
Fourier spectrum of radially periodic images

Isaac Amidror
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Although the spectrum of radially periodic images is often expressed in terms of finite or infinite series of
Bessel functions, such expressions do not clearly reveal the exact impulsive structure of the spectrum. An
alternative Fourier decomposition of radially periodic images, in terms of circular cosine functions, is pre-
sented, and its significant advantages are shown. It is shown that the Fourier transform of the circular cosine
function, which can be expressed in terms of a half-order derivative of the impulse ring d(r 2 f ), plays a fun-
damental role in the spectra of radially periodic functions. Just as any symmetric periodic function p(x) in
the one-dimensional case can be represented by a sum of cosines with frequencies of f 5 1/T, 2/T, ... [the Fou-
rier series decomposition of p(x)], a radially periodic function in the two-dimensional case can be decomposed
into a circular Fourier series, which is a sum of circular cosine functions with radial frequencies of f

5 1/T, 2/T, ... . This result can also be formulated in terms of the spectral domain: Just as the Fourier
transform of a one-dimensional periodic function consists of impulse pairs located at f 5 n/T (the Fourier
transforms of the cosines in the sum), the Fourier spectrum of a radially periodic function in the two-
dimensional case consists of half-order derivative impulse rings with radii f 5 n/T (which are the Fourier
transforms of the circular cosines in the sum). The significance of these results is discussed, and it is briefly
shown how they can be extended into dimensions other than two. © 1997 Optical Society of America
[S0740-3232(97)00504-8]
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1. INTRODUCTION

Radially periodic images and their Fourier spectra occur
quite frequently in optics. Typical cases are a circular
grating with a square-wave radial profile, or a series of
concentric, equispaced ring impulses (representing nar-
row circular slits). Their Fourier transforms arise, for
example, in connection with the Fraunhofer diffraction
pattern generated by these circular structures. Although
the spectrum of such radially periodic images is often ex-
pressed in terms of a finite or infinite series of Bessel
functions, these expressions do not explicitly reveal the
exact impulsive structure of the spectrum. In this paper
I present an alternative approach for representing radi-
ally periodic functions and their spectra, which is based
on circular cosine functions, and I show its significant ad-
vantages.

Section 2 starts with some of the fundamental observa-
tions that motivated the present research. In Section 3 I
derive the Fourier spectrum of the circular cosine func-
tion, cos(2pfr), and show that it can be expressed in
terms of the half-order derivative of the impulse ring
d(q 2 f ). In Section 4 I show how a radially periodic im-
age can be decomposed into a circular Fourier series of
circular cosine functions with radial frequencies of f

5 1/T, 2/T, ..., and I explain the significance of this re-
sult in the image domain as well as in the spectral fre-
quency domain. Finally, in Section 5 I briefly show how
the results can be generalized into spaces with dimen-
sions other than two.

2. PRELIMINARY OBSERVATIONS

A radially periodic image is a circularly symmetric image
on the two-dimensional (2D) plane whose intensity profile

along its radius is periodic. A radially periodic image can
therefore be expressed in terms of the polar coordinates
(r, u) as a function g(r), which is periodic in r (r . 0).
Figure 1(a) shows an example of a radially periodic
image: This is a circular binary grating, i.e., the function
obtained by revolving the periodic binary square wave
p(x) of Fig. 2(a) about the vertical axis. The radial pe-
riod of this radially periodic image is T, its radial fre-
quency is f5 1/T, and its radial pulse width (or opening)
is t.

The Fourier spectrum of this radially periodic image, as
obtained by computer with the 2D discrete Fourier trans-
form (DFT), is shown in Fig. 1(b). A careful examination
of this spectrum and of its cross section (paying due at-
tention not to be misled by DFT artifacts such as folding
over and leakage1) shows that this spectrum consists of a
series of concentric impulse rings that have a peculiar ra-
dial profile, reminiscent of a dipole. However, unlike the
annular dipole d8(r 2 a), each of these rings has remark-
ably unequal positive and negative peaks, and moreover,
each of the rings posesses a weak, continuous wake trail-
ing off toward the center of the spectrum. Furthermore,
the radii of these concentric rings are integer multiples of
f 5 1/T, and in spite of their wakes, their impulse ampli-
tudes behave essentially like the impulse amplitudes in
the one-dimensional (1D) spectrum of p(x), the cross sec-
tion through the center of the image g(r). [In our ex-
ample of a circular binary grating, p(x) is a binary square
wave with the same period T and opening t, as shown in
Fig. 2(a); compare its spectrum, shown in Fig. 2(b), with
Fig. 1(c)].

It should be emphasized that this peculiar behavior of
the spectrum is by no means a DFT artifact but a true
characteristic feature of the spectrum of radially periodic

816 J. Opt. Soc. Am. A/Vol. 14, No. 4 /April 1997 Isaac Amidror

0740-3232/97/040816-11$10.00 © 1997 Optical Society of America



images. This can be easily demonstrated in the case of
our circular binary grating (Fig. 1), since in this case an
analytic expression can be easily derived for the Fourier
spectrum. The circular binary grating is expressed by

g~r ! 5 rectS r

t D 1 (
n51

N

H rectF r

2~nT 1 t/2!
G

2 rectF r

2~nT 2 t/2!
G J , (1)

(where N → `), and its Fourier spectrum is immediately
given by2

G~q ! 5 t 2 jinc~tq ! 1 (
n51

N

H 4S nT 1

t

2 D 2

3 jincF2S nT 1

t

2 DqG 2 4S nT 2

t

2 D 2

3 jincF2S nT 2

t

2 DqG J , (2)

where jinc(q) 5 J1(pq)/2q. By plotting Eq. (2) with
more and more terms in the sum, i.e., with N → `, one
can see how it gradually approaches the characteristic be-
havior of the spectrum as shown in Figs. 1(b) and 1(c),
namely, a series of concentric rings with the same par-
ticular properties as described above.

Fig. 1. (a) Circular binary grating with radial period T 5 1 and
opening t 5 3/5. (b) Its Fourier spectrum as obtained by a 2D
DFT (notice the folding-over artifacts that are due to the DFT).
(c) Average cross section through the origin of this DFT (aver-
aged through all directions u 5 0°... 360° to compensate for lo-
cal DFT artifacts).

Fig. 2. (a) Cross section through the center of the circular bi-
nary grating of Fig. 1(a): This is a square wave with period T

5 1 and opening t 5 3/5. (b) 1D spectrum of this binary
square wave. Notice the agreement with Fig. 1(c) in the impulse
signs and strengths; note in particular that every fifth impulse
has a zero amplitude that is due to the opening ratio t/T 5 3/5 of
the square wave, since the impulse amplitudes in the case of a
square wave are given by cn 5 (1/np)sin(npt/T).
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This and other examples of radially periodic images
and their spectra lead us to the following important ob-
servation: Although the spectrum of radially periodic
images, like all circularly symmetric images, is often ex-
pressible in a natural way as a finite or infinite sum of
Bessel functions,3,4 the individual terms of this sum do
not explicitly correspond to the individual impulse rings
of the spectrum and do not express their peculiar profile
shapes. This suggests that the spectrum of radially pe-
riodic images can also be expressed in an alternative way,
as a series of terms where the nth term explicitly repre-
sents the nth impulse ring.5

On the basis of our experience with periodic functions,
it can be expected that each of these impulse rings should
correspond to the spectrum of a circular cosine function [a
radially periodic function with cosinusoidal radial profile;
see Fig. 3(a)] given by

g~x, y ! 5 cos~2pfAx2
1 y2! (3)

or in polar coordinates:

g~r ! 5 cos~2pfr !, (4)

where f 5 1/T, 2/T, ... . If this hypothesis is confirmed,
one would be able to decompose any radially periodic im-
age into a circular Fourier series, which is a sum of circu-
lar cosine functions with radial frequencies of f

5 1/T, 2/T, ... , just as any 1D periodic function is decom-
posed into a sum of cosines. To this end, it is therefore
necessary to find the Fourier transform of circular cosine
(3) [or the Hankel transform of Eq. (4). The Hankel
transform is an equivalent way to express the 2D Fourier
transform of a circularly symmetric function, based on its
radius;6 here both terms will be used interchangeably, de-
pending on the coordinate system implied, polar or Carte-
sian.]

3. SPECTRUM OF THE CIRCULAR COSINE

In spite of its simple appearance, the circular cosine func-
tion cannot be easily found in standard tables of Fourier
transform pairs. In fact, the closest hint one can find in
literature is hidden in the following general Fourier (or
rather Hankel) transform pair7:

1

rm Jm~2pfr ! ↔
H pm21

fmG~m !
~f 2

2 q2!m21 rectS q

2 f
D , (5)

where rect(q/2 f ) means truncation to zero beyond the
circle of radius f, and

r 5 Ax2
1 y2, q 5 Au2

1 v2. (6)

This general formula gives several interesting Hankel
transform pairs for various values of m. In particular, for
m 5 21/2 it gives the Hankel transform of circular cosine
(4), since

cos r 5 Apr/2 J21/2~r !.

It should be noted that transform pair (5) is usually
given in the literature only for m . 0 [probably because
for m < 0 the functions on the left-hand side of Eq. (5) do
not properly decay, and consequently their Hankel trans-
forms include a ‘‘wild’’ (impulsive) behavior on the border

Fig. 3. (a) Circular cosine function cos(2pfr). (b) Its Fourier
spectrum as obtained by a 2D DFT (notice the leakage arti-
facts: each point of the ring is convolved with the Fourier trans-
form of the truncation window). (c) Average cross section
through the origin of this DFT (averaged through all directions
u 5 0°... 360° to compensate for local DFT artifacts).
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of their circular spectrum support]. However, according
to Ref. 8, formula (5) is also valid for noninteger negative
values of m, including our case of m 5 21/2. For m
5 21/2, formula (5) therefore gives

cos~2pfr ! ↔

H

2

f

2p

1

~f 2
2 q2!3/2

rectS q

2 f
D . (7)

The Fourier spectrum of circular cosine (3), as obtained
by the 2D DFT [see Figs. 3(b) and 3(c)], confirms this re-
sult for the interior of the ring, $q , f %. However, it also
indicates that the behavior of the spectrum on its singular
support, $q 5 f %, is more complicated: In addition to the
negative peak at the internal side of the ring, as predicted
by relation (7), it clearly also shows a positive impulsive
behavior at the external side of the ring, so that a vertical
section through the spectrum origin would look like
Fig. 4.

Note that the external impulsive border of this ring is
sharp, whereas the internal, negative peak of the ring is
characterized by a smooth decay transition in the form of
a continuous wake. As in the case of Fig. 1, it could be
argued that this peculiar impulsive behavior represents
an artifact due to the limitations of the DFT in represent-
ing the nondecaying circular cosine function [Eq. (3)];
however, as will be shown below, a deeper investigation
shows that this behavior indeed represents an inherent
feature of this Fourier transform.

To this end, we need to make a short digression and to
recall the notion of a half-order derivative. Although not
largely widespread, the notion of fractional-order deriva-
tives and integrals is not new in mathematics. Although
the original definition of the derivative of a function is
given only for derivatives of integer orders, it is well
known that this definition can be extended to noninteger
orders by using an elementary property of Fourier trans-
forms. According to the derivative theorem,9 if the Fou-
rier transform of f(x) is F(u), then the Fourier transform
of f8(x) is i2puF(u); and hence, if we apply the theorem
in succession, it follows that for any integer k the Fourier
transform of f (k)(x) is (i2pu)kF(u). But since
(i2pu)lF(u) is meaningful for noninteger values of l as
well, it can be regarded as the definition of f (l)(x) for any
real l. In particular, for l 5 1/2 we obtain

f ~1/2!~x ! 5 F
21@~i2pu !1/2F~u !#.

Note that this definition is consistent with the usual
definition of f8(x) since its application twice in succession
results in the first-order derivative of f(x):
@ f (1/2)(x)# (1/2) transforms into (i2pu) (1/2)(i2pu) (1/2)F(u)
5 i2puF(u), which is indeed the Fourier transform of
f8(x). The various properties of fractional-order deriva-
tives as well as alternative ways of defining them can be
found in specialized books on the subject.10,11

Now, it is well known that integer-order derivatives
can be defined for generalized functions such as the Dirac
impulse d(x), giving the dipole d8(x), the quadrupole
d (2)(x), etc.12 It is, however, less widely known that
fractional-order derivatives can also be defined for gener-
alized functions such as d (x). An explicit expression for
the fractional-order derivatives of d (x) can be found in
advanced books on generalized functions such as Ref. 13:

d ~l !~x ! 5

1

G~2l !

1

xl11
step~x !, (8)

where step(x) is defined as 0 for x , 0 and 1 for x . 0; in
particular, this gives for l 5 1/2,

d ~1/2!~x ! 5 2

1

2Ap

1

x3/2
step~x !. (9)

As is shown in Appendix B, Eq. (9) describes the prop-
erties of d (1/2)(x) to the right of x 5 0; but when we ap-
proach d (1/2)(x) by a sequence of functions that are de-
fined on both sides of x 5 0, it becomes apparent that
d (1/2)(x) has at the point x 5 0 an impulsive behav-
ior: It has a positive impulsive peak on the left-hand
side of x 5 0, while on the right-hand side of x 5 0 it has
a negative peak, which smoothly decays in the form of a
negative continuous wake trailing off asymptotically in
the positive direction of the x axis (see Fig. 5). Other
properties of d (1/2)(x) are given in Appendix B.

Now, from Eq. (9) we obtain

d ~1/2!~f 2
2 q2! 5 2

1

2Ap

1

~f 2
2 q2!3/2

rectS q

2 f
D (10)

[note the truncation beyond the radius f, due to the
inside-out inversion of d (1/2)(f 2

2 q2) with respect to
d (1/2)(q2

2 f 2)]. A comparison of Eqs. (7) and (10) (see
also Figs. 4 and 5) makes it clear that the spectrum (or
the Hankel transform) of the circular cosine function can
be expressed in terms of d (1/2)() as follows, thus empha-
sizing its impulsive behavior:

cos~2pfr ! ↔
H f

Ap
d ~1/2!~f 2

2 q2!. (11)

This expression can be further simplified by expressing
d (1/2)(f 2

2 q2) in terms of the half-order derivative of the

Fig. 4. Schematic plot of a cross section through the spectrum of
circular cosine function cos(2pfr). Notice the positive impul-
sive peak on the external border of the ring.

Fig. 5. Schematic plot of d1/2(x), the half-order derivative of the
impulse d (x).
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simple impulse ring, d (1/2)(f 2 q): It is known that for
any integer k there exists the relation14

d ~k !~r2
2 c2! 5

1

~r 1 c !k11
d ~k !~r 2 c !.

However, this relation turns out to be valid also for non-
integer values of k, denoted below by l, since by Eq. (8)
we have (for r, c . 0),

d ~l !~r2
2 c2! 5

1

G~2l !

1

~r2
2 c2!l11

step~r2
2 c2!

5

1

G~2l !

1

~r 1 c !l11~r 2 c !l11

3 step~r 2 c !

5

1

~r 1 c !l11
d ~l !~r 2 c !.

Therefore we obtain the following expression for the
spectrum of the circular cosine with f . 0:

cos~2pfr ! ↔

H f

Ap

1

~f 1 q !3/2
d ~1/2!~f 2 q !. (12)

In the case of f 5 0, in which the cosine becomes identical
1, the spectrum is given by the well-known transform
pair15

1 ↔
H 1

puqu
d~q !.

Equation (12) indeed confirms observations with the
2D DFT that clearly show that as f increases, not only
does the radius of the impulse ring increase, but also its
wake becomes weaker. Note that d (1/2)(f 2 q) is the
inside-out inverted counterpart of the d (1/2)(q 2 f ) ring,
where the negative wake trails off inward, toward the
center, and the positive impulsive peak is located in the
outer side (see Fig. 4).

4. REPRESENTATION OF THE SPECTRUM
AS A SERIES OF IMPULSE RINGS

The scheme for disentangling one impulse ring from the
other rings in the spectrum of a radially periodic image
(in spite of their overlapping wakes) has been proposed in
a paper by Bracewell and Thompson.16 In that paper the
image in question was g(r) 5 (n51

N d(r 2 nT), whose
spectrum (Hankel transform) is G(q)
5 (n51

N 2pnTJ0(2pnTq). In our present discussion we
shall follow a similar approach, applying it to a general,
arbitrary radially periodic image g(r).

We start with the following definition: Let f(x) be a
1D function defining a surface over the (x, y) plane. The
circular function s(r) is said to be the spin average of f(x),
denoted by s(r) 5 S @f(x)#, if

s~r ! 5

1

2p E
0

2p

f~r cos u !du. (13)

This means that s(r) is the circular surface obtained by
averaging the height of the surface of f(x) over a circle of

radius r about the origin in the (x, y) plane. Various
properties of the spin-average operation are discussed in
Refs. 16 and 17. In particular, it is shown that this op-
eration is linear and has a unique inverse; a table of vari-
ous functions and their spin averages is given in Ref. 17.

Now let g(r) be a radially periodic image, and let G(q)
be its Hankel transform. The fourth theorem concerning
the spin average given in Ref. 18 says that if

G~q ! 5 S @H~u !#, (14)

then

puruH @G~q !# 5 F @H~u !#, (15)

where H [G(q)] is the Hankel transform of G(q),
namely, g(r), and F [H(u)] is the 1D Fourier transform
of H(u). If we denote by h(x) the function whose Fourier
transform is H(u), we can reformulate Eq. (15) as

purug~r ! 5 F $F @h~x !#%,

and since F $F @h(x)#% 5 h(2x) we obtain, remembering
that h(x) is an even function, and concentrating our at-
tention on the x axis,

h~x ! 5 puxup~x !, (16)

where p(x) is the periodic cross section of the radially pe-
riodic image g(r).

Now let P(u) 5 (n52`
` cnd(u 2 n/T) be the spectrum

of the periodic cross section p(x), where cn are its impulse
amplitudes [i.e., the Fourier series coefficients of p(x)].
Using the convolution theorem, we obtain from Eq. (16),

H~u ! 5 F~u !* (
n52`

`

cndS u 2

n

T
D

where F(u) is the 1D Fourier transform of f(x) 5 puxu.
(This Fourier transform can be found, for example, in Ref.
19, but as we will see below, its explicit form is not really
needed here.) We have, therefore,

H~u ! 5 c0F~u ! 1 Fc21FS u 1

1

T
D 1 c1FS u 2

1

T
D G

1 Fc22FS u 1

2

T
D 1 c2FS u 2

2

T
D G 1 ... .

But since p(x) is symmetric, we have c2n 5 cn , so that

H~u ! 5 c0F~u ! 1 c1FFS u 1

1

T
D 1 FS u 2

1

T
D G

1 c2FFS u 1

2

T
D 1 FS u 2

2

T
D G 1 ... . (17)

Remembering now that H(u) spin averages into the spec-
trum G(q), let us denote

G0~q ! 5 S @F~u !#, (18)

Gn~q ! 5 S H cnFFS u 1

n

T
D 1 FS u 2

n

T
D G J . (19)

Therefore, by taking the spin average of both sides of Eq.
(17), we obtain a new decomposition of the spectrum
G(q), as follows:
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G~q ! 5 c0G0~q ! 1 c1G1~q ! 1 c2G2~q ! 1 ... . (20)

Now, again using the same theorem concerning the
spin average [see Eqs. (14) and (15) above], we find that
the Hankel transforms of G0(q) and of Gn(q) are given by

g0~r ! 5

1

puru
F @F~u !#,

gn~r ! 5

1

puru
F FFS u 1

n

T
D 1 FS u 2

n

T
D G .

Remembering that F(u) is the 1D Fourier transform of
f(r) 5 puru, we obtain

g0~r ! 5

1

puru
f~2r ! 5

1

puru
puru 5 1, (21)

and by the modulation theorem,9

gn~r ! 5

1

puru
F H F F2 f~r !cosS 2p

n

T
r D G J

5

1

puru
2 f~2r !cosS 2p

n

T
r D

5

1

puru
2purucosS 2p

n

T
r D 5 2 cosS 2p

n

T
r D .

(22)

In other words, gn(r), the Hankel transform of Gn(q),
is simply a circular cosine with radial frequency of n/T
and amplitude of 2.

We see, therefore, that if we take a Hankel transform of
Eq. (20), our original radially periodic image g(r) can be
expressed in the form

g~r ! 5 c0g0~r ! 1 c1g1~r ! 1 c2g2~r ! 1 ...

5 c0 1 2(
n51

`

cn cosS 2p
n

T
r D , (23)

where cn are the same Fourier series coefficients (impulse
amplitudes) as in p(x), the periodic cross section of g(r).
Note that the factor 2 appears here as a result of the use
of a one-sided summation rather than the two-sided sum-
mation usually used in the 1D case: p(x)
5 (n52`

` cn cos(2pxn/T).
Returning now to the spectral domain, we can find the

spectra of Eqs. (21) and (22) by using the Hankel trans-
form of the identical-1 function15 and the Hankel trans-
form given by Eq. (12),

G0~q ! 5

1

puqu
d~q !,

Gn~q ! 5

2

Ap

n/T

~n/T 1 q !3/2
d ~1/2!S n

T
2 q D ,

and therefore the explicit form of Eq. (20), the spectrum of
the radially periodic function g(r), is

G~q ! 5 c0

1

puqu
d~q ! 1

2

Ap
(
n51

`

cn

n/T

~n/T 1 q !3/2

3 d ~1/2!S n

T
2 q D . (24)

Let us stop now for a moment to discuss the results
that we have just obtained.

As we can see, Eq. (23) is a decomposition of the radi-
ally periodic function g(r) into a circular Fourier series
that is a sum of circular cosine functions with radial fre-
quencies of f 5 1/T, 2/T, ... . This decomposition of g(r)
is closely related to the decomposition of its periodic cross
section p(x) into a 1D Fourier series: The coefficients of
the circular Fourier series decomposition of g(r) are the
same as in the 1D Fourier series development of p(x).

Turning now to the spectral domain, we see that ex-
pression (24), the spectrum of (23), is exactly the alterna-
tive expression that we were seeking for the spectrum of a
radially periodic function g(r). As we can see, this is a
sum of terms Gn(q), each of which is the spectrum (Han-
kel transform) of the circular cosine function gn(r) with
radial frequency of n/T. As we already know from Sec-
tion 3 [Eq. (12)], the spectrum of the circular cosine
cos(2prn/T) is an impulse ring of radius n/T, with a nega-
tive wake trailing off toward the spectrum center and
which can be expressed in terms of a half-order derivative
of the impulse ring d(q 2 n/T). We see therefore that
Gn(q) represents, indeed, the nth impulse ring in the
spectrum G(q) of our radially periodic image gn(r). We
thus obtained the following remarkable result: The spec-
trum G(q) of a radially periodic image g(r) consists of a
series of impulse rings Gn(q), whose radii are n/T and
whose strengths are (up to a scaling factor) cn , where T is
the radial period of our given image g(r) and cn are the
Fourier series coefficients of its 1D cross section p(x).

We see, therefore, that just as the spectrum of any 1D
periodic function p(x) consists of impulse pairs located at
the frequencies f 5 6n/T, the spectrum of a radially pe-
riodic function g(r) in the 2D case is composed of concen-
tric impulse rings of radii f 5 n/T. However, these rings
have a particular, unusual shape: Each of the rings has
a peculiar impulsive behavior, resembling that of a dipole,
on the perimeter of a circle with radius of f 5 n/T; but
unlike the impulse ring d(q 2 n/T) it does not represent
a pure radial frequency component of f 5 n/T, since it
also includes lower radial frequencies (albeit of negligible
amplitudes) that are due to its wake, which trails off to-
ward the spectrum center.

These results fully confirm our hypothesis of Section 2,
which was based there only on experimental observations
through the 2D DFT of radially periodic images.

5. ONE-, TWO-, AND THREE-DIMENSIONAL
CASES

Although our main interest in the present paper is in ra-
dially periodic images in the 2D case, it will be interesting
to see how our results can be extended into cases of other
dimensions. In this section I will explain very briefly
(and without proofs) the situation in the one- and three-
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dimensional cases, and I will show the relationship be-
tween the 1D, 2D, and 3D cases, thus opening the way to
a generalization to the n-dimensional case.

The 1D case is obviously the simplest. A radially pe-
riodic image in the 1D case is simply a symmetric, peri-
odic function of one variable, which can be denoted by
g(uxu). In this case our function can be decomposed into
a sum of cosine functions, which is the classical, well-
known Fourier series decomposition. In the spectral do-
main, the nth cosine of the Fourier series corresponds to a
1D impulse ring, which is simply an impulse pair, d(u
1 n/T) and d(u 2 n/T).

In the 2D case, as we have just seen in Section 4, a ra-
dially periodic image can be decomposed into a circular
Fourier series, i.e., a sum of circular cosine functions. In
terms of the spectral domain, the nth circular cosine rep-
resents the nth impulse ring in the spectrum, each of
these rings being essentially a half-order derivative of the
simple impulse ring d(q 2 n/T). (Note the inside-out in-
version of d (1/2)(n/T 2 q), owing to which the wake is
trailing inward!)

A similar result can be also obtained for the 3D case.
In this case the spherically periodic image g(r) can be de-
composed into a spherical Fourier series, which is a sum
of spherical cosines. This corresponds in the spectral do-
main to a series of impulsive spheres, each of which is the
3D equivalent of the Hankel transform20 of the spherical
cosine function cos(2prn/T). This Hankel transform can
be expressed, this time, in terms of the first-order deriva-
tive of the impulsive sphere d(q 2 n/T).

As we can see, the underlying concept is the same for
all dimensions—but each increment of 1 in the space di-
mension n corresponds to an increment of 1/2 in the order
of the derivative in the concentric rings (or spheres) that
constitute the corresponding n-dimensional spectrum. It
is interesting that in odd dimensions the impulse rings
are really purely impulsive, whereas in even dimensions
the fractional-order derivative implies the existence, in
each of the impulse rings, of a trailing wake that gradu-
ally decreases toward the center of the spectrum.

6. CONCLUSIONS

The main result presented in this paper is that a radially
periodic function g(r) can be decomposed into a circular
Fourier series, which is a sum of circular cosine functions
with radial frequencies of f 5 1/T, 2/T, ... . It is shown
that this decomposition of g(r) is closely related to the de-
composition of its periodic cross section p(x) into a 1D
Fourier series: The coefficients cn of the circular Fourier
series decomposition of g(r) are the same as the coeffi-
cients in the Fourier series development of p(x).

In terms of the spectral domain, the spectrum of a ra-
dially periodic function g(r) consists of a dc impulse plus
a series of impulse rings with radii of f 5 1/T, 2/T, ... ,
each of which is the spectral representation of a corre-
sponding circular cosine function in the image domain de-
composition. It is shown that these impulse rings have
some peculiar properties, notably a wake that trails off to-
ward the spectrum center, and that each of the rings can
be expressed in terms of a half-order derivative of the

simple impulse ring d(r 2 f ). Finally, I also indicate
how these considerations can be extended into the general
n-dimensional case.

The most significant advantage of this decomposition of
g(r) over other possible decompositions, such as the de-
velopment into a series of Bessel functions, is that our de-
composition explicitly reveals the impulse ring structure
of the spectrum and the special properties of each of these
rings: in our decomposition, the nth term explicitly rep-
resents the nth impulse ring in the spectrum of g(r).

The phenomenon of circular impulse rings having a
wake trailing off behind them in a 2D space is well known
in various fields of optics and physics (for example, cf. the
wave propagation in 1, 2, and 3 dimensions21,22). How-
ever, the possible connection of such physical phenomena
with fractional-order derivatives such as the half-order
derivative of an impulse ring have rarely been realized in
the literature (with only a few exceptions, such as in the
book by Lighthill23 in the context of sound wave propaga-
tion or in the above-cited paper by Bracewell and
Thompson).16 I believe that expressing such phenomena
in terms of fractional impulse derivatives may often open
the way to significant simplifications in handling such ex-
pressions, much like the simplifications obtained by using
the notion of the simple impulse d (x)—provided that the
properties of fractional-order impulse derivatives are well
understood and correctly used (see Appendix B).

APPENDIX A: COMPLETENESS AND
ORTHOGONALITY CONSIDERATIONS

In this appendix I briefly discuss the completeness and or-
thogonality properties of the decomposition of radially pe-
riodic images into circular Fourier series. In this intro-
ductory discussion I follow the same main lines as in the
book by Gaskill.24

It is often desirable to decompose a given function g(x)
into a linear combination of a set of more elementary
functions $fn(x)%, n 5 1, 2, 3, ... called basis functions:

g~x ! 5 (
n

cnfn~x !. (A1)

The motivation is that doing so greatly simplifies certain
mathematical operations, and, moreover, such a decompo-
sition often allows a much deeper insight to be gained
concerning the nature of the problem in question.

Many different sets of basis functions $fn(x)% can be
used for this purpose, but if the set we have chosen is en-
dowed with two important properties, namely, complete-
ness and orthogonality, we are in a particularly lucky
situation.

A set of functions $fn(x)% is said to be orthogonal (on a
certain interval T) if for any m and n we have

E
T

fm~x !fn~x !dx 5 H0

A Þ 0

if m Þ n

if m 5 n
.

The set of functions $fn(x)% is said to be complete if there
exists no function h(x) on the interval T, other than the
identical zero function, such that for all members fn(x) of
the set we have
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E
T

h~x !fn~x !dx 5 0.

As shown by Gaskill24 and in other references, the or-
thogonality condition on the basis functions $fn(x)% allows
us to determine easily the coefficients cn of decomposition
(A1) independently of one another:

cn 5

1

A
E

T

g~x !fn~x !dx. (A2)

The completeness condition, on its part, ensures us that
any nonzero square-integrable function g(x) can be de-
composed into a linear combination of the functions
$fn(x)% as in Eq. (A1).

The most well-known examples of complete and or-
thogonal sets of basis functions $fn(x)% are

~1 ! exp~i2pnfx !, n P Z,

~2 ! sin~2pnfx !, n P Z,

~3 ! cos~2pnfx !, n P Z.

The third case is exactly the set of basic functions that is
used in the 1D decomposition of a symmetric, periodic
function into a Fourier series:

p~x ! 5 (
n52`

`

cn cosS 2p
n

T
x D , (A3)

with coefficients

cn 5

1

T
E

T

p~x !cosS 2p
n

T
x Ddx. (A4)

The orthogonality of the basis functions $cos(2pxn/T)%
simply follows from the fact that

E
T

cosS 2p
m

T
x D cosS 2p

n

T
x Ddx 5 H 0

T/2

if m Þ n

if m 5 n
.

The case of m Þ n follows from the identity

cos a cos b 5
1
2 cos(a 1 b) 1

1
2 cos(a 2 b), by rewriting of

the cosine product as a sum of two cosines. Since the fre-
quencies of these cosines are integer multiples of 1/T,
each of them has on any full-period interval T as much
negative area as positive area, and thus the total area is
zero.

Let us now return to the case of interest, the decompo-
sition of a radially periodic image g(r) into a circular Fou-
rier series [Eq. (23)]. The completeness of the set
$cos(2prn/T)% in this 2D case follows from the complete-
ness of its 1D counterpart, thanks to the one-to-one cor-
respondence that exists between any circularly symmetric
function g(r) and its 1D cross section p(x). The orthogo-
nality property, however, is not generally guaranteed:
Although in the 1D case the function set $cos(2prn/T)% is
orthogonal on any interval of length T, this is not the case
in the 2D circularly symmetric case, where r represents

Ax2
1 y2, since the negative and positive volumes under

the circular cosine function vary with the radius, and they
do not necessarily cancel each other on a one-radial-
period interval.

As we have seen above, the main benefit of having an
orthogonal set of basis functions is in the straightforward

way in which the coefficients cn of the decomposition can
be determined. However, in our case we have already
succeeded, in Section 4, in determining explicitly the co-
efficients cn of the circular Fourier development—though
we had to work harder.

As shown in the present paper, although the circular
Fourier series may lack the property of orthogonality, it
offers a useful decomposition of radially periodic images,
since it clearly reveals their spectrum structure and re-
flects its close connection with the 1D spectrum of the
cross section p(x) of the radially periodic image.

APPENDIX B: THE HALF-ORDER
DERIVATIVE OF THE IMPULSE d (x) AND
ITS MAIN PROPERTIES

Fractional-order derivatives of the impulse function d (x)
have not been widely known outside the mathematical
community. However, the results presented in this pa-
per show that half-order derivatives of the impulse func-
tion play an important role in the understanding of Fou-
rier spectra of various circular structures. In this
appendix I therefore investigate this generalized func-
tion, illustrate its behavior, and discuss its main proper-
ties.

As we have seen in Section 3, the half-order derivative
of a function f(x) can be expressed by

f ~1/2!~x ! 5 F
21@~i2pu !1/2F~u !#. (B1)

Also noted here is an elementary property of the half-
order derivative that we will need later:

@f~ax !#~1/2!
5 Aa f ~1/2 !~ax !. (B2)

An explicit expression for fractional-order derivatives
of d(x) can be found in advanced books on generalized
functions, such as Ref. 13:

d ~l !~x ! 5

1

G~2l !

1

xl11
step~x !,

where step(x) is defined as 1 for x . 0 and 0 for x , 0; in
particular, this gives for l 5 1/2

d ~1/2!~x ! 5 2

1

2Ap

1

x3/2
step~x !. (B3)

However, the best insight into the interpretation of math-
ematical expressions involving the impulse d (x) is ob-
tained by considering d (x) as the limit of a sequence of
unit-area functions. Several adequate sequences have
been proposed in Ref. 25, including (i) t21 rect(x/t), (ii)
t21L(x/t) and (iii) t21 sinc(x/t),26 all of which approach
d (x) in the limit as t tends to zero. The question of
which sequence is to be used is mainly a matter of conve-
nience: In most cases the simplest sequence (i) will do;
and only when derivatives are required, as in our case,
should sequences such as (ii) or (iii) be chosen. Once the
sequence to be used has been selected, the interpretation
of the expression involving d (x) is obtained by following
the general three-step recipe given in Ref. 27: (1) replace
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d (x) by the chosen sequence, (2) perform the operation in
question on this sequence, and (3) proceed to the limit as
t → 0.

Therefore, to gain a better understanding of the half-
order derivative of d (x) and its properties, we follow this
three-step recipe using the sequence (ii), which is the sim-
plest sequence having a first-order derivative [note that
for fractional derivatives d (l)(x) of order l . 1, a se-
quence having more derivatives would be required]. Ac-
cording to this recipe, we first replace d (x) with
t21L(x/t); then we perform on this sequence the opera-
tion of taking a half-order derivative; and finally, we pro-
ceed to the limit as t → 0.

The second step of this recipe requires the calculation
of the half-order derivative of t21L(x/t). Since the Fou-
rier transform of L(x) is sinc2(u),28 we obtain from for-
mula (B1)

L ~1/2!~x ! 5 F
21@~i2pu !1/2sinc2~u !#

5 E
2`

`

~i2pu !1/2sinc2~u !exp~i2pxu !du.

After some further manipulations, notably using
Ai 5 61/A2 6 i/A2 and exp(i2pxu) 5 cos(2pxu)
1 i sin(2pxu) and the mutual cancellation of integrals
that appear in the calculation, we obtain

L ~1/2!~x ! 5

2

Ap
~Ax 1 1 2 2Ax 1 Ax 2 1 !,

where A is considered as a real-valued function and de-
notes the positive value of the root. Therefore, using
property (B2), we find that the half-order derivative of our
sequence is

F1

t
LS x

t
D G ~1/2!

5

1

t3/2
L ~1/2!S x

t
D

5

2

Ap

1

t3/2 SAx

t
1 1

2 2Ax

t
1 Ax

t
2 1 D . (B4)

It would be instructive to stop for a moment to examine
this rather interesting result. The graphic representa-
tion of t23/2L (1/2)(x/t) is shown in Fig. 6. As we can see,
this function consists of three distinct parts: (1) a posi-
tive, increasing branch between 2t < x , 0 (in which
only the first square root takes part); (2) a rapidly de-
creasing branch between 0 < x , t, which crosses the x

axis at x 5 t/3 (in which only the first two square roots
are active); and finally, (3) a negative wake that trails off
between t < x , ` asymptotically to the x axis (in which
all three square roots take part).

Proceeding now to step 3 of the recipe, when t → 0, the
first branch of t23/2L (1/2)(x/t) tends (from the left) to an
infinite positive impulse at x 5 02, and the central
branch tends (from the right) to an infinite negative im-
pulse at x 5 01. But interestingly, the wake that consti-
tutes the third branch of t23/2L (1/2)(x/t) does not collapse

Fig. 6. Graphic representation of t23/2L (1/2)(x/t), the half-order derivative of t21L(x/t). It is composed of three consecutive curved
segments:

f1~x! 5

2

Ap

1

t3/2 SAx

t
1 1 D between 2t < x , 0,

f2~x ! 5

2

Ap

1

t3/2 SAx

t
1 1 2 2Ax

t
D between 0 < x , t,

f3~x ! 5

2

Ap

1

t3/2 SAx

t
1 1 2 2Ax

t
1 Ax

t
2 1 D between t < x , `.
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onto the x axis when t → 0, but rather tends to
21/(2Ap x3/2), which is precisely the explicit representa-
tion of d (1/2)(x) given in formula (B3). And indeed, it can
be verified (by substituting u 5 t/x and developing
A1 1 u and A1 2 u into Taylor series) that

lim
t→01

F 2

Ap

1

t3/2 SAx

t
1 1 2 2Ax

t
1 Ax

t
2 1 D G
5 2

1

2Ap

1

x3/2
.

Similar results can be also obtained by using the se-
quence t21sinc(x/t) rather than the sequence t21L(x/t),
although the calculations involved are more complicated.
An explicit expression for the half-order derivative of
sinc(x) has been derived in Appendix D of Ref. 16 and

plotted there on p. 87; note, however, that the entity pre-
sented there is in fact the mirror image of the correct re-
sult, namely, sinc(1/2)(2x), owing to a sign inversion in
the derivation (at the bottom of p. 92). In the correct rep-
resentation of sinc(1/2)(x), exactly as in the case of
L (1/2)(x), there appear a positive peak to the left of x

5 0, a negative peak to the right of x 5 0, and a negative
wake that can be seen trailing off to the right, biasing the
center line of the oscillations slightly downward. The
graphic representation of t23/2sinc(1/2)(x/t) is shown here
in the center of Fig. 7; and indeed, taking t → 0 gives in
the limit the same characteristic behavior of d (1/2)(x) that
we already obtained above using the simpler sequence
t21L(x/t).

It is interesting to note the positive impulsive behavior
that we observed on the left-hand side of d (1/2)(x), which
is clearly manifested when one is approaching d (1/2)(x) by

Fig. 7. Right column: graphic representations of d (l)(x) for l 5 0, 1/4, 1/2, 3/4, and 1. Left and middle columns: two possible se-
quences that approach d (l)(x) in the limit as t → 0: the l-order derivative of sequence (ii) (left column), and the l-order derivative of
sequence (iii) (middle column). The plots of the fractional-order derivatives of sequence (ii) and sequence (iii) were obtained by FFT,
with formula (B1) (or its equivalent versions for l 5 1/4 and 3/4). All the sequences are plotted here for t 5 1. Notice the gradual
transition in sequences (ii) and (iii) between the plots of the derivatives of orders l 5 0 ... 1.
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a sequence of functions that are defined on both sides of
x 5 0. This impulsive behavior went unnoticed in the
approach taken by Gelfand and Shilov,13 and expression
(B3) that they obtain only describes the properties of
d (1/2)(x) to the right of x 5 0. The presence of this posi-
tive peak can also be seen intuitively by considering
d (1/2)(x) as an intermediate stage in the gradual transi-
tion between the impulse d (x) and its derivative d 8(x)
(the inverse dipole), as shown in Fig. 7. This kind of
intuitive reasoning appears also, for another case, in
Ref. 29.

Finally, I give here some of the most important proper-
ties of d (1/2)(x), all of which can be verified by means of
the three-step recipe described above:

1. Scale and shift:

d ~1/2!~ax 1 b ! 5

1

uau3/2
d ~1/2!~x 1 b/a ! for a . 0

d ~1/2!~ax 1 b ! 5

1

uau3/2
d ~1/2!~2x 1 b/a ! for a , 0.

2. Asymmetry: In contrast to d (x), which is sym-
metric [i.e., d(2x) 5 d(x)] and to d 8(x), which is antisym-
metric [i.e., d 8(2x) 5 2d8(x)], d (1/2)(x) is asymmetric;
d (1/2)(2x) is the mirror image of d (1/2)(x).

3. Negative wake: In addition to its impulsive be-
havior at x 5 0, d (1/2)(x) has a negative continuous wake
that extends asymptotically in the positive direction of
the x axis.

4. The strength of the positive left-sided impulse (i.e.,
the area beneath the peak as t → 0) is `; the strength of
the negative right-sided impulse is 2`; and even the area
of the negative wake is again 2`. However, the total
area of d (1/2)(x) is 0. This behavior (except for the wake)
is reminiscent of the infinite impulse strengths of d 8(x),30

in contrast to d (x), whose strength is 1. These proper-
ties can be written symbolically as follows:

E
2`

`

d ~1/2!~x !dx 5 0, E
0

`

d ~1/2!~x !dx 5 2`,

E
2`

`

ud ~1/2!~x !udx 5 `.

5. Convolution: As a generalization of 30

d (n)(x) * f(x) 5 f (n)(x), we obtain here d (1/2)(x) * f(x)
5 f (1/2)(x).

6. Fourier transform: As a generalization of

d (n)(x) ↔
F

(i2pu)n, which is received by repeated differ-

entiation of d (x) ↔
F

1, we obtain here

d ~1/2!~x ! ↔
F

~i2pu !1/2.

Similar results can be also obtained for d (l)(x) with any
real l; note that negative values of l represent l-order
integration.
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