of u in physical space, can be efficiently computed
by fast and robust existing algorithms (direct and inverse Discrete Sine/Cosine/
Fourier Transforms, see [26, 27]). To illustrate the ease of application of the ap-
proach, the 5-lines of Matlab Codes 1 and 2 exemplify the numerical solution
of equation (8) in x ∈ [−L/2, L/2], subject to homogeneous Dirichlet and Neu-
mann boundary conditions, respectively. Note the differences in mesh generation
due to odd/even restrictions imposed by the corresponding basis functions.

3.2. Convergence in space

Equivalently, the solution of (8) using a finite differences or finite elements
matrix-based approach can be approximated as

û(x, t) ≈ Q diag
{

e−Kλ
α/2
0

t, e−Kλ
α/2
1

t, . . . , e−Kλ
α/2
N−1

t
}

Q−1u0, (11)

where Q represents the matrix of corresponding eigenvectors and u denotes the
vector of node values of u. Since both (10) and (11) are exact in time, all of
the error in both schemes is associated with the spatial discretisation, so we
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(a) u0(x) = e
−k

x2

1−x2 (b) u0(x) = tanh

(

kx√
1−x2

)

(c) Evolution of initial data

Figure 1: Convergence results for the fractional heat equation (8) for Fourier (solid lines) and
finite difference (dashed lines) methods. A value of k = 25 was used in both cases. Right
panel illustrates evolution of initial data (dashed black lines) at t = 0.1 for varying α.

can use this simple example to study the convergence of the two schemes in the
numerical approximation of (8) for varying values of the fractional power α.

Convergence results in the ℓ∞-norm are presented in Figure 1 for the Fourier
and finite differences approximations of (8) on x ∈ [−1, 1] at t = 0.1, withK = 1.
Two different initial conditions were considered: a smooth Gaussian profile, sub-
ject to homogeneous Dirichlet conditions (Fig. 1(a)); and a sigmoid exhibiting
sharper gradients, with homogeneous Neumann data (Fig. 1(b)). Reference
solutions were calculated by evaluating (9) with 212 Fourier modes, with coeffi-
cients ûj computed by adaptive Gauss-Kronrod quadrature. In both situations,
the Fourier approach is able to achieve spectral convergence up to machine pre-
cision regardless of α, whereas the finite differences solutions show the standard
O(N−2) accuracy of these schemes. As expected, in the presence of initial data
displaying steeper transitions, a larger number of discretisation points is re-
quired in the Fourier method to significantly reduce the approximation error.
Figure 1(c) shows the effect of the fractional order in space for this problem,
reflecting the slower rate of diffusion for 1 < α < 2.

Execution times are given in Table 1 for comparison between both meth-
ods, showing a much better performance of the Fourier method, especially for
larger N . All computations were performed on an i5 Intel 2.3GHz laptop in
Matlab 7.6.

3.3. Time discretisation

For reaction-diffusion problems in the form of (5), we consider a backward
Euler discretisation of the time derivative, where in each time step [tn, tn+1]
the nonlinear term is treated using the following fixed point iteration: given un,

7



N 32 64 128 256 512

Fourier 1.4149e-4 1.7433e-4 2.2572e-4 2.8651e-4 3.8439e-4

Finite Differences 6.3810e-4 2.1640e-3 9.4125e-3 5.7550e-2 3.8384e-1

Ratio 4.51 12.41 41.70 200.87 998.57

Table 1: Timing results (seconds) for solving equation (8) in one space dimension for various
values of discretisation. Results are independent on α.

define un+1,0 := un, and for m = 1, 2, . . . ,M find un+1,m such that

un+1,m − un

∆t
= −K(−∆)α/2un+1,m + f

(

un+1,m−1, tn+1
)

, (12)

where M is to be chosen. Clearly, M = 1 leads to the fully explicit treatment
of the nonlinear term, and for sufficiently large M , provided the iteration is
converging, the method is fully implicit. The orthogonality of the basis functions
implies that each of the Fourier coefficients evolves independently to the others,
so for the j-th Fourier mode the time-space discretisation (12) simply becomes

ûn+1,m
j =

1

1 +Kλ
α/2
j ∆t

[

ûn
j +∆t f̂j

(

un+1,m−1, tn+1
)

]

, (13)

where f̂j is the j-th Fourier coefficient of the source term. Note that (13) is
fully diagonal, thus requiring no preconditioning, and that it also avoids associ-
ated numerical challenges for the treatment of singular Laplacians (containing
the eigenvalue λj = 0), as in the case of periodic or homogeneous Neumann
boundary conditions [19].

3.4. Convergence in time

The Matlab Code 3 exemplifies the use of the above presented time-space
stencil (13) for the numerical solution of (5), with

f(u, t) =
K

4
tα {3[1 + (2π)α] sin(2πx)− [1 + (6π)α] sin(6πx)}+

αtα−1 sin3(2πx)−Ku (14)

in x ∈ [0, 1], subject to u(0, t) = u(1, t) = 0, u(x, 0) = 0, and K = 10. The exact
solution to this problem is u(x, t) = tα sin3(2πx), which can be verified applying
Definition (7). Errors in the ℓ∞-norm in the numerical solution at t = 1 are
listed in Table 2 for different time steps and number of fixed-point iterations,
using α = 1.5 and N = 51 discretisation points. As expected, for the implicit
Euler method, the order of convergence in time for the scheme is O(∆t). Table 2
also indicates that the numerical error of the method is more controlled by the
time resolution, ∆t, than by the number of fixed-point iterations, M .
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Code 3: Fractional heat equation with source (homogeneous Dirichlet boundary conditions).

1 function u = f r a c t i o n a l h e a t s o u r c e (L ,Nx,K, alpha , tend , dt ,M)
2 lambda = ( ( ( 1 :Nx)∗pi/L ) . ˆ 2 ) . ˆ ( alpha /2 ) ; % Eigenva lues

3 dx = L/(Nx+1); x = ( 1 :Nx)∗dx ; % Mesh genera t ion

4 u = zeros (1 ,Nx ) ; % I n i t i a l cond i t i on

5 f 1 = K/4∗(3∗(1+(2∗pi )ˆ alpha )∗ sin (2∗pi∗x ) − . . .
6 (1+(6∗pi )ˆ alpha )∗ sin (6∗pi∗x ) ) ;
7 f 2 = alpha ∗ sin (2∗pi∗x ) . ˆ 3 ; % Source term

8 for n = 1 : round( tend/dt ) % Time−space e v o l u t i on

9 u0dst = dst (u ) ; t = n∗dt ;
10 for m = 1 :M % Fixed−po in t i t e r a t i o n

11 f = f1 ∗ t ˆ alpha + f2 ∗ t ˆ( alpha−1) − K∗u ;
12 u = i d s t ( ( u0dst+dt∗dst ( f ) ) ./ (1+K∗dt∗ lambda ) ) ;
13 end

14 end

∆t 0.1 0.05 0.025 1e-3 5e-4 2.5e-4

M = 1 7.1693e-3 3.6247e-3 1.8223e-3 7.3271e-5 3.6639e-5 1.8321e-5

M = 2 2.3661e-4 1.0937e-4 4.4913e-5 1.1893e-6 7.3485e-7 4.0667e-7

M = 3 2.0763e-4 1.0176e-4 4.9624e-5 1.8029e-6 8.9955e-7 4.4948e-7

M = 4 1.8145e-4 9.0026e-5 4.4905e-5 1.7977e-6 8.9879e-7 4.4938e-7

Table 2: Time convergence in the solution of the fractional heat equation with source term at
t = 1 (α = 1.5, N = 51), subject to u(0, t) = u(1, t) = 0, u(x, 0) = 0, and K = 10.

4. Numerical examples

The former results show that the global interpolant properties and the diag-
onal structure of the proposed Fourier spectral method enable the accurate and
efficient simulation of fractional-in-space dynamical systems. In this section, we
present numerical results of large-scale simulations of different reaction-diffusion
models of general interest, with a level of spatial resolution unreported to date in
fractional calculus computations in two and three dimensions. Due to their wide
use in this type of models, we will concentrate here on the use of homogeneous
Neumann boundary conditions, ∂nu = 0.

4.1. Allen–Cahn equation – Metastability

The Allen–Cahn equation with a quartic double well potential is a simple
nonlinear reaction-diffusion model that arises in the study of formation and
motion of phase boundaries. The fractional-in-space version of this equation
takes the form

∂tu = −K(−∆)α/2u+ u− u3, (15)

where K is a small positive constant, and α = 2 represents the pure diffusion
case. The steady states u = ±1 are attracting, and solutions tend to exhibit flat
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Code 4: Fractional Allen–Cahn equation (homogeneous Neumann boundary conditions).

1 function u = f r a c t i o n a l a l l e n c a h n (L ,Nx,K, alpha , tend , dt ,M)
2 lambda = ( ( ( 0 :Nx−1)∗pi/L ) . ˆ 2 ) . ˆ ( alpha /2 ) ; % Eigenva lues

3 dx = L/Nx ; x = −L/2+(0:Nx−1)∗dx+dx /2 ; % Mesh genera t ion

4 u = 0.5∗ sin (3∗pi /2∗x ) . ∗ ( cos (pi∗x)−1); % I n i t i a l cond i t i on

5 for n = 1 : round( tend/dt ) % Time−space e v o l u t i on

6 u0dct = dct (u ) ;
7 for m = 1 :M % Fixed−po in t i t e r a t i o n

8 f = u − u . ˆ 3 ;
9 u = id c t ( ( u0dct+dt∗dct ( f ) ) ./ (1+K∗dt∗ lambda ) ) ;

10 end

11 end

(a) α = 2 (b) α = 1.3 (c) α = 1.01

Figure 2: Metastability of solutions of the Allen–Cahn equation for varying α.

areas around these two values separated by interfaces of increasing sharpness as
the control parameter K is reduced to zero. On the other hand, the state u = 0
is unstable, and solutions around this value vanish or coalesce over long time
scales in a phenomenon known as metastability [28].

The interfacial properties of the Allen–Cahn equation in the fractional case
have been previously analysed [19], indicating that for decreasing α the solution
changes significantly faster near the center of the interface. Away from the
centre the solutions become less steep and the whole interface becomes thicker,
reflecting the non-local character of the fractional operator. However, the effect
of fractional diffusion on the metastability of the solutions has still not been
studied.

Figure 2 shows the effect of varying α in the metastability of solutions of
the Allen–Cahn equation in x ∈ [−1, 1], with parameter K = 0.01 and initial
data u(x, 0) = 1

2 sin(
3π
2 x)(cos(πx)− 1). For the pure diffusion case (Fig. 2(a)),

the initial data evolves to an intermediate unstable equilibrium, followed by a
rapid transition to a solution with just one interface. As the fractional power is
decreased, the lifetime of the unstable interface is largely prolonged (Fig. 2(b)),
eventually becoming fully stabilised due to the long-tailed influence of the frac-
tional diffusion process (Fig. 2(c)). Our last Matlab example, Code 4, illus-
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trates the solution of the fractional-in-space Allen–Cahn equation using the
proposed Fourier method.

4.2. FitzHugh–Nagumo model – Excitable media

The FitzHugh Nagumo model represents one of the simplest models for
the study of excitable media [29, 30]. The propagation of the transmembrane
potential in the nerve axon is modeled by a diffusion equation with a cubic non-
linear reaction term, whereas the recovery of the slow variable is represented by
a single ordinary differential equation in the form

∂tu = −Ku(−∆)α/2u+ u(1− u)(u− a)− v
(16)

∂tv = ǫ(βu− γv − δ)

where we consider the following choice of model parameters, a = 0.1, ǫ = 0.01,
β = 0.5, γ = 1, δ = 0, which is known to generate stable patterns in the
system in the form of reentrant spiral waves. In our simulations, the trivial state
(u, v) = (0, 0) was perturbed by setting the lower-left quarter of the domain to
u = 1 and the upper half part to v = 0.1, which allows the initial condition to
curve and rotate clockwise generating the spiral pattern. The domain is taken
to be [0, 2.5]2, discretised using N = 256 points in each spatial coordinate, with
a diffusion coefficient Ku = 10−4.

Stable rotating solutions at t = 2000 are presented in Figure 3 to illustrate
the effect of fractional diffusion in the FitzHugh–Nagumo model. The width of
the excitation wavefront (red areas) is markedly reduced for decreasing α, so is
the wavelength of the system, with the domain being able to accommodate a
larger number of wavefronts for smaller α.

However, it is important to emphasise here that the role of reducing the
fractional power α is not equivalent to the influence of a decreased diffusion
coefficient in the pure diffusion case (Figure 4). This can be clearly observed by
comparison of Figures 3(b)–4(b) and Figures 3(c)–4(c): for approximately the
same width of the excitation wavefront, the wavelength of the system is larger in
the fractional diffusion case, due to the long-tailed mechanisms of the fractional
Laplacian operator. These results are therefore consistent with those of Engler
[31] for the fractional reaction diffusion Fisher equation, showing distinct effects
of fractional diffusion to those of reduced conductivity for a family of travelling
wave solutions. They also illustrate the use of fractional diffusion as a modelling
tool to characterise intermediate dynamic states not solely described by pure
diffusion mechanisms.

For different conductivities along each coordinate axis, a simple way to in-
troduce anisotropy in the fractional-in-space reaction-diffusion model (5) is by
means of expanding (4) in the form (see [21]):

∂tu = −

Nd
∑

i=1

Ki

(

−
∂2

∂2xi

)αi/2

u+ f(u, t), 1 < αi ≤ 2, (17)
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(a) α = 2 (b) α = 1.7 (c) α = 1.5

Figure 3: Spiral waves in the FitzHugh–Nagumo model for varying α.

(a) Ku = 5× 10−5 (b) Ku = 3× 10−5 (c) Ku = 10−5

Figure 4: Solutions of the FitzHugh–Nagumo model for varying diffusion coefficient and α = 2.

(a)
Ky

Kx
= 0.25,

αy

αx
= 1 (b)

Ky

Kx
= 1,

αy

αx
= 0.825 (c)

Ky

Kx
= 0.25,

αy

αx
= 0.825

Figure 5: Wave propagation in the FitzHugh–Nagumo model for different anisotropic ratios
(αx = 2,Kx = Ku).

where Nd is the spatial dimensionality of the problem, and with different frac-
tional powers αi in each spatial dimension. Examples of anisotropic propagation
in the FitzHugh–Nagumo model, using a grid resolution of 400×400 points, are
presented in Figure 5. For anisotropic diffusion ratios Ky/Kx < 1, spiral waves
now proceed following an elliptical pattern (Fig. 5(a)). Interestingly, anisotropic
fractional ratios αy/αx < 1 exert contrasted effects on the curvature of the solu-
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tions (Fig. 5(b)), reflecting distinct super-diffusion scales in each of the spatial
dimensions of the system. The combination of the two sources of anisotropy
yield a mixed effect of the two independent contributions (Fig. 5(c)), also fur-
ther reducing the wavelength of the system, in agreement with the previous
results illustrated by Figures 3 and 4.

4.3. Gray–Scott model – Morphogenesis

The extension of the Fourier stencil to systems of reaction-diffusion equations
is as well straightforward. We consider the fractional version of the Gray–Scott
model [32, 33]

∂tu = −Ku(−∆)α/2u− uv2 + F (1− u)
(18)

∂tv = −Kv(−∆)α/2v + uv2 − (F + κ)v,

whereKu,Kv, F and κ are positive constants. For a ratio of diffusion coefficients
Ku/Kv > 1, the model is known to generate different mechanisms of pattern
formation depending on the values of the feed, F , and depletion, κ, rates. Here
we select Ku = 2 × 10−5, Ku/Kv = 2, F = 0.03, and vary κ in a range in
which the standard diffusion model is known to exhibit interesting dynamics
[34]. The domain of interest is taken to be [0, 1]2, discretised using N = 400
points in each spatial coordinate. Initially, the entire system was placed in the
trivial state (u, v) = (1, 0), and a 32×32 mesh point area located symmetrically
about the centre of the grid was perturbed to (u, v) = (1/2, 1/4). The initial
disturbance then propagates outward from the central square until the entire
grid is affected by the initial perturbation.

Figure 6 summarizes the effects of fractional diffusion in the Gray–Scott
model. For κ = 0.055 (Fig. 6(a)), the model with standard diffusion (α = 2) is
known to organize in a steady state field of negative solitons. A reduction in
the fractional order of the diffusive process (α = 1.7) produces a decrease in the
velocity of propagation of the initial perturbation, and a much finer granulation
in the size of the structures of the final steady state field. For smaller values of
the fractional power (α = 1.5), a new process of nucleation of structures in the
centre and in the boundaries of the domain is observed, that then grow outward
until the entire domain reaches its final steady state configuration.

For κ = 0.061 (Fig. 6(b)), the original model produces a wavefront propa-
gation partially driven by curvature, and a final steady state pattern showing
the presence of filaments. The curvature driven mechanisms are increased by
the diffusive effects of the fractional Laplacian operator, yielding a final field
formed by much thiner filaments, and steady state patterns totally different to
those generated by standard diffusion.

Finally, the Gray–Scott model exhibits mitosis for κ = 0.063 under condi-
tions of normal diffusion (Fig. 6(c)). However, the replication pattern is com-
pletely altered when the fractional order of the model is decreased, as shown in
this Figure for α = 1.7. In fact, further reductions of the fractional power, as
shown for α = 1.5, produce dynamical states where solitons and filaments may
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(a) κ = 0.055

(b) κ = 0.061

(c) κ = 0.063

Figure 6: Pattern formation in the Gray–Scott model for different values of parameter κ and
fractional power α.

14



(a) α = 2

(b) α = 1.5

Figure 7: Isosurfaces u = 0.65 for the Gray–Scott model for κ = 0.061.

coexist, the latter slowing self-dividing into the former until the whole domain
is filled by a soliton-like pattern.

4.4. Gray–Scott model – Patterns in Three Dimensional Space

Numerical simulation of the Gray–Scott model in three spatial dimensions
represents an even more interesting scenario where more exotic patterns may
arise. For the parameter regime where wavefront motion is partially driven by
curvature (κ = 0.061), and for two different α, Figure 7 illustrates the three di-
mensional propagation of the initial perturbation before the interaction of the
solution with the domain boundaries. As can be clearly appreciated, the smooth
growing of lobes in the presence of normal diffusion (Fig. 7(a)) is replaced by
more intriguing patterns in the fractional diffusion case (Fig. 7(b)). For im-
provement of visualization results, the domain size is [0, 1]3 in Fig. 7(a), and
[0.25, 0.75]3 in Fig. 7(b).

5. Conclusions

In this paper, Fourier spectral methods have been introduced as an attractive
and easy-to-code alternative for the integration of fractional-in-space reaction-
diffusion equations. These methods offer several advantages over traditional
alternatives. Since the operator is non-local, the benefits of using a basis with
locally supported elements are destroyed. Hence, the use of an orthogonal, with
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respect to the operator, non-local basis is preferable and will give rise to a fully
diagonal representation of the fractional operator, thus avoiding the solution of
large systems of equations or the use of matrix transfer techniques. In terms of
accuracy and efficiency, Fourier methods have been proven to be not only advan-
tageous relative to memory requirements (number of discretisation points) when
compared to low-order schemes, but also computationally efficient in execution
times. Furthermore, the use of established discrete fast Fourier transforms en-
sures efficiency, makes immediate the implementation of appropriate boundary
conditions, and allows the extension of the stencil to two and three dimensions
in a completely straightforward manner.

Simulation results of the fractional-in-space Allen–Cahn, FitzHugh–Nagumo
and in particular Gray–Scott models show that such problems can have very
different dynamics to standard diffusion, and as such represent a powerful mod-
elling approach for understanding the many aspects of heterogeneity.

Despite their higher order of convergence, the biggest drawback of spectral
methods is their inability to handle irregularly shaped domains, since the domain
of interest must be simple enough to allow the use of an appropriate series of
polynomial or trigonometric basis functions in where to expand the global high-
order interpolants. However, recent work in combining spectral methods with
domain embedding techniques has allowed the extension of these methods to
irregular domains [27, 35, 36, 37, 38]. The use of these techniques may constitute
a suitable approach for extending our results in the fractional-in-space setting
to irregular shape geometries.

The applications presented in this paper also have illustrated that Fourier
spectral methods can easily handle anisotropy when this is constant through-
out the entire integration domain. For spatially-dependent conductivities, the
representation of the fractional operator in Fourier space would be the convolu-
tion of the Fourier coefficients of such conductivities and those of the fractional
Laplacian, thus losing the diagonal structure of the operator and requiring the
solution of full systems of equations. However, due to the smaller number of
degrees of freedom required by Fourier methods to achieve a given accuracy,
they could still be competitive when compared to low order schemes. On the
other hand, the use of spectral differentiation matrices [28, 39], in combination
with the matrix transfer technique, could also be helpful in order to overcome
these limitations.

Finally, an additional advantage of finite element and finite difference meth-
ods is their ability to accommodate adaptive mesh refinement for non-smooth
solutions. Rather than the use of mesh refinement algorithms, the easiest way
to incorporate spatial adaptivity in spectral methods seems to be by means
of the so-called moving mesh techniques, also known as r-adaptivity [40, 41].
The implementation of these techniques for fractional-in-space reaction-diffusion
equations may also constitute another of our future lines of research.
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