
            

PAPER • OPEN ACCESS

Fourier transform spectroscopy of a spin–orbit
coupled Bose gas
To cite this article: A Valdés-Curiel et al 2017 New J. Phys. 19 033025

 

View the article online for updates and enhancements.

You may also like

The Fulde–Ferrell–Larkin–Ovchinnikov
state for ultracold fermions in lattice and
harmonic potentials: a review
Jami J Kinnunen, Jildou E Baarsma, Jani-
Petri Martikainen et al.

-

Fractional quantum Hall states of a Bose
gas with a spin–orbit coupling
T Graß, B Juliá-Díaz, M Burrello et al.

-

Three-dimensional spin–orbit coupled
Fermi gases: Fulde–Ferrell pairing,
Majorana fermions, Weyl fermions, and
gapless topological superfluidity
Xia-Ji Liu, Hui Hu and Han Pu

-

This content was downloaded from IP address 106.51.226.7 on 27/08/2022 at 13:21

https://doi.org/10.1088/1367-2630/aa6279
https://google.iopscience.iop.org/article/10.1088/1361-6633/aaa4ad
https://google.iopscience.iop.org/article/10.1088/1361-6633/aaa4ad
https://google.iopscience.iop.org/article/10.1088/1361-6633/aaa4ad
https://google.iopscience.iop.org/article/10.1088/0953-4075/46/13/134006
https://google.iopscience.iop.org/article/10.1088/0953-4075/46/13/134006
https://google.iopscience.iop.org/article/10.1088/1674-1056/24/5/050502
https://google.iopscience.iop.org/article/10.1088/1674-1056/24/5/050502
https://google.iopscience.iop.org/article/10.1088/1674-1056/24/5/050502
https://google.iopscience.iop.org/article/10.1088/1674-1056/24/5/050502


New J. Phys. 19 (2017) 033025 https://doi.org/10.1088/1367-2630/aa6279

PAPER

Fourier transform spectroscopy of a spin–orbit coupled Bose gas

AValdés-Curiel, DTrypogeorgos, E EMarshall and I B Spielman1

JointQuantum Institute, University ofMaryland andNational Institute of Standards andTechnology, College Park,MD20742,United
States of America
1 Author towhomany correspondence should be addressed.

E-mail: ian.spielman@nist.gov

Keywords: spectroscopy, spin–orbit coupling, Bose–Einstein condensates

Abstract

Wedescribe a Fourier transform spectroscopy technique for directlymeasuringband structures, and apply
it to a spin-1 spin–orbit coupledBose–Einstein condensate. In our technique,we suddenly change the
Hamiltonianof the systemby adding a spin–orbit coupling interaction andmeasurepopulations in
different spin states during the subsequent unitary evolution.We then reconstruct the spin and
momentumresolved spectrum fromthepeak frequencies of the Fourier transformedpopulations. In
addition, byperiodicallymodulating theHamiltonian,we tune the spin–orbit coupling strength anduse
our spectroscopy technique toprobe the resultingdispersion relation.The frequency resolutionof our
method is limitedonly by the coherent evolution timescale of theHamiltonian andcanotherwise be
applied to any system, for example, tomeasure theband structureof atoms inoptical lattice potentials.

Introduction

Cold-atomsystemsoffer thepossibility of engineering single-particle dispersions that are analogs to those present in
condensedmatter systems, thereby creating exotic atomic ‘materials’, with interaction-dominatedor topologically
non-trivial band structures [1, 2]. Theproperties of suchmaterials dependon their underlyingband structure, and a
multitudeof techniques have beendeveloped formeasuring the single particle dispersion relation.Wepresent a
Fourier transform technique that employs the connectionbetween the energy spectrumof a systemand its dynamics.
This connectionhas been exploited to study the spectrumofboth condensedmatter [3] and cold atomsystems [4, 5]
alike.We implemented aFourier transformspectroscopy technique and applied it to spin–orbit coupled (SOC)

Bose–Einstein condensates (BECs) to obtain their dispersion relation.
Spin–orbit coupling, naturally present in two-dimensional electron systems subject to an electric field

perpendicular to the plane, is a necessary ingredient for phenomena such as the spin quantumHall effect, and
plays an important role in topologicalmaterials [6, 7].We engineered aHamiltonian that has equal
contributions of Rashba andDresselhaus SOC [8], in an ultra-cold atomic systemby coupling the internal
degrees of freedomof Rb87 atoms using two laser fields [9]. Thefields change the spin state while imparting
momentum to the system via two-photonRaman transitions [10, 11]. The SOC term in theHamiltonian can be
made tunable by adding a periodic amplitudemodulation in the Raman field [12].

Unlike the previous techniques used tomeasure the SOCdispersion in atomic systems [13], ours relies only
on the unitary evolution of an initial state suddenly subjected to a SOCHamiltonian andmeasuring occupation
probabilities in a basis that does not diagonalize theHamiltonian. In general, the initial state is not an eigenstate
of the SOCHamiltonian and undergoes unitary evolution. The spectral components of this time evolution are
given by their relative energies, and using this time-domain evolution as a spectroscopic tool is useful for
studying the energy spectrumofmore complex time-dependent periodically driven systems [12, 14, 15], which
arewell suited for engineering and tuningHamiltonians.

This article is organized as follows. First we give a general description of the Fourier transform spectroscopy
technique.We then describe the experimental procedure used to generate the spin–orbit coupling interaction in
87RbBECs and apply the Fourier spectroscopy technique. Lastly we show the relative energies of our system and
recover the SOC spectrumusing the effectivemass of the ground state.
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Operating principle of Fourier spectroscopy

We focus on a systemwherewe canmeasure the occupation probabilities of a set of orthonormal states iy ñ{∣ }

that fully span the accessibleHilbert space of the system.We then consider the time evolution of an arbitrary
initial state ai i i0 yY ñ = å ñ∣ ∣ as governed by aHamiltonian H i¢ Wˆ ({ }) and observe the occupation probabilities of

the iy ñ{∣ } states of themeasurement basis as a function of time.When H ¢ˆ is applied, the evolution of the initial

state is t a c ei j i i j
E t

j, ,
i j  yY ñ = å ¢ñ- ¢

∣ ( ) ∣ , where Ej¢ and jy¢ñ∣ are the eigenenergies and eigenstates of H ¢ˆ , and

c ti j i j, y y= á ¢ñ( ) ∣ . The probability

P t t a c c e 1k k

i j

i i j j k
E t2

,

, ,
i

2

j* åy= á Y ñ = - ¢
( ) ∣ ∣ ( ) ∣ ( )

offinding the system in a state ky ñ∣ of themeasurement basis can be expressed as a sumof oscillatory
components, with amplitude given by themagnitude of the overlap integrals

P t a c c c c f t1 2 cos 2 , 2k

i j l

i i j j k i j k k jj
,

, , , ,å p= +
¹

¢ ¢ ¢( ) ∣ ∣ ( ) ( )

where f E E hjj j j= ¢ - ¢¢ ¢( ) is the frequency associatedwith the energy difference of two eigenstates of the
Hamiltonian. Fourier spectroscopy relies onmeasuring the occupation probabilities of each state in the
measurement basis as a function of time, and extracting the different frequency components f jj¢ directly by
computing the discrete Fourier transform. The bandwidth and frequency resolution of themeasurement are
determined by the total sampling time and the number of samples. ForN samples separated by a time interval

tD , the highest resolved frequencywill be f t1 2bw = D , with resolution f tN1D = D . This resolution can be
decreased if the Fourier transform is calculated using certain types of windowing functions that enhance signal
to noise. Any higher frequency f fbw> will be aliased andmeasured in the Fourier spectrum as
f f m talias = - D∣ ∣, wherem is an integer. If interactions are present in the system, the dynamics getmodified
in a time scale given by themagnitude of the interactions, giving an additional constraint to the smallest
frequency components that can be resolvedwith our technique.

Figure 1 illustrates the principle of Fourier spectroscopy for a three level system, initially prepared in the
state 0 2yY ñ = ñ∣ ∣ , subject to theHamiltonian
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wherewemeasure the occupation probability as a function of time for each of the , ,1 2 3y y yñ ñ ñ{∣ ∣ ∣ } states. The
three eigenenergies E hfi i

¢ = are displayed infigure 1(a). The three energy differences hfjj¢ between the levels
determine the oscillation frequencies of the occupation probabilities, as can be seen infigure 1(b). Finally, a plot
of the power spectral density (PSD) infigure 1(c) shows three peaks at frequencies corresponding to the three
relative energies of H ¢ˆ .

Figure 1. (a)Eigenenergies of a three-level systemdescribed by H , ,1 2 3¢ W W Wˆ ( ). (b)The system is prepared in 2y ñ∣ and subjected to H ¢ˆ

at time ti. The three panels show the occupation probabilities of the states 1y ñ∣ (blue), 2y ñ∣ (black), and 3y ñ∣ (red) in themeasurement
basis, for evolution times up to tf. (c)Power spectral density of the occupation probabilities from (b). The three peaks in the Fourier
spectra correspond to the energy differences present in (a).
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Experiment

Webegin our experiments with a 87RbBEC [16] containing about 4 104´ atoms in the S52
1 2 electronic

ground state, and in the f m1, 1f= = - ñ∣ hyperfine state. The BEC is confined in a crossed optical dipole trap
formed by two1064 nm beams propagating along e ex y+ and e ey x- , which give trapping frequencies

, , 2 42 3 , 34 2 , 133 3 Hzx y zw w w p =( ) ( ( ) ( ) ( ))
2.We break the degeneracy of the threemFmagnetic sub-levels by

applying a 1.9893 3( )mTbiasfield along ez that produces a 2 14.000 2 MHzZw p = ( ) Zeeman splitting, and a
quadratic Zeeman shift ò that shifts the energy of f m1, 0F= = ñ∣ by h 28.45 kHz- ´ .We adiabatically
transfer our BEC into f m1, 0F= = ñ∣ by slowly ramping the biasfield, from B 1.9522 3i = ( )mT to
B 1.9893 3f = ( )mT in 50 mswhile applying a 14 MHz radio-frequencymagnetic fieldwith approximately
20 kHz coupling strength that was ramped on 50ms before the biasfield.We then apply a pair of 250 sm
microwave pulses that each transfer a small fraction of atoms into the 5 S2

1 2 f=2manifold thatwe use to
monitor and stabilize the biasfield [17]. Themicrowave pulses are detuned by 2 kHz from the
f m f m1, 0 2, 1F F= = ñ « = = ñ∣ ∣ transition and spaced in time by 33 ms (two periods of 60 Hz).We
imaged the transferred atoms following each pulse using absorption imaging3, and count the total number of
atoms n1 and n2 transferred by each pulse. The imbalance in these atomnumbers n n n n1 2 1 2- +( ) ( ) leads to a
4 kHz wide error signal that we use both tomonitor themagnetic field before each spectroscopymeasurement
and cancel longtermdrifts in the field.

We induce spin–orbit coupling using a pair of intersecting, cross polarized ‘Raman’ laser beams propagating
along e ex y+ and e ex y- + , as shown infigures 2(a) and (b). This beams have angular frequency A Lw w d= +
and B ZLw w w= + , where 2d is the, experimentally controllable, detuning from four photon resonance
between m 1F = - and m 1F = + . The geometry andwavelength of the Raman fields determine the natural units
of the system: the single photon recoilmomentum k 2L Rp l= and its associated recoil energy
E k m2L

2
L
2= , as well as the direction of the recoilmomentum kk exL L= . The Ramanwavelength is

790.032 nmRl = , so that the scalar light shift is zero.
Our system iswell described by theHamiltonian including atom–light interaction alongwith the kinetic

contribution

H
q

m
q F E F E F F

2
4 4 , 4x

x z x z zSOC

2 2

L R L
2

 a d= + + + W + - - +ˆ ˆ ˆ ˆ ( )( ˆ ˆ) ˆ ( )

where q is the quasimomentum, Fx y z, ,
ˆ are the spin-1 angularmomentummatrices, k m2

La = is the SOC
strength, and RW is the Raman coupling strength, proportional to the Raman laser intensity. The Raman field
couples m q q0,F x= = ñ∣ to m q q k1, 2F x L=  = ñ∣ , generating a spin change of m 1FD =  and imparting

a k2 L momentum. The eigenstates of HSOC
ˆ are linear combinations of these states and m q q0,F x= = ñ∣ , and

the set m q,F ñ{∣ }constitutes themeasurement basis for the Fourier transform spectroscopy.

Figure 2. (a) Setup. A biasmagnetic field B ez0 , withB0= 1.9893mT splits the hyperfine energy levels of the f=1manifold of 87Rb by
2 14 MHzZw p = . A pair of cross polarized Raman beams propagating along e ex y+ and e ex y- + couple the atoms’momentum

and spin states. (b)TheRaman frequencies are set to A Lw w d= + and B ZLw w w= + .We add frequency sidebands to Bw , separated
by dw . The amplitudemodulation from the interference between themultiple frequency components results in tunable SOC. (c)
SOCdispersion for Raman coupling strength E120 LW = and 0W = , on four photon resonance.

2
All uncertainties herein represent the uncorrelated combination of statistical and systematic errors.

3
Wedid not apply repump light during this imaging, so the untransferred atoms in the f=1manifoldwere largely undisturbed by the

imaging process.
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Figure 2(c) shows a typical band structureof our spin-1SOCsystemas a functionof quasimomentumfor a large
andnegativequadraticZeeman shift E4 L- > . In this parameter regime the ground state bandhas anearly harmonic
dispersionwith aneffectivemassm E k xd dx

2 2 2 1* = -[ ( ) ] , only slightly different fromthat of a free atom.
We engineer a highly tunable dispersion relation inwhichwe can independently control the size of the gap at

qx= 0 aswell as the SOC strengthα by adding frequency sidebands to one of the Raman beams. The state of the
system can change from m q q k1, 2F x L= - = + ñ∣ to m q q k1, 2F x L= = - ñ∣ by absorbing a red detuned
photonfirst followed by a blue detuned photon and vice versa, in a similar way to theMølmer–Sørensen
entangling gate in trapped ion systems [18]. The interference of themultiple frequency components leads to an
amplitudemodulated Raman field giving an effective FloquetHamiltonianwith tunable SOC [12].Whenwe set
the angular frequencies of the sidebands to A Zw w w dw= +  , theHamiltonian in equation (4) acquires a
time-dependent coupling t tcosR 0 dwW = W + W( ) ( ). This periodically driven system iswell described by
Floquet theory [19], andwe calculate the spectrumof Floquet quasi-energies that are grouped intomanifolds
separated in energy by integermultiples of dw as shown infigure 3.We define an effective, time-independent
Hamiltonian HFl

ˆ that describes the evolution of the system sampled stroboscopically at an integer number of

driving periods, with the time evolution operatorU t t T, e TH
0 0

i Fl+ = -ˆ ( )
ˆ . For E12 L dw > +∣ ∣ and

q k2x L∣ ∣ so that quasi-energymanifolds are well separated as infigure 3(a), the FloquetHamiltonian retains
the formof equation (4)with renormalized coefficients and an additional coupling term:

H H q F, , , , , 5xzFl SOC 0 a d= W + Wˆ ˆ ( ˜ ˜ ˜ ) ˜ ˆ ( )

where J0a dw a= W˜ ( ) , E J1 4 4 2 1L 0 dwW = + W -˜ ( )[ ( ) ], J0d dw d= W˜ ( ) , and E1 4 4 L = - -˜ ( )

E J1 4 4 3 2L 0 dw+ W( ) ( ). J0 is the the zero order Bessel function of thefirst kind, and Fxz
ˆ is the 4l̂ Gell-Mann

matrix that directly couples m q q k1, 2f x L= - = + ñ∣ and m q q k1, 2f x L= + = - ñ∣ states. The experimen-
tally tunable parameters dw,Ω and 0W can be used to tune the SOCdispersion.

We use Fourier transform spectroscopy tomeasure the spectrumof the SOCHamiltonian (equation (5)) for
three coupling regimes: (i) 00W ¹ and 0W = , (ii) 00W = and 0W ¹ and (iii) 00W ¹ and 0W ¹ .We turned
on the Raman laser non-adiabatically, in approximately 1 sm .We let the system evolve subject to HSOC

ˆ for up to
s900 m , and then turn off the laser while releasing the atoms from the optical dipole trap.We can resolve

individual spin components by applying a spin-dependent ‘Stern–Gerlach’ force using amagnetic field gradient.
We then image the atoms using absorption imaging after a 21 ms time offlight. Our images reveal the atoms’
spin andmomentumdistribution, allowing us tomeasure the fraction of atoms in each state of themeasurement
basis, and thereby obtain the occupation probability. The density of sampling points and themaximum
evolution time are chosen so that the bandwidth of the Fourier transform is comparable to, or larger than, the
highest frequency in the evolution of the systemwhilemaximizing resolution. Experimental decoherence, which
arises frommagnetic field noise and smallmagnetic field gradients present in our aparatus, is an additional
constraint that becomes significant around 1ms.

In order tomap the full spin andmomentumdependent band structure of HSOC
ˆ , wemeasure the time

dependent occupation probabilities at afixedRaman coupling strength and different values of Raman detuning

Figure 3. (a)Floquet quasi-energies of a three levelHamiltonianwith SOCand timeperiodic coupling strength. The quasi-energies are
grouped intomanifolds consisting of three levels that get repeatedwith a periodicity equal to dw. (b)Energydifferences of the Floquet
quasi-energies. Each color represents the energydifference, separated by afixednumberof neighboring levels.When the numberof
neighboring levels is amultiple of 3, the energydifferences are straight lines, a result of the periodic structure of the Floquetmanifolds.

4
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δ, for the same initial state m q0, 0F x= = ñ∣ . FortheHamiltonian HSOC
ˆ , momentum and detuning are

equivalent up to a numerical factor, E q k4 xL Ld = , since the detuning term Fzd ˆ and themomentum term

q Fx za ˆ ˆ have the same effect in the relative energies. This relation follows from theDoppler shift of the light
frequency experienced by atomsmoving relative to a light source: a stationary BEC in the laboratory reference
frame dressed by a detuned laser field is equivalent to amoving BEC and a resonant laser field.

We control the frequency and the detuning of the Raman beams using two acousto-opticmodulators, one of
which is driven by up to three phase coherent frequencies. For each of the three coupling cases that wemeasured,
we applied theRaman beams at detuning valueswithin the interval E12 L which corresponds to
quasimomentumvalues k3 L .

Effectivemass

We recover the full spectrumof the system, rather than the relative energies, bymeasuring the effectivemass of
the nearly quadratic ground state of the dispersion, giving us an energy reference that we then use to shift the
measured frequencies in the PSD.Wemeasure the effectivemass of the Raman dressed atoms by adiabatically
preparing the BEC in the lowest eigenstate and inducing dipole oscillations. The effectivemass of the dressed
atoms is related to the baremassm and the bare and dressed trapping frequenciesω and *w by the ratio
m m 2* *w w= ( ) .Wemeasured this ratio following [20]; we start in the m k0, 0F x= = ñ∣ state and
adiabatically turn on theRaman laser in 10 ms while also ramping the detuning to E0.5 Ld » , shifting the
minima in the ground state energy away from zero quasi-momentum.We then suddenly bring the field back to
resonance, exciting the BEC’s dipolemode in the optical dipole trap.Wemeasured the bare state frequency by
using the Raman beams to initially inducemotion but subsequently turn themoff in1 ms and let the BEC
oscillate. For this set ofmeasurements, we adjusted our optical dipole trap to give new trapping frequencies

, , 2 35.6 4 , 32.2 3 , 133 3 Hzx y zw w w p =( ) ( ( ) ( ) ( )) , nominally symmetric in the plane defined by ex and ey. The
Raman beams co-propagate with the optical dipole trap beams; therefore, the primary axes of the dipole trap
frequencies are at a 45◦ angle with respect to the direction of kL.

Figure 4 shows the dipole oscillations along the ex and ey directions for the three different coupling regimes
we explored, as well as the bare statemotion. The resultingmass ratios for the three coupling regimes are
m m*= (i) 1.04 8( ), (ii) 0.71 7( ), and (iii) 0.62 4( ).

Measured dispersion

Wemapped the band structure of SOC atoms for three different coupling regimes. Figure 5(a) shows
representative traces of themeasured occupation probabilities for short evolution times alongwith fits to the
unitary evolution given by HSOC

ˆ with δ, 0W , andΩ as free parameters. Thefit parameters agree well with
independentmicrowave andRaman power calibrations. In the lower two panels, where the Raman coupling
strength is periodicallymodulated, the occupation probabilities oscillate withmore than three frequencies since
the full description of the system is given by the Floquet quasi-energy spectrum. Figures 5(b), (c) shows the
occupation probabilities for the parameter regime (iii) for longer evolution times alongwith the PSDof the
occupation probability of each spin state.

Figure 4.Oscillation of the BEC in the dipole trap along the recoil directions ex and ey for (top) bare atoms, and the three parameter
regimes that we explored (i)–(iii).

5

New J. Phys. 19 (2017) 033025 AValdés-Curiel et al



Weuse a non-uniform fast Fourier transform algorithmon a squarewindow to obtain the PSDof the

occupation probability since our data points are not always evenly spaced because of imperfect imaging shots.

The heights of the peaks in the PSD are related to themagnitude of the overlap integrals between the initial state

and theRaman dressed states. Figure 5(c) shows the rawPSDof the time evolution of the systemunder HSOC
ˆ for

a given Raman coupling strength and detuning.We put together all the PSDs for the three coupling regimes in

the spectra shown on the top three panels infigure 6. Each column corresponds to a different coupling regime

and the colors represent the different spin states of themeasurement basis. The spectra show that some overlap

integrals vanish near 0d = , which ismanifested asmissing peaks in the PSD. The periodic structure of the

Floquet quasi-energy spectrum gives rise to peaks at constant frequencies of dw and 2dw independently of the
Raman detuning, and a structure that is symmetric about the frequencies f2 21p dw= and f2 2p dw= .

We obtain the characteristic dispersion of a SOC system after adding a quadratic term to the PSD,

proportional to themeasured effectivemass, and after rescaling the detuning into recoilmomentumunits.We

combine the PSDof the time evolution of the three mFñ∣ states to look at the spin dependence of the spectra.

Figure 6 shows themeasured spectra as well as the Floquet quasi-energies calculated for theHamiltonian

parameters obtained fromour calibrations. The spectral lines that can be resolvedwith our technique depend on

the overlap integrals of the initial state with the targetHamiltonian eigenstates. Additional energies can be

measured by repeating the experiment with different initial states. The spectral lines wewere able to resolve are

in good agreementwith the calculated energies of theHamiltonian.

Figure 5. (a)Occupation probability for the three states in themeasurement basis m q q k1, 2f x L= - = + ñ∣ (blue),

m q q0,f x= = ñ∣ (black), and m q q k1, 2f x L= + = - ñ∣ (red), following unitary evolution under HSOC
ˆ for times up to 100 sm at

different spin–orbit coupling regimes: (i) E9.90 LW = , 04W = , E5.8 Ld = , (ii) 00W = , E8.6 LW = , E0.7 Ld = - , E12 Ldw = + ,
and (iii) E1.50 LW = , E8.4 LW = , E4.7 Ld = - , E17 Ldw = + . (b)Occupation probability for long pulsing up to 800μs for
parameters as in (iii). (c)Power spectral density of the occupation probability.We subtract themean value of each probability before
taking the Fourier transform to remove peaks at f=0. The peaks in the PSD then correspond to the relative eigenenergies of HSOC

ˆ .
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Conclusion

Wemeasured the spin andmomentumdependent dispersion relationof a spin-1 SOCBECusing aFourier

transform spectroscopy technique alongwith ameasured effectivemass of the ground state.We studied aperiodically

driven SOCsystemand founda richFloquet quasi-energy spectrum.Ourmethod canbe applied generically to any

systemwith long enough coherent evolution to resolve the energy scales of interest, and couldproveparticularly

useful to study systemswhere it is harder topredict or compute the exact energies, such as cold atomrealizations of

Figure 6. (a)Power spectral density of the time dependent occupation probability for each state in themeasurement basis for three
coupling regimes: (left) E9.90 LW = , 0W = , (center) 00W = , E8.6 LW = , E12 Ldw = - + , and (right) E4.90 LW = , E8.4 LW = ,

E17 Ldw = - + . Each panel is normalized to peak amplitude to highlight small amplitude features in the PSDof the periodically
driven SOC, and the highest value on the frequency axis corresponds to the FFT bandwidth. (b) Spin-dependent SOCdispersion for
three different coupling regimes.We combine the PSDof the occupation probability of the states m q k1, 2F x L=  = ñ∣ , and shift
each frequency by an amount proportional to the squared quasimomentum and the effectivemass. The dashed lines are the calculated
Floquet energies for theHamiltonian using our calibration parameters.
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disorderedorhighly correlated systems [21].Moreover, this technique canbe extendedwith theuse of spectograms to
study timedependent spectra, such as that of systemswithquench-inducedphase transitions.
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AppendixA. Recovering the SOCdispersion from the PSD

In this sectionwedescribehowweobtain a trapping frequency along an axis that is not defined the trap’s principal
axes andhowweuse it to shift thePSD toobtain the absolute SOCspectrum froma spectrumof relative energies.

The kinetic and potential terms in theHamiltonian including the contribution of the Raman and optical
dipole trap are

H
q

m

q

m

m
x y

m
k

m
k

m
x y xy

2 2 2

2

1

2 4
2 , 6

x y
x y

x y x y x y

2 2 2 2

2 2 2 2

2
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 



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= + + ¢ + ¢ ¢
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^ ¢

¢ ¢ ¢ ¢

ˆ [ ]

[( )( ) ( )] ( )

wherewe have used x x y 2¢ = +( ) and y x y 2¢ = -( ) to rotate the dipole trap coordinates by 45◦. For
an axially symmetric trapwith x yw w=¢ ¢, the frequency of oscillation along theRaman recoil direction is

Figure A1. (a)Floquet quasi-energy spectrumof a SOCHamiltonianwithperiodic coupling strength.The red line represents the eigenstate
that has the largest overlapwith the initial m 0F = ñ∣ state. The arrows indicate the energies of the states that havenon-zerooverlapwith the
initial state and canbemeasuredwithFourier transform spectroscopy. (b)PSDof theoccupationprobability andnumerically calculated
energydifferences between the levels indicatedby the arrowsonpanel (a). (c)PSDshiftedby aquadratic term q m2

x
2 2

*- . The redbox
indicates the regionof interestwherewe can recover the SOCspectrum. (d)Weinvert the frequency axis and shift it by dw.
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m

m2
. 7x x y

2 2 2

*
w w w= +¢ ¢( ) ( )

Our trap has a small 3.4 Hz asymmetry and therefore we expect coupling betweenmotion along ex and ey

which becomesmore significant at larger effectivemasses. The sampling times for themeasurements shown in
equation (4) are small compared to the trap asymmetry and therefore we can locally approximate themotion of
the atoms by simple harmonic functionwith a frequency along ex given by equation (7).

FigureA1 illustrates indetail the steps thatwe take toobtain thedispersion for theperiodically driven SOCcases.
The red line inpanel (a) represents a levelwithin aFloquetmanifold that has the largest overlap integralwith the
initial m q0, 0F = = ñ∣ state. Thepeaks in thePSDcorrespond to energydifferences between themarked level and
the levels inneighboringFloquetmanifolds pointedby the colored arrows.We show the theoretically computed
energydifferences on topof themeasuredPSD inpanel (b). The lowest frequencydominant peaks of thePSD
correspond to energydifferenceswith the adjacent lowerFloquetmanifold.Toproperly recover the SOCdispersion
weneed to shift thePSDby anegative quadratic term q m2

x
2 2

*- aswe showonpanel (c).Wefinally invert the
frequency axis and shift it by dw. Including the effectivemass to reconstruct the spectrumof the time-independent
SOCcase, amounts to shifting thePSDby apositive quadratic term.

Appendix B. EffectiveHamiltonian

To get the effective FloquetHamiltonian HFl
ˆ from the time dependent SOCHamiltonian in equation (4), we

apply a transformationU tˆ ( ) such that the time evolution is given by the transformedHamiltonian

H t U t H t U t U t U ti t¢ = - ¶ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )
† †

.We choose the transformation

U t t Fexp i sin . 8x
dw

dw= -
W⎡

⎣⎢
⎤

⎦⎥
ˆ ( ) ( ) ˆ ( )

H t¢ˆ ( ) has terms proportional to tsin sindw dwW( ( )), tsin sin2 dw dwW( ( )), tcos sindw dwW( ( )) and
tcos sin2 dw dwW( ( ))whichwe simplify using the Jacobi–Anger expansion for large values of θ

z J z J z n J z

z J z n

cos sin 2 cos 2

sin sin 2 sin 2 1 0,

n

n

n

n

0

1

2 0

0

2 1

å

å

q q

q q

= + »

= + »

=

¥

=

¥

+

( ) ( ) ( ) ( ) ( )

( ) ( ) (( ) )

to obtain the effective time independentHamiltonian HFl
ˆ .
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