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Abstract

Fourier Transform Infrared (FT-IR) spectroscopic imaging has been earlier applied for the spatial estimation of the collagen
and the proteoglycan (PG) contents of articular cartilage (AC). However, earlier studies have been limited to the use of
univariate analysis techniques. Current analysis methods lack the needed specificity for collagen and PGs. The aim of the
present study was to evaluate the suitability of partial least squares regression (PLSR) and principal component regression
(PCR) methods for the analysis of the PG content of AC. Multivariate regression models were compared with earlier used
univariate methods and tested with a sample material consisting of healthy and enzymatically degraded steer AC.
Chondroitinase ABC enzyme was used to increase the variation in PG content levels as compared to intact AC. Digital
densitometric measurements of Safranin O –stained sections provided the reference for PG content. The results showed that
multivariate regression models predict PG content of AC significantly better than earlier used absorbance spectrum (i.e. the
area of carbohydrate region with or without amide I normalization) or second derivative spectrum univariate parameters.
Increased molecular specificity favours the use of multivariate regression models, but they require more knowledge of
chemometric analysis and extended laboratory resources for gathering reference data for establishing the models. When
true molecular specificity is required, the multivariate models should be used.
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Introduction

Articular cartilage (AC) is a highly specialized tissue that covers

the ends of long bones. The major constituents of AC are water,

type II collagen, proteoglycans (PGs) and cells, i.e., chondrocytes

[1]. The unique functional properties of AC are achieved by its

inhomogeneous composition and structure [2]. Detailed informa-

tion on the spatial distribution of the biochemical constituents is

needed for several reasons. For example, it has been proposed that

the mechanical properties of AC could be estimated solely based

on the biochemical composition by using sophisticated mathe-

matical models [3]. Furthermore, in order to clarify the

biochemical changes of AC in early phase of osteoarthritis, highly

specific imaging techniques are required.

Vibrational spectroscopy consists of a collection of different

techniques including mid-infrared spectroscopy (commonly re-

ferred to as infrared (IR) spectroscopy or Fourier transform

Infrared (FT-IR) spectroscopy), near infrared spectroscopy (NIR)

and Raman spectroscopy. Vibrational spectroscopic techniques

are typically considered to be complementary to each other. NIR

has the advantage of a better penetration into a sample, enabling

measurements with little or no sample preparation. On the other

hand, NIR lacks the molecular selectivity of FT-IR and Raman

spectroscopy. Since water strongly absorbs mid-IR light, thus

hindering the analysis of more interesting components, FT-IR

studies must be usually conducted using dry samples, whereas NIR

and Raman spectroscopic measurements can be done also from

aqueous samples. The weakness of Raman spectroscopy is that

Raman scattering is very weak compared to elastically scattered

light resulting in a much worse signal-to-noise ratio in Raman

spectroscopy than in IR spectroscopy. Therefore, each technique

has its advantages and disadvantages compared to the others.

FT-IR spectroscopic imaging is a technique that is capable of

producing biochemical images from histological sections, i.e.,

images that show the spatial variation of biochemical components.

Traditionally, univariate analyses have been used in cartilage FT-

IR research, e.g., by calculating the area of an absorption peak

from the measured spectra [4]. This approach is limited by the fact

that one can rarely find a specific peak for any tissue component

directly from the absorption spectrum, since significant overlap

exists between different absorption peaks [5]. The reason for

spectral overlapping arises from the fact that biological tissues have

very similar biochemical composition since all proteins are built

from the same amino acids. Therefore, biochemical differences
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between tissues are mainly due to different protein folding and side

chain substitutions. As the detected changes in spectra between

different tissue types are small, it is very difficult to obtain contrast

between different tissue types from histological section when

univariate-based methods are used. As a step forward, derivative

spectra can be used for better separation of the overlapping peaks

but it cannot completely solve the problem. The use of derivative

spectra also requires a high signal-to-noise-ratio since noise is

greatly amplified in differentiation process [6]. In general,

univariate techniques abandon lots of information since only one

variable at a time is investigated. Univariate analysis requires an

intuitive assumption, or a priori information, of the spectral feature

or the wavenumber range that exhibits the adequate specificity for

the studied chemical compound. Therefore, the technique is

limited and the collected chemical information cannot be used as

effectively as possible.

Multivariate analysis techniques use several independent

variables simultaneously when the biochemical composition of

the tissue is analyzed from FT-IR measurements. Multivariate

techniques can use the entire collected spectral information for the

analysis. A priori information of the specificity of spectral regions is

not required, since a wide spectral region is usually used.

Multivariate techniques have been shown to be more powerful

than univariate techniques [7]. Principal Component Regression

(PCR) and Partial Least Squares Regression (PLSR) are popular

chemometric methods for quantitative analyses [7]. Both methods

construct new variables that are used as regressors. The difference

between PCR and PLSR is that PCR constructs variables to

explain variance in measured spectra, while PSLR constructs

variables to explain co-variance between the spectra and predicted

information. Therefore, variables of PLSR may contain more

accurate information on the predicted content. When a PCR or a

PLSR model is built, one needs to calibrate it against the reference

information on, e.g., the biochemical composition of the samples.

This calibration procedure requires a large dataset of spectral

measurements and counterparting reference measurement values.

Data collection for calibration can be time consuming, but once

the model is built and properly validated the analysis of large data

sets can be done fast and reliably.

In the FTIR research of articular cartilage and osteoarthritis,

two studies have reported that area of carbohydrate region of

infrared absorption spectrum correlates with histologically and

biochemically determined PG content in tissue engineered

cartilage [8,9]. However, these studies used only bulk values of

tissue engineered cartilage, which contains significantly less

collagen than native cartilage [10]. It has also been reported that

synthesized glycosaminoglycans are significantly different from

those found from native cartilage extracellular matrix [11,12].

Therefore, these previous results are not necessarily directly

applicable to normal articular cartilage. Recent studies have

shown that current univariate-based methods lack the specificity

for PG molecules especially at the superficial layer of AC [5,13],

and the existing univariate methods cannot reach the specificity

level of the biochemical methods [5]. Increased specificity for FT-

IR analysis is needed before the technique can be reliably used for

cartilage research and before it can partially replace the existing

biochemical methods. Recently, PCR was used to predict collagen

and PG concentrations in bovine nasal cartilage [14]. Further-

more, several multivariate methods were used to analyze the

biochemical composition of AC from Raman spectroscopic data

[15]. However, PLSR has not yet been used in FT-IR studies for

quantitative compositional analysis of AC.

The aim of this study was to introduce PLSR modelling in

prediction of the PG content of AC. Both intact and enzymatically

degraded steer AC samples was used, and the potential of PLSR

modelling, as well as of earlier used univariate-based analysis

methods and PCR, to predict the biochemical reference values

was clarified. As PLSR modelling has not been previously used

for this research problem, we hypothesized that it improves

specificity for PG molecules beyond the earlier used univariate

analysis methods.

Materials and Methods

Sample preparation
Knee joints of 1-3-year-old steers (n = 16) were obtained from a

local abattoir (Atria Oyj, Kuopio, Finland). Osteochondral plugs

(d = 13 mm) were prepared from the lateral upper quadrants of the

patellae. Samples were divided into two groups of eight samples.

Samples of the first group were modified with chondroitinase ABC

enzyme (concentration 30 U/ml at 37uC for 44 h) for removal of

superficial PGs. Samples in the second group served as controls.

Subsequently, the samples were fixed with 10% formalin,

decalcified, dehydrated and embedded in paraffin as described

earlier [16]. 5-mm-thick vertical sections were cut with a

microtome and transferred onto standard objective slides. Paraffin

was dissolved with xylene prior to transferring the sections onto 2-

mm-thick ZnSe windows for the FT-IR spectroscopic imaging

measurements.

FT-IR spectroscopic imaging
Measurements were conducted with the Perkin Elmer Spotlight

300 FT-IR imaging system (Perkin Elmer, Shelton, CO, USA) in

transmission mode using spectral resolution and pixel resolution of

4 cm21 and 25 mm, respectively. Eight repetitive scans per pixel

were averaged. The imaging system and the sample box were

purged with CO2-free dried air during the measurements to

standardize the measurement conditions (Parker Balston, Haver-

hill, MA, USA). Data was collected from cartilage surface to

cartilage-bone interface using a 400-mm-wide region of interest.

Reference measurements (Digital densitometry)
PG content and spatial PG distribution was estimated indirectly

using digital densitometry (DD). As Safranin O is cationic, it binds

to the negatively charged glycosaminoglycans, and therefore the

staining intensity follows the PG distribution of the sample. Stain

absorption can be quantitatively measured with microscope

coupled with CCD-camera. Optical density (OD) of safranin O

is directly related to the amount of PGs in the sample. DD of

Safranin O is a well validated reference method for determination

of spatial distribution of negatively charged glycosaminoglycans in

AC [17,18]. The main advantage of DD over traditional

biochemical methods is that PG content from superficial tissue

to deep cartilage can be determined from a single section without

sectioning the sample into multiple subsamples. System consists of

a Leitz Orthoplan light microscope (Leitz Wetzlar, Wetzlar,

Germany) using monochromatic light (l= 49265 nm) and a

peltier-cooled 12-bit CCD camera (CH250, Photometrics, Tuc-

son, AZ, USA). System was calibrated with neutral density filters

(Schott, Mainz, Germany) to cover a range from 0 to 3 OD values.

Multiple 3-mm-thick sections were cut from each sample. Paraffin

was dissolved from the sections with xylene, and the sections were

stained with Safranin O. Three randomly selected sections were

measured and averaged from each sample to reduce the effect of

variable section thickness. The results were averaged in transverse

direction (parallel to the surface) to obtain depth-wise PG

distribution of AC [16].

FT-IR Spectroscopy of Cartilage Proteoglycans
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Data pre-processing
Second derivative spectra were calculated from FT-IR data by

using Savitzky-Golay algorithm (7 smoothing points). Since only

the depth-wise information was studied, both the FT-IR data and

safranin O data were averaged in transverse direction (i.e. parallel

to the surface). However, direct comparison was not possible, since

the pixel size in DD measurements is smaller than in FT-IR

measurements (,5 mm vs. 25 mm). Therefore, the depth-wise

safranin O profiles were resampled to obtain the same number of

data points for both techniques. This was possible, because full

cartilage thickness was measured with both techniques. Cartilage

surfaces and cartilage-bone junctions between the FT-IR and

safranin O data were first manually matched. Subsequently, the

depth-wise safranin O profiles were resampled in order to get

equal number of safranin O data points to the number of FT-IR

spectra obtained from the same sample. After the resampling, each

FT-IR spectrum had one reference value that indicated the PG

content in the corresponding location of the sample. This enabled

the direct comparison between the FT-IR parameters and the DD

reference measurements.

Partial Least Squares Regression (PLSR) and Principal
Component Regression (PCR)

Data set was formed so that all PG concentration levels were

evenly represented. All data covering OD values of 0–1.5 OD (144

data points) were included entirely into the used data set. Since

OD values from 1.5 to 2.3 formed the majority (838 out of 932

data points) of the collected data, only part of this data was

included in the data set. Consequently, 50 data points from each

OD value ranges 1.5–2.0 OD, 2.0–2.15 OD and .2.15 OD were

randomly selected to the data set. Altogether, the data set consisted

of 294 data points.

Spectral regions of 1000–1440 cm21 and 1480–1700 cm21

were used in PLSR and PCR models. The region of 1440–

1480 cm21 was not used, since some sections still contained traces

of paraffin, which shows strong absorption bands in this region.

Number of components for the models was chosen based on the

root-mean-square error of cross validation (RMSECV) of the data

set. In leave-one-out cross validation, one sample in turn is

removed from the training data to be used as a validation data.

Predicted values of each sample are then stored and finally

compared to reference data [7,19]. The performance of final

PLSR and PCR models was evaluated by Pearson’s correlation

coefficient obtained by comparing the model predictions after

cross validation with the corresponding OD values.

One enzymatically modified sample and one control sample

were left completely out of the multivariate models as a purpose of

using these samples when demonstrating the use of validated

PLSR model in imaging studies.

Univariate FT-IR analyses
Previously, PG content of AC has been analyzed from

absorption spectrum by calculating the integrated area of

carbohydrate region (984–1140 cm21) or ratio of carbohydrate

region to amide I peak (1584–1720 cm21) [4,9,20]. Also second

derivative spectra contain PG-related information, e.g. the peaks

located at 1062 cm21 [5,21,22] and at 1374 cm21 [23]. As a

purpose of comparison, these parameters were also calculated and

compared with the results of PLSR model. Spectral data was

baseline corrected using an offset correction prior to data analyses.

Values of univariate parameters were converted to OD values by

using the linear regression equations, and thereafter the root-

mean-square errors (RMSEs) were calculated. All data analyses

were performed using Matlab (Ver. R2007b, MathWorks Inc.,

Sherborn, MA, USA).

Comparison between univariate and multivariate analysis
methods

FT-IR-based PG parameters were initially compared with the

reference PG distributions by calculating Pearson’s correlation

coefficients. The statistical difference between the correlation

coefficients was tested by comparing the elements of the

correlation matrices as described by Steiger [24]. Since multiple

comparisons between correlation coefficients were involved,

Bonferroni correction was applied to the obtained significance

values (N = 7 comparisons, the level of significance: p,0.05/

N = 0.007). Furthermore, different analysis methods were com-

pared to each other by analyzing the relative prediction errors

among different OD values (absolute prediction error/predicted

value).

Results

Mean infrared absorption spectrum of AC and mean second

derivative spectrum of AC are shown in Figure 1. Integrated area

of carbohydrate region showed positive correlation agaist

reference distribution (r = 0.605, p,0.001, RMSE = 0.98 OD)

(Figure 2A). Normalization of carbohydrate region with amide I

Figure 1. Mean absorption spectrum and second derivative
spectrum of the data set. A) Mean infrared absorption spectrum of
AC and B) mean second derivative spectrum of AC.
doi:10.1371/journal.pone.0032344.g001

FT-IR Spectroscopy of Cartilage Proteoglycans
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weakened the correlation (r = 0.379, p,0.001, RMSE = 1.83 OD)

(Figure 2B). The difference between the correlation coefficients

was statistically significant (p,0.007).

The results were improved by using the second derivative

spectra. The intensity of the second derivative peak at 1374 cm21

correlated slightly better with the reference PG data (r = 0.766,

p,0.001, RMSE = 0.63 OD) (Figure 2C) than the intensity of the

second derivative peak 1062 cm21 (r = 0.701, p,0.001,

RMSE = 0.76 OD) (Figure 2D). The difference between the

correlations reached the level of statistical significance (p,0.007).

Furthermore, both second derivate PG parameters were better

predictors of PG content than the area of carbohydrate region

(p,0.007) as judged from correlations with the reference

distribution as well as from RMSE values.

RMSECV with different number of PLSR and PCR compo-

nents are shown in Figure 3. Based on RMSECV, 7 components

were selected for both models as RMSECV did not decrease

significantly with additional components. PLSR model showed a

high positive correlation with the reference PG data (r = 0.943,

p,0.001, RMSECV = 0.25 OD) (obtained by cross-validation)

(Figure 4A). PCR model also produced good results (r = 0.903,

p,0.001, RMSECV = 0.32 OD) (obtained by cross-validation)

(Figure 4B). Both PCR and PLSR model performed better than

the best univariate parameter (second derivative peak 1374 cm21)

(p,0.007) as judged from correlations with the reference PG

distribution as well as from RMSE values. Further, PLSR was

proven to be the best predictor for PG content as the difference

between PLSR and PCR was statistically significant (p,0.007).

Accuracy of the different analysis approaches were further

investigated by analysing the relative prediction error for each

Figure 2. Scatter plots between optical density of safranin O and different univariate FT-IR PG parameters. A) Integrated area of
carbohydrate region (984–1140 cm21). B) Integrated area of carbohydrate region normalized with amide I (1584–1720 cm21). C) Intensity of 2nd

derivative peak located at 1374 cm21. D) Intensity of 2nd derivative peak located at 1062 cm21. Statistical significance of p,0.001 is indicated by two
asterisks (**).
doi:10.1371/journal.pone.0032344.g002

Figure 3. Root-mean-square error of cross-validation (RMSECV)
with different number of components for PLSR and PCR. Based
on RMSECV, 7 components were selected for both models as RMSECV
did not decrease significantly with additional components.
doi:10.1371/journal.pone.0032344.g003
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method at different OD values. Carbohydrate region –based and

second derivative –based univariate parameters showed larger

relative error throughout the whole OD range as compared to

multivariate models (Fig. 5). Carbohydrate parameter had non-

random variation with high PG values and some obvious

clustering was evident where parameters overestimated the actual

amount of PGs (Fig. 5 A). Amide I normalization weakened the

results especially at low OD values (Fig. 5 B). Both second

derivative parameters had rather uniform and random variation at

all OD values and no systematic deviation was detected (Figs 5 C

and D). However, the peak 1062 cm21 showed higher relative

error than the peak 1374 cm21 or the carbohydrate region at low

OD values. It should be noted that the multivariate models had

smaller variation throughout the whole OD range compared to

univariate parameters and gave consistent results also at the large

OD values (Figs 5 E and F).

Suitability of the PLSR model for imaging studies was tested by

analyzing 2D FT-IR images of two additional bovine samples (not

included in the PLSR model training data). The results were

compared with the safranin O –stained parallel sections (Figure 6).

PLSR model was shown to give consistent results with safranin O

staining and the model detected accurately the partial PG

depletion generated with the chondroitinase ABC enzyme.

Discussion

Our results show the feasibility of the application of PLSR in the

FT-IR spectroscopic imaging data analysis in AC. The original

hypothesis was confirmed in the study, as the PLSR model clearly

outperformed the previously used univariate analysis methods for

the prediction of the spatial PG content of AC. The approach of

the present study enables direct comparison of different analysis

methods since the parameters were derived from the same

datasets, i.e., the potential sources of errors, related to sample

preparation and measurement conditions, were identical for each

parameter. The obtained results are promising and clearly show

the potential of multivariate analysis techniques for overlapping

spectral data. PCR, which was recently used to predict collagen

and PG concentrations of bovine nasal cartilage [14], also

performed well although the results were a little worse than with

PLSR. This was expected, as PCR utilizes only the measured

spectral data when new variables are constructed, while PLSR also

uses the predicted information.

In earlier studies, the carbohydrate region has been found to

correlate with biochemically determined PG content. These

studies have used bulk PG concentrations of tissue engineered

cartilage [8,9]. In this study, steer AC was used. Further, DD of

Safranin O stained parallel sections was chosen as the reference

method for PG content, because DD enables the determination of

PG content in different layers of AC from a single cartilage section.

Collagen-to-PG ratio varies throughout the cartilage depth, which

makes it difficult to determine either collagen or PG content by

univariate methods. These differences might explain why

univariate methods seem to perform worse in our study than in

earlier studies. The findings of the present study indicate that the

largest absolute prediction errors occur in the deep tissue, where

the PG and collagen contents are high. In contrast, it was earlier

found that the specificity of univariate-based PG parameters is

limited in the superficial tissue of normal and especially of

osteoarthritic human AC, while they work reasonably well in the

middle and deep layers [13]. The most probable explanation for this

discrepancy is that different species were used in the studies. PG and

collagen distribution profiles are significantly different in bovine or

porcine tissue than in human tissue [25,26,27]. In all mammalian

cartilage tissues, PG concentration rapidly increases after the

superficial layer and relatively uniform high PG amounts are

obtained from various depths of tissue [16,28]. On the other hand,

human AC has remarkably less depth-wise variation in collagen

content than bovine or porcine AC. In bovine and porcine, collagen

content increases monotonically from the middle layer to the deep

layer, creating a variable collagen-to-PG ratio for most parts of the

cartilage. This probably explains the difficulties in predicting the

largest PG values in the current study using steer AC.

Lack of specificity with univariate parameters, calculated from

the raw spectra, manifests as an increased variation in the

predicted high PG values from the middle and deep layers, as seen

with the present results (Figs 2 and 5). Second derivative-based

univariate parameters showed smaller systematic estimation errors

than the carbohydrate region-based parameters. However, second

derivative parameters are more vulnerable to random noise

associated with the measurement. Multivariate analysis has a

theoretical premise to work better than the univariate parameters

in situations with a variable collagen-to-PG ratio, although

absolute errors are still slightly higher with high PG values

(Fig. 3). However, the relative error is actually quite small at high

Figure 4. Scatter plots between optical density of safranin O and FT-IR multivariate models. A) Predicted PG content obtained from PLSR
model. B) Predicted PG content obtained from PCR model. Statistical significance of p,0.001 is indicated by two asterisks (**).
doi:10.1371/journal.pone.0032344.g004
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PG values for the multivariate models (Fig. 5). Based on the

relative error, the smallest PG values seem to be difficult to predict

accurately. This can be partly explained by the fact that the

relative error easily becomes large when the predicted values are

close to zero. Ideally, the measurement error consists only of

random noise. The amplitude of random noise is independent of

the measured concentration levels. Therefore, a larger relative

error is observed at smaller OD values no matter what kind of

analysis technique is used. Since the earliest osteoarthritic changes

include loss of PGs in the superficial tissue [29], and as the

superficial tissue PG content plays an important role for

biomechanical behavior [16,30], it is important that the analysis

method works well also with the low end of the PG levels

(superficial tissue). It is demanding to determine small concentra-

tions accurately. Multivariate techniques, such as PCR and PLSR,

filter some of the random noise by rejecting the insignificant,

noise-related components. Random noise could be further

decreased by increasing the number of scans per pixel, which

would result in more accurate determination of PG content in

terms of relative error.

Alternative explanation for the difficulties in the deep cartilage

could be found from the reference technique used, which measures

the sulphated glycosaminoglycans of PGs. The second derivative

peak at 1062 cm21 has been associated not only with sulphates [22],

but also with C-O vibrations [21,31]. Therefore, non-sulphated

glycoproteins might partly explain the overestimation of high

Figure 5. Relative prediction errors of the different FT-IR PG parameters. A) Integrated area of carbohydrate region (984–1140 cm21) (mean
error: 635.9%). B) Integrated area of carbohydrate region normalized with amide I (1584–1720 cm21) (mean error: 6107.8%). C) Intensity of 2nd

derivative peak located at 1062 cm21 (mean error: 633.0%). D) Intensity of 2nd derivative peak located at 1374 cm21 (mean error: 620.6%). E) PLSR
model (mean error: 610.7%). F) PCR model (mean error: 616.9%). Note that plot B has a different scale on y axis.
doi:10.1371/journal.pone.0032344.g005

FT-IR Spectroscopy of Cartilage Proteoglycans
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concentration levels. On the other hand, the second derivative peak

at 1374 cm21 is associated with the CH3 group [23], which is found

in all glycosaminoglycans, and therefore is not directly related to

sulphates. The slightly weaker correlation of peak 1062 cm21

compared to peak 1374 cm21 might be also due to its weak

intensity, which brings more random variation to the data. When a

wide part of the carbohydrate region is used, limitations can be seen

more clearly, since the carbohydrate region also contains vibrations

related to collagen. Normalization of the carbohydrate region with

amide I seemed to even worsen the results. Similar limitations in

specificity of carbohydrate-based parameters were also reported in

the earlier study using human AC samples [13]. Consequently, the

limited specificity of univariate parameters should be taken into

account in all future FT-IR investigations of AC.

In this study, some uncertainty arises from the fact that only one

section per sample was measured with FT-IR. It is known that

significant section-to-section variation in section thickness exists even

when sections are cut in the same session [32]. This brings random

variation in the FT-IR data between the samples. A random

variation in the section thickness most likely reduces the obtained

correlation levels of the FT-IR parameters. The problem is probably

more significant with univariate parameters, since multivariate

techniques can partly take into account the thickness variation based

on the total absorbance of the investigated spectral region. In the

future, multiple sections should be measured and the average results

reported, or alternatively the section thickness differences should be

reduced with reference sample normalization [32].

An obvious advantage of the PLSR is that it is not limited by the

user’s ability to pinpoint a specific region to obtain an adequate

specificity for a desired tissue component. Spectral peaks are wide

in biospectroscopy, and very seldom can a separate well-defined

peak be found to represent a single molecule. Thus, in general,

molecular-level specificity cannot be established with univariate-

based methods. Multivariate techniques, on the other hand, are

limited mainly by the reference data, the reference technique and

FT-IR spectroscopic measurement itself. Collected spectral

information can be used more effectively with multivariate

techniques since all the collected information can be included in

the model. Furthermore, the PLSR model is built using predefined

algorithms and accurate a priori information of the specific spectral

peaks is not needed.

Collection of the reference data for a multivariate model can be

very time consuming and it requires laboratory resources. In this

study, Safranin O –stained sections were used as a reference. The

main reason for this was the ability of Safranin O –staining to

produce several reference values from a single specimen. Pixel by

pixel data was not used for comparison as the reference

measurements were not performed from the exact same sections

as the FT-IR spectroscopic measurements. Instead, the data was

averaged in the transverse direction which also reduced effectively

random noise. Optical density of Safranin O in the determination

of PG content of AC has earlier been validated by two separate

reference techniques. Strong correlations between the optical

density of Safranin O and the reference techniques were obtained

in both cases (r = 0.96 with thin layer chromatography and

r = 0.995 with Na+ tracer). Safranin O traces the negative charge

in AC that is primarily caused by the sulphated glycosaminogly-

cans. Therefore, the optical density of Safranin O can be regarded

as a valid reference technique for this study. The biggest source of

error in DD is the variable section thickness, which brings random

variation to the data. This was reduced by measuring three

sections per sample and averaging the results.

In the future a multivariate model for the prediction of AC

composition should be built using the gold standard as the references,

i.e., biochemical methods. Although building the PLSR model is time

consuming, the subsequent application of the model is fast and

reliable. From the theoretical point of view, after a proper validation

process multivariate spectral analysis may allow quantitative spatial

PG and collagen determination from histological sections with similar

specificity as the current biochemical techniques.

Figure 6. An enzymatically degraded (left) and a normal (right) sample. Safranin O –stained sections are shown in A and B. Predicted PG
contents by the PLSR model are shown in C and D. The loss of superficial PGs is easily seen in C. Depthwise distribution profiles of the same samples
analyzed by the PLSR model (black) and by digital densitometry (red) are shown in E and F. The difference between the predicted and measured
values are marked with dashed lines in E and F. RMSEs were 0.30 OD and 0.13 OD for the enzymatically modified sample and intact sample,
respectively.
doi:10.1371/journal.pone.0032344.g006

FT-IR Spectroscopy of Cartilage Proteoglycans

PLoS ONE | www.plosone.org 7 February 2012 | Volume 7 | Issue 2 | e32344



When considering the validation of the PLSR model, it is

noteworthy that sample processing may affect the outcome of the

model. In the present study, formalin-fixed samples were used. The

model validated with formalin-fixed samples may not perform

equally well with cryosections, also generally used in FT-IR

spectroscopic imaging studies, since fixation may alter the spectra.

This aspect should be studied more closely. Possibly, different

models should be built for cryosections and formalin-fixed sections.

The use of univariate analysis for the determination of PG and

collagen contents of AC is favored by the simplicity of the analysis,

as the analysis can easily be performed with any available software.

The specificity of univariate analysis for PGs can be improved by

the application of second derivative spectroscopy at the expense of

amplification of noise. However, the users should be aware of the

limitations of univariate analysis. Present results indicate that the

multivariate techniques should be preferred for compositional

studies of AC when true biochemical specificity is desired.

Application of the FT-IR spectroscopic techniques for cartilage

research is still hindered by the lack of parameter specificity for

PGs and collagen. Chemical imaging itself would offer a great

potential for characterization of AC since the traditional

biochemical techniques have only limited capabilities for charac-

terization of the spatial distribution of tissue constituents. The

application of multivariate techniques is a step towards true

molecular imaging of AC.
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