FOURIER TRANSFORM OF RANDOM VARIABLES ASSOCIATED WITH THE MULTI-DIMENSIONAL HEISENBERG LIE ALGEBRA

LUIGI ACCARDI AND ANDREAS BOUKAS

(Communicated by Sergei K. Suslov)

Abstract

We compute the Fourier transform (or vacuum characteristic function) of quantum random variables (observables), defined as self-adjoint finite sums of Fock space operators, satisfying the multi-dimensional Heisenberg Lie algebra commutation relations. The main tool is a splitting formula for the multi-dimensional Heisenberg group obtained by Feinsilver and Pap.

1. Bochner's Theorem and quantum random variables

A continuous function $f: \mathbb{R} \mapsto \mathbb{C}$ is positive definite if

$$
\int_{\mathbb{R}} \int_{\mathbb{R}} f(t-s) \phi(t) \bar{\phi}(s) d t d s \geq 0
$$

for every continuous function $\phi: \mathbb{R} \mapsto \mathbb{C}$ with compact support. Bochner's theorem (see [3, p. 346]) states that such a function can be represented as

$$
f(t)=\int_{\mathbb{R}} e^{i t \lambda} d v(\lambda)
$$

where v is a non-decreasing right-continuous bounded function. If $f(0)=1$, then such a function v defines a probability measure on \mathbb{R} and Bochner's theorem says that f is the Fourier transform of a probability measure, i.e., the characteristic function of a random variable that follows the probability distribution defined by v. Moreover, the condition of positive definiteness of f is necessary and sufficient for such a representation.

An example of such a positive definite function is provided by $f(t)=\left\langle\Phi, e^{i t X} \Phi\right\rangle$ where Φ is the normalized vacuum vector of a Fock-Hilbert space \mathcal{F} and X is an observable (self-adjoint operator on \mathcal{F}) also called a quantum random variable in which case

$$
\int_{\mathbb{R}} \int_{\mathbb{R}} f(t-s) \phi(t) \bar{\phi}(s) d t d s=\left\|\int_{\mathbb{R}} e^{-i t X} \phi(t) d t \Phi\right\|^{2} \geq 0 .
$$

In this paper we consider quantum random variables X acting on the Fock space associated with the multi-dimensional Heisenberg algebra and our goal is to provide a formula for the computation of their vacuum characteristic function $\left\langle\Phi, e^{i t X} \Phi\right\rangle$.

[^0]
2. Multi-dimensional Heisenberg algebra Random variables

The multi-dimensional Heisenberg algebra is the infinite-dimensional Lie algebra with generators $\left\{\mathbf{1}, x_{j}, D_{k} \mid j, k \geq 1\right\}$ and commutation relations

$$
\left[D_{k}, x_{j}\right]=\delta_{j, k} \mathbf{1},\left[D_{k}, \mathbf{1}\right]=\left[x_{j}, \mathbf{1}\right]=\left[D_{k}, D_{j}\right]=\left[x_{k}, x_{j}\right]=0 .
$$

The following theorem was proved in [1] and is central to our approach. For convenience we keep its notation.
Theorem 1. Let $\alpha_{1} \in \mathbb{C}, \alpha_{2}, \alpha_{3} \in \mathbb{C}^{n \times 1}, \alpha_{4}, \alpha_{5}, \alpha_{6} \in \mathbb{C}^{n \times n}$, with $\alpha_{4}^{T}=\alpha_{4}$ and $\alpha_{6}^{T}=\alpha_{6}$. Let also

$$
v=\left(\begin{array}{ll}
\alpha_{5} & \alpha_{4} \\
-\alpha_{6} & -\alpha_{5}^{T}
\end{array}\right)
$$

and define the functions $P, Q, R, S: \mathbb{R} \mapsto \mathbb{C}^{n \times n}$ by

$$
e^{t v}=\left(\begin{array}{ll}
P(t) & Q(t) \\
-R(t) & S(t)
\end{array}\right) .
$$

Then, letting $\mathbf{1}$ denote the identity operator and using the notation

$$
\begin{aligned}
& x_{\alpha_{2}}=\sum_{j=1}^{n} \alpha_{2}^{j} x_{j}, D_{\alpha_{3}}=\sum_{j=1}^{n} \alpha_{3}^{j} D_{j}, R_{\alpha_{4}}=\frac{1}{2} \sum_{j, k=1}^{n} \alpha_{4}^{j, k} x_{j} x_{k}, \\
& \rho_{\alpha_{5}}=\frac{1}{2} \sum_{j, k=1}^{n} \alpha_{5}^{j, k}\left(x_{j} D_{k}+D_{k} x_{j}\right), \Delta_{\alpha_{6}}=\frac{1}{2} \sum_{j, k=1}^{n} \alpha_{6}^{j, k} D_{j} D_{k}
\end{aligned}
$$

for $t \in \mathbb{R}$ sufficiently close to 0 we have

$$
e^{t\left(\alpha_{1} 1+x_{\alpha_{2}}+D_{\alpha_{3}}+R_{\alpha_{4}}+\rho_{\alpha_{5}}+\Delta_{\alpha_{6}}\right)}=e^{A_{1}(t) \mathbf{1}} e^{x_{A_{2}}(t)} e^{D_{A_{3}}(t)} e^{R_{A_{4}(t)}} e^{\rho_{A_{5}(t)}(t)} e^{\Delta_{A_{6}(t)}}
$$

where the functions $A_{1}: \mathbb{R} \mapsto \mathbb{C}, A_{2}, A_{3}: \mathbb{R} \mapsto \mathbb{C}^{n \times 1}$ and $A_{4}, A_{5}, A_{6}: \mathbb{R} \mapsto \mathbb{C}^{n \times n}$ are given by

$$
\begin{gathered}
A_{1}(t)=\alpha_{1} t+\frac{1}{2}\left(\begin{array}{ll}
\alpha_{3}^{T} & \alpha_{2}^{T}
\end{array}\right) \frac{e^{t v}-\mathbf{1}-t v}{v^{2}}\binom{\alpha_{2}}{-\alpha_{3}}+\frac{1}{2} A_{2}(t)^{T} A_{3}(t), \\
\binom{A_{2}(t)}{-A_{3}(t)}=\frac{e^{t v}-\mathbf{1}}{v}\binom{\alpha_{2}}{-\alpha_{3}}, \\
A_{4}(t)=Q(t) S(t)^{-1}, A_{5}(t)=-\log S(t)^{T}, A_{6}(t)=S(t)^{-1} R(t),
\end{gathered}
$$

and the functions $\frac{e^{t v}-1}{v}$ and $\frac{e^{t v}-1-t v}{v^{2}}$ are understood in the sense of power series, i.e.,

$$
\frac{e^{t v}-\mathbf{1}}{v}=t \sum_{k=0}^{\infty} \frac{(t v)^{k}}{(k+1)!}, \frac{e^{t v}-I-t v}{v^{2}}=t^{2} \sum_{k=0}^{\infty} \frac{(t v)^{k}}{(k+2)!}
$$

Lemma 1. Let D, x, and h satisfy the Heisenberg algebra commutation relations $[D, x]=h$ and $[D, h]=[x, h]=0$. Then, for all $t, a \in \mathbb{R}$

$$
\begin{gather*}
e^{t D} e^{a x}=e^{a x} e^{t D} e^{a t h} \tag{2.1}\\
{\left[e^{t D}, x^{n}\right]=\sum_{k=0}^{n-1}\binom{n}{k} t^{n-k} h^{n-k} x^{k} e^{t D}} \tag{2.2}\\
e^{t D} e^{a x^{2}}=e^{a(t h+x)^{2}} e^{t D} \tag{2.3}
\end{gather*}
$$

Proof. The proof of (2.1) can be found in [2]. For (2.2), using (2.1) and Leibniz's rule for derivatives we have

$$
\begin{gathered}
{\left[e^{t D}, x^{n}\right]=e^{t D} x^{n}-x^{n} e^{t D}=\left.\frac{\partial^{n}}{\partial a^{n}}\right|_{a=0} e^{t D} e^{a x}-x^{n} e^{t D}} \\
=\left.\frac{\partial^{n}}{\partial a^{n}}\right|_{a=0} e^{a x} e^{t D} e^{a t h}-x^{n} e^{t D}=\sum_{k=0}^{n}\binom{n}{k} t^{n-k} h^{n-k} x^{k} e^{t D}-x^{n} e^{t D} \\
=\sum_{k=0}^{n-1}\binom{n}{k} t^{n-k} h^{n-k} x^{k} e^{t D} .
\end{gathered}
$$

To prove (2.3) we notice that

$$
\begin{gathered}
e^{t D} e^{a x^{2}}=e^{t D} \sum_{n=0}^{\infty} \frac{a^{n} x^{2 n}}{n!}=\sum_{n=0}^{\infty} \frac{a^{n}}{n!} e^{t D} x^{2 n} \\
=\sum_{n=0}^{\infty} \frac{a^{n}}{n!}\left(\left[e^{t D}, x^{2 n}\right]+x^{2 n} e^{t D}\right)=\sum_{n=0}^{\infty} \frac{a^{n}}{n!}\left[e^{t D}, x^{2 n}\right]+\sum_{n=0}^{\infty} \frac{a^{n}}{n!} x^{2 n} e^{t D}
\end{gathered}
$$

which using (2.2) is

$$
\begin{gathered}
=\sum_{n=0}^{\infty} \frac{a^{n}}{n!} \sum_{k=0}^{2 n-1}\binom{2 n}{k} t^{2 n-k} h^{2 n-k} x^{k} e^{t D}+e^{a x^{2}} e^{t D} \\
=\sum_{n=0}^{\infty} \frac{a^{n}}{n!}\left(\sum_{k=0}^{2 n}\binom{2 n}{k} t^{2 n-k} h^{2 n-k} x^{k}-x^{2 n}\right) e^{t D}+e^{a x^{2}} e^{t D} \\
=\left(\sum_{n=0}^{\infty} \frac{a^{n}}{n!}(t h+x)^{2 n}-\sum_{n=0}^{\infty} \frac{a^{n}}{n!} x^{2 n}\right) e^{t D}+e^{a x^{2}} e^{t D} \\
=\left(e^{a(t h+x)^{2}}-e^{a x^{2}}\right) e^{t D}+e^{a x^{2}} e^{t D}=e^{a(t h+x)^{2}} e^{t D} .
\end{gathered}
$$

Our goal is to compute the moment generating and characteristic functions, $\left\langle\Phi, e^{t X} \Phi\right\rangle$ and $\left\langle\Phi, e^{i t X} \Phi\right\rangle$, respectively, of the random variable

$$
X=\alpha_{1} \mathbf{1}+x_{\alpha_{2}}+D_{\alpha_{3}}+R_{\alpha_{4}}+\rho_{\alpha_{5}}+\Delta_{\alpha_{6}}
$$

where Φ is the Fock vacuum vector with $\langle\Phi, \Phi\rangle=1$. We assume that for all $n>0$, $D_{n} \Phi=0$ which implies that for all $a_{n} \in \mathbb{C}$

$$
e^{a_{n} D_{n}} \Phi=\sum_{k=0}^{\infty} \frac{a_{n}^{k}}{k!} D_{n}^{k} \Phi=\Phi
$$

Moreover, we assume that for all $n>0,\left(D_{n}\right)^{*}=x_{n},\left(x_{n}\right)^{*}=D_{n}$. In view of this assumption we have that for each $i, j>0, D_{i}=a_{i}$ and $x_{j}=a_{j}^{\dagger}$ where $\left[a_{i}, a_{j}^{\dagger}\right]=\delta_{i, j}$ and $a_{i}^{*}=a_{i}^{\dagger}$, i.e., a_{i} and a_{i}^{\dagger} are a Boson pair.

The operator

$$
Z=\alpha_{1} \mathbf{1}+x_{\alpha_{2}}+D_{\alpha_{3}}+R_{\alpha_{4}}+\rho_{\alpha_{5}}+\Delta_{\alpha_{6}}
$$

is self-adjoint if and only if

$$
\alpha_{1} \in \mathbb{R}, \alpha_{2}=\alpha_{3}^{*}, \alpha_{6}=\alpha_{4}^{*}, \alpha_{5}=\alpha_{5}^{*}
$$

where $(\cdots)^{*}$ denotes conjugate transpose. Since in Theorem 1 we have assumed that $\alpha_{4}^{T}=\alpha_{4}$ and $\alpha_{6}^{T}=\alpha_{6}$, the condition $\alpha_{6}=\alpha_{4}^{*}$ reduces to $\alpha_{6}=\overline{\alpha_{4}}$.

The Fock space corresponding to the multi-dimensional Heisenberg algebra would be defined as the Hilbert space completion of the exponential vectors

$$
\psi_{a}:=e^{\sum_{i=1}^{\infty} a_{i} x_{i}} \Phi=\prod_{i=1}^{\infty} e^{a_{i} x_{i}} \Phi, a=\left(a_{1}, a_{2}, \ldots\right) \in l_{2}(\mathbb{C})
$$

with respect to the inner product

$$
\left\langle\psi_{a}, \psi_{b}\right\rangle:=\left\langle\prod_{i=1}^{\infty} e^{a_{i} x_{i}} \Phi, \prod_{i=1}^{\infty} e^{b_{i} x_{i}} \Phi\right\rangle=\prod_{i=1}^{\infty} e^{\overline{a_{i}} b_{i}}=e^{\sum_{i=1}^{\infty} \overline{a_{i}} b_{i}}
$$

Throughout this paper we will make repeated use of the fact that for all group elements g

$$
\left\langle\Phi, e^{a_{n} x_{n}} g \Phi\right\rangle=\left\langle\left(e^{a_{n} x_{n}}\right)^{*} \Phi, g \Phi\right\rangle=\left\langle e^{\bar{a}_{n} D_{n}} \Phi, g \Phi\right\rangle=\langle\Phi, g \Phi\rangle .
$$

Lemma 2. For $i, j, k \in\{1,2, \ldots, n\}$ and $a_{i}, b_{j, k} \in \mathbb{C}$

$$
\left\langle\Phi, \prod_{i=1}^{n} e^{a_{i} D_{i}} \prod_{j, k=1, j \neq k}^{n} e^{b_{j, k} x_{j} x_{k}} \Phi\right\rangle=e^{\sum_{i, j=1, i \neq j}^{n} a_{i} a_{j} b_{i, j}}
$$

Proof. Let $A=\sum_{i=1}^{n} a_{i} D_{i}$ and $B=\sum_{j, k=1, j \neq k}^{n} b_{j, k} x_{j} x_{k}$. Then

$$
C:=[A, B]=\sum_{i=1}^{n} \sum_{j, k=1, j \neq k}^{n} a_{i} b_{j, k}\left[D_{i}, x_{j} x_{k}\right]=\sum_{i=1}^{n} \sum_{j, k=1, j \neq k}^{n} a_{i} b_{j, k} c_{i, j, k},
$$

where

$$
c_{i, j, k}=\left[D_{i}, x_{j} x_{k}\right]= \begin{cases}0 & \text { if } i \neq j, i \neq k, \\ x_{k} & \text { if } i=j, i \neq k, \\ x_{j} & \text { if } i=k, i \neq j .\end{cases}
$$

Clearly $[B, C]=0$ and

$$
\begin{gathered}
E:=[A, C]=\sum_{m=1}^{n} \sum_{i=1}^{n} \sum_{j, k=1, j \neq k}^{n} a_{m} a_{i} b_{j, k}\left[D_{m}, c_{i, j, k}\right] \\
=\sum_{m=1}^{n} \sum_{i=1}^{n} \sum_{j, k=1, j \neq k}^{n} a_{m} a_{i} b_{j, k} d_{m, i, j, k}
\end{gathered}
$$

where

$$
d_{m, i, j, k}= \begin{cases}1 & \text { if } m=k \neq i=j \text { or } m=j \neq i=k \\ 0 & \text { otherwise }\end{cases}
$$

Thus

$$
E=2 \sum_{i, j=1, i \neq j}^{n} a_{i} a_{j} b_{i, j} .
$$

Using the expansion

$$
\begin{aligned}
e^{A} B e^{-A}=e^{\operatorname{ad} A} B= & B+[A, B]+\frac{1}{2}[A,[A, B]]+0+\cdots \\
& =B+C+\frac{1}{2} E
\end{aligned}
$$

we find that

$$
e^{A} B^{n} e^{-A}=\left(e^{A} B e^{-A}\right)\left(e^{A} B e^{-A}\right) \cdots\left(e^{A} B e^{-A}\right)=\left(B+C+\frac{1}{2} E\right)^{n}
$$

and so

$$
e^{A} e^{B} e^{-A}=\sum_{n=1}^{\infty} \frac{1}{n!} e^{A} B^{n} e^{-A}=\sum_{n=1}^{\infty} \frac{1}{n!}\left(B+C+\frac{1}{2} E\right)^{n}=e^{B+C+\frac{1}{2} E} .
$$

Thus

$$
\begin{gathered}
\left\langle\Phi, \prod_{i=1}^{n} e^{a_{i} D_{i}} \prod_{j, k=1, j \neq k}^{n} e^{b_{j, k} x_{j} x_{k}} \Phi\right\rangle=\left\langle\Phi, e^{A} e^{B} \Phi\right\rangle=\left\langle\Phi, e^{A} e^{B} e^{-A} \Phi\right\rangle \\
=\left\langle\Phi, e^{B+C+\frac{1}{2} E} \Phi\right\rangle=\left\langle\Phi, e^{B+C} e^{\frac{1}{2} E} \Phi\right\rangle=e^{\frac{1}{2} E}\left\langle e^{B^{*}+C^{*}} \Phi, \Phi\right\rangle \\
=e^{\frac{1}{2} E}\langle\Phi, \Phi\rangle=e^{\frac{1}{2} E}=e^{\sum_{i, j=1, i \neq j}^{n} a_{i} a_{j} b_{i, j}} .
\end{gathered}
$$

Theorem 2. In the notation of Theorem 1, for $t \in \mathbb{R}$ sufficiently close to 0 , the moment generating and characteristic functions of the random variable

$$
Z=\alpha_{1} \mathbf{1}+x_{\alpha_{2}}+D_{\alpha_{3}}+R_{\alpha_{4}}+\rho_{\alpha_{5}}+\Delta_{\alpha_{6}}
$$

are, respectively,

$$
\left\langle\Phi, e^{t Z} \Phi\right\rangle=e^{A_{1}(t)} e^{\frac{1}{2} \sum_{j=1}^{n} A_{5}^{j, j}(t)+A_{4}^{j, j}(t) A_{3}^{j}(t)^{2}} e^{\frac{1}{2} \sum_{m, k=1, m \neq k}^{n} A_{3}^{m}(t) A_{3}^{k}(t) A_{4}^{m, k}(t)}
$$

and
$\left\langle\Phi, e^{i t Z} \Phi\right\rangle=e^{A_{1}(i t)} e^{\frac{1}{2} \sum_{j=1}^{n}\left(A_{5}^{j, j}(i t)+A_{4}^{j, j}(i t) A_{3}^{j}(i t)^{2}\right)} e^{\frac{1}{2} \sum_{m, k=1, m \neq k}^{n}\left(A_{3}^{m}(i t) A_{3}^{k}(i t) A_{4}^{m, k}(i t)\right)}$.
Proof. By Theorem 1

$$
\begin{aligned}
& \left\langle\Phi, e^{t\left(\alpha_{1} 1+x_{\alpha_{2}}+D_{\alpha_{3}}+R_{\alpha_{4}}+\rho_{\alpha_{5}}+\Delta_{\alpha_{6}}\right)} \Phi\right\rangle \\
& =\left\langle\Phi, e^{A_{1}(t) 1} e^{x_{A_{2}(t)}} e^{D_{A_{3}(t)}} e^{R_{A_{4}(t)}} e^{\rho_{A_{5}}(t)} e^{\Delta_{A_{6}(t)}} \Phi\right\rangle \\
& =e^{A_{1}(t)}\left\langle\Phi, e^{x_{A_{2}(t)}} e^{D_{A_{3}(t)}} e^{R_{A_{4}(t)}} e^{\rho_{A_{5}(t)}} e^{\Delta_{A_{6}(t)}} \Phi\right\rangle \\
& =e^{A_{1}(t)}\left\langle\left(e^{x_{A_{2}(t)}}\right)^{*} \Phi, e^{D_{A_{3}(t)}} e^{R_{A_{4}(t)}} e^{\rho_{A_{5}}(t)} e^{\Delta_{A_{6}(t)}} \Phi\right\rangle \\
& \text { (using }\left(e^{x_{A_{2}}(t)}\right)^{*} \Phi=e^{\sum_{j=1}^{n} \overline{A_{2}^{j}}(t) D_{j}} \Phi=\prod_{j=1}^{n} e^{\overline{A_{2}^{j}}(t) D_{j}} \Phi=\Phi \\
& \text { and } \left.e^{\Delta_{A_{6}(t)}} \Phi=e^{\frac{1}{2} \sum_{j, k=1}^{n} A_{6}^{j, k}(t) D_{j} D_{k}} \Phi=\Phi\right) \\
& =e^{A_{1}(t)}\left\langle\Phi, e^{D_{A_{3}}(t)} e^{R_{A_{4}(t)}} e^{\rho_{A_{5}}(t)} \Phi\right\rangle .
\end{aligned}
$$

Moreover,

$$
\begin{gathered}
\rho_{A_{5}(t)}=\frac{1}{2} \sum_{j, k=1}^{n} A_{5}^{j, k}(t)\left(x_{j} D_{k}+D_{k} x_{j}\right) \\
=\frac{1}{2}\left(\sum_{1 \leq j \neq k \leq n} A_{5}^{j, k}(t) 2 x_{j} D_{k}+\sum_{j=1}^{n} A_{5}^{j, j}(t)\left(x_{j} D_{j}+D_{j} x_{j}\right)\right) \\
=\frac{1}{2}\left(\sum_{1 \leq j \neq k \leq n} A_{5}^{j, k}(t) 2 x_{j} D_{k}+\sum_{j=1}^{n} A_{5}^{j, j}(t)\left(x_{j} D_{j}+\left[D_{j}, x_{j}\right]+x_{j} D_{j}\right)\right)
\end{gathered}
$$

$$
\begin{aligned}
& =\frac{1}{2}\left(\sum_{1 \leq j \neq k \leq n} A_{5}^{j, k}(t) 2 x_{j} D_{k}+\sum_{j=1}^{n} A_{5}^{j, j}(t)\left(2 x_{j} D_{j}+1\right)\right) \\
& =\sum_{1 \leq j \neq k \leq n} A_{5}^{j, k}(t) x_{j} D_{k}+\sum_{j=1}^{n} A_{5}^{j, j}(t) x_{j} D_{j}+\frac{1}{2} \sum_{j=1}^{n} A_{5}^{j, j}(t)
\end{aligned}
$$

so we have that

$$
\begin{gathered}
e^{\rho_{A_{5}(t)}} \Phi=e^{\frac{1}{2} \sum_{j=1}^{n} A_{5}^{j, j}(t)} e^{\sum_{1 \leq j \neq k \leq n} A_{5}^{j, k}(t) x_{j} D_{k}+\sum_{j=1}^{n} A_{5}^{j, j}(t) x_{j} D_{j}} \Phi \\
=e^{\frac{1}{2} \sum_{j=1}^{n} A_{5}^{j, j}(t)} e^{\sum_{1 \leq j, k \leq n} A_{5}^{j, k}(t) x_{j} D_{k}} \Phi=e^{\frac{1}{2} \sum_{j=1}^{n} A_{5}^{j, j}(t)} \Phi=\prod_{j=1}^{n} e^{\frac{1}{2} A_{5}^{j, j}(t)} \Phi
\end{gathered}
$$

because $\sum_{1 \leq j, k \leq n} A_{5}^{j, k}(t) x_{j} D_{k} \Phi=0$ implies $e^{\sum_{1 \leq j, k \leq n} A_{5}^{j, k}(t) x_{j} D_{k}} \Phi=\Phi$. Thus

$$
\begin{aligned}
& \left\langle\Phi, e^{t\left(\alpha_{1} 1+x_{\alpha_{2}}+D_{\alpha_{3}}+R_{\alpha_{4}}+\rho_{\alpha_{5}}+\Delta_{\alpha_{6}}\right)} \Phi\right\rangle \\
= & e^{A_{1}(t)} \prod_{j=1}^{n} e^{\frac{1}{2} A_{5}^{j, j}(t)}\left\langle\Phi, e^{D_{A_{3}(t)}} e^{R_{A_{4}(t)}} \Phi\right\rangle .
\end{aligned}
$$

Using

$$
D_{A_{3}(t)}=\sum_{j=1}^{n} A_{3}^{j}(t) D_{j}, \quad R_{A_{4}(t)}=\frac{1}{2} \sum_{j, k=1}^{n} A_{4}^{j, k}(t) x_{j} x_{k}
$$

we have that

$$
e^{D_{A_{3}(t)}} e^{R_{A_{4}(t)}}=e^{\sum_{j=1}^{n} A_{3}^{j}(t) D_{j}} e^{\frac{1}{2} \sum_{j, k=1}^{n} A_{4}^{j, k}(t) x_{j} x_{k}}
$$

which, since the operators in each exponent commute, splits into

$$
\begin{aligned}
& \prod_{j=1}^{n} e^{A_{3}^{j}(t) D_{j}} \prod_{J, K=1}^{n} e^{\frac{1}{2} A_{4}^{J, K}(t) x_{J} x_{K}} \\
&= \prod_{j=1}^{n} e^{A_{3}^{j}(t) D_{j}} \prod_{m=1}^{n} e^{\frac{1}{2} A_{4}^{m, m}}(t) x_{m}^{2} \\
& \prod_{J, K=1, J \neq K}^{n} e^{\frac{1}{2} A_{4}^{J, K}(t) x_{J} x_{K}} \\
&= \prod_{j=1}^{n}\left(e^{A_{3}^{j}(t) D_{j}} e^{\frac{1}{2} A_{4}^{j, j}(t) x_{j}^{2}}\right) \prod_{J, K=1, J \neq K}^{n} e^{\frac{1}{2} A_{4}^{J, K}(t) x_{J} x_{K}}
\end{aligned}
$$

(by Lemma 1 (iii))

$$
=\prod_{j=1}^{n}\left(e^{\frac{1}{2} A_{4}^{j, j}(t)\left(A_{3}^{j}(t)+x_{j}\right)^{2}} e^{A_{3}^{j}(t) D_{j}}\right) \prod_{J, K=1, J \neq K}^{n} e^{\frac{1}{2} A_{4}^{J, K}(t) x_{J} x_{K}}
$$

Thus

$$
\begin{gathered}
\left\langle\Phi, e^{t\left(\alpha_{1} \mathbf{1}+x_{\alpha_{2}}+D_{\alpha_{3}}+R_{\alpha_{4}}+\rho_{\alpha_{5}}+\Delta_{\alpha_{6}}\right)} \Phi\right\rangle \\
=e^{A_{1}(t)} \prod_{j=1}^{n} e^{\frac{1}{2} A_{5}^{j, j}(t)} \\
\times\left\langle\Phi, \prod_{j=1}^{n}\left(e^{\frac{1}{2} A_{4}^{j, j}(t)\left(A_{3}^{j}(t)+x_{j}\right)^{2}} e^{A_{3}^{j}(t) D_{j}}\right) \prod_{J, K=1, J \neq K}^{n} e^{\frac{1}{2} A_{4}^{J, K}(t) x_{J} x_{K}} \Phi\right\rangle \\
=e^{A_{1}(t)} \prod_{j=1}^{n} e^{\frac{1}{2} A_{5}^{j, j}(t)}
\end{gathered}
$$

$$
\times\left\langle\prod_{j=1}^{n} e^{\frac{1}{2} \overline{A_{4}^{j, j}}(t)\left(\overline{A_{3}^{j}}(t)+D_{j}\right)^{2}} \Phi, \prod_{j=1}^{n} e^{A_{3}^{j}(t) D_{j}} \prod_{J, K=1, J \neq K}^{n} e^{\frac{1}{2} A_{4}^{J, K}(t) x_{J} x_{K}} \Phi\right\rangle
$$

Since, for each $j=1,2, \ldots, n$

$$
\begin{aligned}
e^{\frac{1}{2} \overline{A_{4}^{j, j}}}(t)\left(\overline{A_{3}^{j}}(t)+D_{j}\right)^{2} \Phi= & e^{\frac{1}{2} \overline{A_{4}^{j, j}}(t) \overline{A_{3}^{j}}(t)^{2}} e^{\frac{1}{2} \overline{A_{4}^{j, j}}(t) D_{j}^{2}} e^{\overline{A_{4}^{j, j}}(t) \overline{A_{3}^{j}}(t) D_{j}} \Phi \\
& =e^{\frac{1}{2} \overline{A_{4}^{j, j}}(t) \overline{A_{3}^{j}}(t)^{2}} \Phi
\end{aligned}
$$

we find that

$$
\begin{gathered}
\left\langle\Phi, e^{t\left(\alpha_{1} \mathbf{1}+x_{\alpha_{2}}+D_{\alpha_{3}}+R_{\alpha_{4}}+\rho_{\alpha_{5}}+\Delta_{\alpha_{6}}\right)} \Phi\right\rangle \\
=e^{A_{1}(t)} \prod_{j=1}^{n} e^{\frac{1}{2} A_{5}^{j, j}(t)} \prod_{j=1}^{n} e^{\frac{1}{2} A_{4}^{j, j}(t) A_{3}^{j}(t)^{2}} \\
\times\left\langle\Phi, \prod_{j=1}^{n} e^{A_{3}^{j}(t) D_{j}} \prod_{J, K=1, J \neq K}^{n} e^{\frac{1}{2} A_{4}^{J, K}(t) x_{J} x_{K}} \Phi\right\rangle \\
=e^{A_{1}(t)} \prod_{j=1}^{n} e^{\frac{1}{2} A_{5}^{j, j}(t)+\frac{1}{2} A_{4}^{j, j}(t) A_{3}^{j}(t)^{2}} \\
\times\left\langle\Phi, \prod_{j=1}^{n} e^{A_{3}^{j}(t) D_{j}} \prod_{J, K=1, J \neq K}^{n} e^{\frac{1}{2} A_{4}^{J, K}(t) x_{J} x_{K}} \Phi\right\rangle \\
=e^{A_{1}(t)} e^{\frac{1}{2} \sum_{j=1}^{n}\left(A_{5}^{j, j}(t)+A_{4}^{j, j}(t) A_{3}^{j}(t)^{2}\right)} e^{\sum_{I, J=1, I \neq J}^{n} A_{3}^{I}(t) A_{3}^{J}(t) \frac{1}{2} A_{4}^{I, J}(t)} \\
=e^{A_{1}(t)} e^{\frac{1}{2} \sum_{j=1}^{n}\left(A_{5}^{j, j}(t)+A_{4}^{j, j}(t) A_{3}^{j}(t)^{2}\right)} e^{\frac{1}{2} \sum_{I, J=1, I \neq J}^{n} A_{3}^{I}(t) A_{3}^{J}(t) A_{4}^{I, J}(t)} .
\end{gathered}
$$

Replacing t by it we obtain the formula for the characteristic function.

ACKNOWLEDGEMENT

The authors thank the referee for suggesting the proof of Lemma 2 which greatly simplified the original one.

REferences

[1] Ph. Feinsilver and G. Pap, Calculation of Fourier transforms of a Brownian motion on the Heisenberg group using splitting formulas, J. Funct. Anal. 249 (2007), no. 1, 1-30, DOI 10.1016/j.jfa.2007.05.002. MR2338852 (2008i:60012)
[2] Philip Feinsilver and René Schott, Algebraic structures and operator calculus. Vol. I, Mathematics and its Applications, vol. 241, Kluwer Academic Publishers Group, Dordrecht, 1993. Representations and probability theory. MR1227095 (94j:22024)
[3] Kôsaku Yosida, Functional analysis, 6th ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 123, Springer-Verlag, Berlin-New York, 1980. MR 617913 (82i:46002)

Centro Vito Volterra, Università di Roma Tor Vergata, via Columbia 2, 00133 Roma, Italy

E-mail address: accardi@volterra.mat.uniroma2.it
Centro Vito Volterra, Università di Roma Tor Vergata, via Columbia 2, 00133 Roma, Italy

E-mail address: andreasboukas@yahoo.com

[^0]: Received by the editors November 15, 2013 and, in revised form, May 62014.
 2010 Mathematics Subject Classification. Primary 60B15, 81R05.
 Key words and phrases. Bochner's theorem, vacuum characteristic function, Fock space, quantum random variable, multi-dimensional Heisenberg algebra.

 This work is supported by the RSF grant 14-11-00687, Steklov Mathematical Institute.

