
AIP Conference Proceedings 1982, 020007 (2018); https://doi.org/10.1063/1.5045413 1982, 020007

© 2018 Author(s).

Fourier transform in elliptic coordinates:
Case of axial symmetry
Cite as: AIP Conference Proceedings 1982, 020007 (2018); https://doi.org/10.1063/1.5045413
Published Online: 30 July 2018

Aleksandr A. Bryzgalov

ARTICLES YOU MAY BE INTERESTED IN

Solution of boundary value problems with Laplace’s equation for ellipsoids and elliptical
cylinders
Journal of Mathematical Physics 21, 571 (1980); https://doi.org/10.1063/1.524456

Mathieu integral transforms
Journal of Mathematical Physics 32, 669 (1991); https://doi.org/10.1063/1.529409

Exponential Operators and Parameter Differentiation in Quantum Physics
Journal of Mathematical Physics 8, 962 (1967); https://doi.org/10.1063/1.1705306

https://images.scitation.org/redirect.spark?MID=176720&plid=1857432&setID=378288&channelID=0&CID=683627&banID=520741325&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=a5b61a9b1aa2152b5dc78ff6275ae2237e48c86f&location=
https://doi.org/10.1063/1.5045413
https://doi.org/10.1063/1.5045413
https://aip.scitation.org/author/Bryzgalov%2C+Aleksandr+A
https://doi.org/10.1063/1.5045413
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5045413
https://aip.scitation.org/doi/10.1063/1.524456
https://aip.scitation.org/doi/10.1063/1.524456
https://doi.org/10.1063/1.524456
https://aip.scitation.org/doi/10.1063/1.529409
https://doi.org/10.1063/1.529409
https://aip.scitation.org/doi/10.1063/1.1705306
https://doi.org/10.1063/1.1705306


Fourier Transform in Elliptic Coordinates: Case of Axial
Symmetry

Aleksandr A. Bryzgalov

Obninsk Institute for Nuclear Power Engineering of the National Research Nuclear University MEPhI,
Studgorodok Str., 1, Obninsk, Kaluzhskaya obl., Russia, 249020

Corresponding author: sandro185@mail.ru

Abstract. We perform the Fourier transform in two dimensional elliptic coordinates. The case of axial symmetry allows to re-
duce significantly the final transformation. The obtained integral formulae generalize the Fourier-Bessel transform due to relation
between elliptic and polar coordinates. We show also the alternating definition using Mathieu functions. The application of the
formulae obtained is the transitions of operator representations in Quantum Mechanics.

Keywords: curvilinear coordinates, integral transform, Bessel functions, Mathieu functions, Parseval’s theorem,
Hankel transform.

AMS-codes: 42B10, 42A38.

Introduction

Contemporary scientific and engineering research widely uses Fourier transform [1]. Great variety of examples in-
cludes digital signal processing [2], oceanology, acoustics and other applications. The methods based on Fourier
transform allow to solve various differential equations that describe corresponding phenomenon.

Most widely Fourier transform is applied in rectangular coordinate system. This is caused by the fact that a lot
of mathematical functions can be transformed analytically. And the second reason is the availability and the manifold
of computational options. The fast algorithms [3] are especially important.

Fourier transform becomes Hankel(Fourier-Bessel) transform [1] for the circularly symmetric physical system.
Fast algorithms [4], [5] are also applied in this case.

Unfortunately, for other curvilinear coordinate systems there are no so well developed computational possibili-
ties.

The purpose of this work to find an analytically compact and useful form of Fourier transform in elliptical
coordinates that extends the application of Fourier methods to this coordinate system.

As well known, elliptical coordinates generalize polar coordinates. Several authors (see [6], [7] and range of
works by Badge and Khobragade, for example [8]) use the integral transform based on the solution of Mathieu equa-
tion [9]. That transform becomes Fourier-Bessel transform under the conditions of the elliptic coordinates become
polar coordinates. This result allow to make a hypothesis that this transform is a Fourier transform in elliptic coordi-
nates. This statement will also be considered in the frame of this work.

It would thus be of interest to obtain the Fourier transform directly from the coordinate conversion and compare
the results with integral transformations mentioned above.

We start with general form of Fourier transform and expand the scalar product in the the exponent taking into
account the elliptical coordinates. The definition of the generating function for Bessel functions leads to a mathemati-
cally compact form for Fourier transform in the axially symmetrical system. The integral kernel contains the product
of the two Bessel functions of zero order.

The obtained expression possesses a number of interesting properties including the relation to Fourier-Bessel
transformation, Parseval’s theorem and connection with Mathieu equation.

We also present two examples of application: transitions between operator representations in Quantum Mecha-
nics (see for example [10]) and Operational Dynamic Modelling (ODM) [11].
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Fourier transform in elliptic coordinates

We begin with definition of coordinates. The relation of rectangular coordinates (x, y) and elliptic coordinates (µ, ν)
is:

x = a cosh µ cos ν; y = a sinh µ sin ν. (1)

The coordinates (µ, ν) vary within the following ranges:

µ ≥ 0; 0 ≤ ν < 2π. (2)

Generally, the Fourier transform in two dimensions is:

F(ω) =
∫

D
f (r)e−irωdr, (3)

where r =
−−−→{x, y} and ω =

−−−−−−→{ωx, ωy}. Here the integral is taken through the whole area D = {(x, y) : x ∈ (−∞,+∞), y ∈
(−∞,+∞)} for rectangular coordinates and D = {(µ, ν) : µ ∈ [0,+∞), ν ∈ [0, 2π)} for elliptical coordinates. And the
rω is the scalar product of vectors r and ω [12]. Expanding that scalar product in the exponent (3) we receive the
formula in elliptic coordinates. The scalar product in rectangular coordinates is:

rω = xωx + yωy. (4)

Then we change coordinates taking into account (1). Continuing with vector ω we have:

ωx = b coshωµ cosων; ωy = b sinhωµ sinων. (5)

Simple manipulations with hyperbolic functions result in the following expression instead of (4):

xωx + yωy = 0.5 cosh (µ + ωµ) cos (ν − ων) + 0.5 cosh (µ − ωµ) cos (ν + ων). (6)

Thus, we have the final formula for Fourier transform in elliptic coordinates using the (3):

F(ωµ, ων) = a2
∫ ∞

0

∫ 2π

0
f (µ, ν)(sinh2 µ + sin2 ν)×

exp[i0.5ab(cosh (µ + ωµ) cos (ν − ων) + cosh (µ − ωµ) cos (ν + ων))]dµdν, (7)

where f (µ, ν) - function of the space L2(D). Inverse transform has a similar form:

f (µ, ν) = b2
∫ ∞

0

∫ 2π

0
F(ωµ, ων)(sinh2 ωµ + sin2 ων)×

exp[−i0.5ab(cosh (µ + ωµ) cos (ν − ων) + cosh (µ − ωµ) cos (ν + ων))]dωµdων. (8)

The case of axial symmetry

The systems that possess axial symmetry are often the most interesting, especially in optics. If f (µ, ν) = f (µ), then it
is possible to obtain more applicable formulae instead of (7)-(8).

We use the well-known expression for Bessel function [13]:

e
ρ
2 (t− 1

t ) =

+∞∑
n=−∞

tnJn(ρ). (9)

Also we define new variables as:

ρ1 = 0.5ab cosh (µ + ωµ); ρ2 = 0.5ab cosh (µ − ωµ); t1 = iei(ν−ων); t2 = iei(ν+ων). (10)
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After insertion of (9) and (10) into (7) we have:

F(ωµ, ων) = a2
∫ ∞

0

∫ 2π

0
f (µ)

 +∞∑
n1=−∞

in1 Jn1 (ρ1)ein1(ν−ων) ·
+∞∑

n2=−∞
in2 Jn2 (ρ2)ein2(ν+ων)

 (sinh2 µ + sin2 ν)dµdν. (11)

Let us to consider the integration by ν. Expanding the brackets of factor (sinh2 µ + sin2 ν) we have a sum of two
integrals which we refer as Int1 + Int2.

First integral (12) includes a factor sinh2 µ. It does not affect on integration by ν as well as Jn1 (ρ1)Jn2 (ρ2).

Int1 = a2
∫ ∞

0

∫ 2π

0
f (µ)

 +∞∑
n1=−∞

in1 Jn1 (ρ1)ein1(ν−ων) ·
+∞∑

n2=−∞
in2 Jn2 (ρ2)ein2(ν+ων)

 sinh2 µdµdν. (12)

Thus, in factor
∑+∞

n1=−∞ in1 Jn1 (ρ1)ein1(ν−ων) ·∑+∞n2=−∞ in2 Jn2 (ρ2)ein2(ν+ων) the multiplication of exponents is determi-
ning. Removing the parentheses in multiplying sums we receive the series of integrals of the following form:

a2
∫ ∞

0

∫ 2π

0
in1 Jn1 (ρ1)ein1(ν−ων)in2 Jn2 (ρ2)ein2(ν+ων) sinh2 µdµdν =

a2
∫ ∞

0
in1+n2 Jn1 (ρ1)Jn2 (ρ2)e−i(n1+n2)ων sinh2 µdµ

∫ 2π

0
ei(n1+n2)νdν. (13)

The nonzero value is only possible when integers n1 = n2 = 0. Due to periodic exponential property the zero is
obtained in another cases. Thus

Int1 = 2πa2
∫ ∞

0
f (µ)J0(ρ1)J0(ρ2) sinh2 µdµ. (14)

Second part of (11) includes sin2 ν:

Int2 = a2
∫ ∞

0

∫ 2π

0
f (µ)

 +∞∑
n1=−∞

in1 Jn1 (ρ1)ein1(ν−ων) ·
+∞∑

n2=−∞
in2 Jn2 (ρ2)ein2(ν+ων)

 sin2 νdµdν. (15)

Acting in similar manner as before we receive the following result instead of (13):

a2
∫ ∞

0

∫ 2π

0
in1 Jn1 (ρ1)ein1(ν−ων)in2 Jn2 (ρ2)ein2(ν+ων) sin2 νdµdν =

in1+n2 Jn1 (ρ1)Jn2 (ρ2)e−i(n1+n2)ωνdµ
∫ 2π

0
ei(n1+n2)ν sin2 νdν. (16)

Once again the only values of integers are n1 = 0 and n2 = 0. And we have:

Int2 = a2π

∫ ∞

0
f (µ)J0(ρ1)J0(ρ2)dµ. (17)

The final result is the sum of Int1 + Int2:

F(ωµ) = a2π

∫ ∞

0
f (µ)J0(c cosh(µ + ωµ))J0(c cosh (µ − ωµ)) cosh(2µ)dµ, (18)

where c = 0.5ab. We also used the identity 2 sinh2 µ + 1 = cosh(2µ).
The formula (18) represents Fourier transform in elliptic coordinates for the case of axial symmetry.
If we start from (8) and perform similar conversions then we obtain the inverse formula:

f (µ) = b2π

∫ ∞

0
F(ωµ)J0(c cosh(µ + ωµ))J0(c cosh (µ − ωµ)) cosh(2ωµ)dωµ, (19)

which is the inverse Fourier transform in elliptic coordinates for the case of axial symmetry.
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Useful properties

Relation to Fourier-Bessel transform
Now we show how the integral transform (18)-(19) generalizes the Fourier-Bessel transform. Major axis A and minor
axis B of ellipse is equal correspondingly to A = a cosh µ and B = a sinh µ where a is focus distance. Eccentricity
is ε = 1/ cosh µ. If the major axis A is constant and ε → 0 then µ → ∞ and a → 0. So a cosh µ = a sinh µ → r.
As a result we have transformation from elliptic coordinate µ to polar coordinate r. In ω-space we have the similar
transformations. Therefore, ωµ becomes ωr. And

c cosh(µ + ωµ) = 0.5ab(cosh(µ) cosh(ωµ) + sinh(µ) sinh(ωµ))→ rωr;
c cosh(µ − ωµ) = 0.5ab(cosh(µ) cosh(ωµ) − sinh(µ) sinh(ωµ))→ 0;

J0(c cosh(µ + ωµ))→ J0(rωr);
J0(c cosh(µ − ωµ))→ 1;

a2 cosh(2µ)dµ→ 2rdr;

b2 cosh(2ωµ)dωµ → 2ωrdωr.

Thus, we have well-known Fourier-Bessel transform instead (18)-(19):

F(ωr) = 2π
∫ ∞

0 f (r)J0(rωr)rdr, f (r) = 2π
∫ ∞

0 F(ωr)J0(rωr)ωrdωr.

Parseval’s theorem
Now we obtain Parseval’s formula [14] which is also known as Parseval’s theorem. We multiply (18) by
b2F(ωµ) cosh(2ωµ) and integrate by ωµ over whole definition area [0,∞):

b2
∫ ∞

0
F(ωµ)2 cosh(2ωµ)dωµ =

c2π

∫ ∞

0

∫ ∞

0
F(ωµ) f (µ)J0(c cosh(µ + ωµ))J0(c cosh (µ − ωµ)) cosh(2µ) cosh(2ωµ)dµdωµ, (20)

The similar conversion could be performed with (19). Multiplication by a2 f (µ) cosh(2µ) and integration by µ over
area [0,∞)) gives:

a2
∫ ∞

0
f (µ)2 cosh(2µ)dµ =

c2π

∫ ∞

0

∫ ∞

0
F(ωµ) f (µ)J0(c cosh(µ + ωµ))J0(c cosh (µ − ωµ)) cosh(2µ) cosh(2ωµ)dµdωµ, (21)

Comparison of (20) and (21) results in Parseval’s formula:

a2
∫ ∞

0
f (µ)2 cosh(2µ)dµ = b2

∫ ∞

0
F(ωµ)2 cosh(2ωµ)dωµ. (22)

Relation to modified Mathieu equation
It is important to understand how the noted in introduction integral transformations [6]-[8] in elliptic coordinates
relate to expressions (18)-(19). We try to construct differential equation based on integral kernel of (18)-(19) for that
purpose.

The direct substitution of W = J0(c cosh(z)) satisfies the following differential equation:

∂2W
dz2 −

2
sinh(2z)

∂W
∂z
+ c2 sinh2(z)W = 0. (23)
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We define W1 as solution (23) when z = µ + ωµ and W2 as solution (23) when z = µ − ωµ. Thus, we have:

∂2W1

∂µ2 −
2

sinh(2µ + 2ωµ)
∂W1

∂µ
+ c2 sinh2(µ + ωµ)W1 = 0, (24a)

∂2W2

∂µ2 −
2

sinh(2µ − 2ωµ)
∂W2

∂µ
+ c2 sinh2(µ − ωµ)W2 = 0. (24b)

Here we use the identity dz = d(µ + ωµ) = d(µ − ωµ) = dµ, taking into account that ωµ is a parameter.
We multiply (24a) by W2 and (24b) by W1. After this we make a summation of the resulted equations. Using the

relations for derivatives (W1W2)′ = W ′1W2 +W1W ′2 and (W1W2)′′ = W ′′1 W2 + 2W ′1W ′2 +W1W ′′2 we can obtain possible
differential equations for the function V = W1W2.

We select two forms. First one includes first derivative of V:

d2V
dµ2 +

(
2

sinh(2µ + 2ωµ)
− 2

sinh(2µ − 2ωµ)

)
dV
dµ
+ c2(sinh2(µ + ωµ) + sinh2(µ − ωµ))V = v1(µ), (25a)

v1(µ) =
2

sinh(2µ + 2ωµ)
dW2

dµ
W1 −

2
sinh(2µ − 2ωµ)

dW1

dµ
W2 + 2

dW1

dµ
dW2

dµ
. (25b)

The second one is:
d2V
dµ2 + c2(sinh2(µ + ωµ) + sinh2(µ − ωµ))V = v2(µ), (26a)

v2(µ) =
2

sinh(2µ + 2ωµ)
dW1

dµ
W2 −

2
sinh(2µ − 2ωµ)

dW2

dµ
W1 + 2

dW1

dµ
dW2

dµ
. (26b)

Left part of (26a) is referred to the form of modified Mathieu equation:

d2V
dµ2 − (z − 2q cosh(2µ))V = 0. (27)

Here z = c2, q = 0.5c2 cosh(2ωµ).
The obtained results (25) or (26) show that the integral kernel of (18)-(19) cannot be a solution of modified

Mathieu equation since the nonzero right part.

Alternating definition using Mathieu functions
However, the solution of Mathieu equation (27) could also be useful because it is considered in elliptical coordinates.
This differential equation plays a major role in elliptic coordinate system. For example, Helmholtz equation could be
solved with splitting into Mathieu equations in these coordinates [9].

The another form of (18) and (19) can be obtained using Mathieu functions. The main idea is based on the
relation [15]:

ek cos(z) cos(θ) =

∞∑
n=0

An cen(z, q)cen(θ, q). (28)

Here q = k2/32 and cen - Mathieu function.
Substitution of (28) into (7) gives:

F(ωµ, ων) =
∫ ∞

0

∫ 2π

0
f (µ, ν)a2(sinh2 µ + sin2 ν)

∞∑
n=0

An Cen(µ + ωµ, q) cen(ν − ων, q)×

∞∑
m=0

Bm Cem(µ − ωµ, q) cem(ν + ων, q)dµdν, (29)

where Cen is modified Mathieu function and k = 0.5iab.
If f (µ, ν) = f (µ), then the formula (29) do not allow exclude directly the argument ν as it was done for axial

symmetry case using Bessel functions. Thus, the previous definition for Fourier transform in elliptic coordinates (18)
is preferable for us.
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Possibilities for application

The presented formulae (18) and (19) allow to consider Fourier transform methods in elliptical coordinate system.
However, the particular examples of its application are not available in analytical form. At present moment there are
no variety of functions which could be transformed analytically. We believe that certain progress in this question will
be achieved in nearest future due to the continuous developing of the Bessel functions theory.

Therefore numerical methods could be critically important. The application of approximations of (18) and (19)
resulted in integration of highly oscillating functions. This means using of Filon’s type methods which are rather slow.

This reasoning shows that a good perspective for further study is to present a fast algorithm which can combine
accuracy properties with economic loads of computational resources.

The discussion of such algorithms it is required of the separate consideration and is not included in this work.

Representations in Quantum Mechanics
Returning to the section topic the coordinate and momentum representations in quantum mechanics are the possible
field for the supposed integral transformation (18) and (19). As well-known in coordinate representation we have the
definitions for the operators acting on the wave function ϕ

x̂ϕ(x) = xϕ(x), x̂ - operator of x-coordinate, p̂ϕ(x) = −i~∇ϕ(x), p̂ -operator of momentum p,

and in momentum representation we have

x̂ϕ(p) = i~∇ϕ(p), p̂ϕ(p) = pϕ(p).

The direct and reverse transitions between these representations could be done using Fourier transform:

ϕ(x) = 1

(2π~)
3
2

∫
R3 e

i
~ xpϕ(p)dp, ϕ(p) = 1

(2π~)
3
2

∫
R3 e−

i
~ xpϕ(x)dx.

The case of axial symmetry in elliptical coordinates automatically involves the formulas (18) and (19) for that type
transitions.

Operator representation in Operational Dynamic Modelling
The similar application is ODM. This study allow to obtain the Wigner function in curvilinear coordinates.

The general description of ODM consider the using of new auxiliary operators θ̂ν and λ̂ν besides x̂ν and p̂ν. Here
and below the ν and µ are the covariant and contravariant indices. Thus we have new commutation relations:

[x̂µ, p̂ν] = i~δµν , [x̂µ, λ̂ν] = iδµν , [ p̂µ, θ̂ν] = iδνµ, [λ̂µ, θ̂ν] = 0. (30)

Introducing also operators:

x̂µ = X̂µ − ~2 Θ̂µ; p̂µ = P̂µ +
~
2 Λ̂

µ; λ̂µ = Λ̂µ; θ̂µ = Θ̂µ;

in X-Θ representation the explicit form of these classical operators is:

X̂µ = Xµ, Λ̂µ = −i ∂
∂Xµ , P̂µ = i ∂

∂Θµ
, Θ̂µ = Θµ.

X-P representation gives:
X̂µ = Xµ, Λ̂µ = −i ∂

∂Xµ , P̂µ = Pµ, Θ̂µ = −i ∂
∂Pµ .

Obviously the Λ-P and Λ-Θ representations could be shown in the similar way.
Applying the coordinate system allow to obtain exact form of these operators. For Wigner function ψ the transi-

tion between representations undergo through Fourier transform [16].
Let us see the transition between X-Θ to X-P representation. Applying this we should write the following for the

general ψ-function in rectangular coordinate system:

ψ(X1, X2, P1, P2) =
∫ ∞

−∞

∫ ∞

−∞
ψ(X1, X2,Θ1,Θ2)e−i(P1Θ1+P2Θ2)dΘ1dΘ2.
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Here X1 = x, X2 = y, P1 = px and P2 = py. As it was done previously in (8) in elliptical coordinates this will be:

ψ(X1, X2, P1, P2) = b2
∫ ∞

0

∫ 2π

0
ψ(X1, X2,Θ1,Θ2)(sinh2Θ1 + sin2Θ2)×

exp[−i0.5ab(cosh (P1 + Θ1) cos (P2 − Θ2) + cosh (P1 − Θ1) cos (P2 + Θ2))]dΘ1dΘ2,

where X1 = µ, X2 = ν, P1 = pµ, P2 = pν, a and b are the focuses. In the case of axial symmetry we receive the result
accordingly to (19):

ψ(X1, P1) = b2π

∫ ∞

0
ψ(X1,Θ1)J0(0.5ab cosh((P1 + Θ1)))J0(0.5ab cosh (P1 − Θ1)) cosh(2Θ1)dΘ1.

Another transitions can be easily obtained in the same manner.

Conclusions

We have received a form of Fourier transform in two dimensional elliptic coordinates for the case of axial symmetry.
The resulted formulae (18)-(19) contain multiplication of Bessel functions of zero order that generalize the well-
known Fourier-Bessel transform. Also we have shown the Parseval’s theorem for this case.

Moreover, we have considered connection of the obtained integral transformation with Mathieu equation. Practi-
cally the hypothesis about the identity of Fourier transform and transforms based on the solution of Mathieu equation
has not proved. We also could not receive connection formula between these transformations. However, instead of
Bessel functions we can use Mathieu functions for the Fourier transform in elliptical coordinates.

The application of considered integral transform can extend the existing Fourier transform techniques in curvi-
linear coordinates. The good example is the coordinate and momentum representations in Quantum Mechanics. The
obtained formulae (18)-(19) allow directly to do the transitions between these representations.

Another example of application is the Operational Dynamic Modelling which is also considered the different
operator representations to obtain Wigner function. And once again the transitions between these representations in
elliptical coordinates resulted in integrals (18)-(19) for case of axial symmetry.
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