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ABSTRACT Fourier descriptors are classical global shape descriptors with high matching speed but low

accuracy. To obtain higher accuracy, a novel framework for forming Fourier descriptors is proposed and

named as MSFDGF (multiscale Fourier descriptor using group feature). MSFDGF achieves multiscale

description by generating coarser contours. Then, a group of complementary features are extracted on

the generated coarser contours. Finally, Fourier transform is performed on the features. MSFDGF-SH is

a new global descriptor using the MSFDGF framework and shape histograms. Experiments are conducted

on four databases, which are MPEG-7 CE-1 Part B, Swedish Plant Leaf, Kimia 99 and Expanded Articulated

Database, to evaluate the performance of MSFDGF-SH. The experimental results show that MSFDGF-SH

is an effective and efficient global shape descriptor. This new descriptor has a high accuracy of 87.76%,

which exceeds the Shape Tree on the MPEG-7 CE-1 Part B dataset. This is the first Fourier descriptor that

surpasses the Shape Tree method in terms of both accuracy and speed on this dataset.

INDEX TERMS Fast 2D shape retrieval, fast shape matching, MPEG-7 CE-1 Part B, shape descriptor.

I. INTRODUCTION

Shape is an important feature in plant leaf retrieval [1], trade-

mark retrieval [2] and object recognition in blurred images.

Shape descriptor is an important tool for extracting shape

features of objects in 2D images.

Although the researches on post-processing met-

hods [3]–[13] in the field of shape retrieval have been exten-

sive for years, many scholars are still working on design-

ing better shape descriptors because they can provide the

original dissimilarity/similarity between shapes, which is

the basis of shape matching. A ineffective shape descriptor

cannot obtain high accuracy in shape retrieval, no matter

how advanced a post-processing method is combined with.

Therefore, the study of shape descriptors has never stopped

The associate editor coordinating the review of this manuscript and
approving it for publication was Shenghong Li.

and a large number of excellent descriptors [14]–[34] have

been proposed.

These local descriptors, such as SC (shape context) [35],

IDSC (inner-distance shape context) [36], TAR (triangle-

area representation) [37] and Shape Tree [38], have achieved

highly accurate experimental results on the MPEG-7 CE-1

Part B shape database, but they all perform poorly in

terms of matching efficiency. The matching efficiency of

global descriptors MDM (multiscale distance matrix) [39],

FD (Fourier descriptor) [40] and WD (wavelet descrip-

tor) [41], is very high, but their performance in terms of

accuracy is poor. The shape descriptor AP&BAP (angular

pattern and binary angular pattern) [42] has thus been pro-

posed to achieve both matching accuracy and efficiency with

multiscale description and efficient distance metrics.

Inspired by AP&BAP, researchers then focus more on

designing gloabal descriptors that are efficient in the match-

ing process. However, the design of this type of descriptors
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is extremely difficult. Among new global descriptors only

HSC (hierarchical string cuts) [43] is at the same level of

discriminability as AP&BAP.

To this end, a novel framework for forming global Fourier

descriptors and a new descriptor based on this framework are

proposed in our study. Using the Fourier transform, we pro-

posed various approaches to improve the discriminability of

the global descriptor as much as possible. These approaches

include constructing multiple scales and improving structure

of the spatial signature. The performance of this descriptor on

accuracy and speed is as good as that of the excellent global

descriptors HSC [43] and AP&BAP [42]. It performs even

better than Shape Tree [38] on MPEG-7 CE-1 Part B in terms

of both accuracy and speed.

The rest of this paper is organized as follows: Section 2 dis-

cusses related work. In Section 3, the new framework and

descriptor are introduced in detail. In Section 4, the com-

putational complexity of the proposed method is estimated.

In Section 5, a number of well-known databases are used

to evaluate the performance of the new method, in terms of

effectiveness and efficiency. Finally, Section 6 concludes the

paper.

II. RELATED WORK

In the last fifteen years, shape representation methods based

on contour sampling points have developed much faster than

the area-based ones. Usually, a contour is a set of uniformly

sampled points on the outline of a shape. In this section, these

contour-based methods are discussed in detail.

A. LOCAL DESCRIPTORS

The describing process of most local descriptors is to calcu-

late a feature for each contour point or segment. This feature

is typically a vector or matrix. Ignoring the relative order

between features, a shape is described as a feature set. The

matching process of local descriptors is to find the best corre-

spondence between two sets of elements (features). The opti-

mization algorithm is used to find the optimal correspondence

between the two sets of elements, and thematching cost under

the optimal correspondence is the dissimilarity (distance)

between two shapes.

The SC [35] has been one of the most important descrip-

tors in the field of shape matching. It sets each point in

the contour as a reference point in turn, then calculates the

distance of other points relative to the reference point, and

builds a shape histogram (distance histogram) to describe

the corresponding reference point. Finally, N (the number

of contour sampling points) shape histograms are obtained.

These shape histograms are put together to form a set (SC fea-

ture), which describes the shape. The matching process of

two shapes is to compute the distance between their SC

features. Therefore, shape matching becomes matching of

two sets of shape histograms. The χ2 distance is used to

measure the difference between two histograms. Matching

two sets of shape histograms is to calculate the minimum

sum of χ2 distances between two sets of shape histograms.

Finally, the minimum sum (matching cost) is the dissimilarity

between two shapes. Dynamic programming [3] can be used

in the process to find the optimal correspondence between

two sets of shape histograms.

SC has an enhanced version IDSC [36], which performs

better than the original SC in representing articulated shapes.

The IDSC uses inner-distance instead of Euclidean distance

used in the original SC when describing the relationship

between two contour points. Inner-distance refers to the

shortest path connecting two points inside the shape. Another

major advantage of IDSC is its strong compatibility. Many

post-processing algorithms based on learning [3]–[9] use

IDSC to obtain the matching results between shapes as basis

of learning.

The SC and IDSC are two important local descriptors,

as they all achieve high retrieval rates on MPEG-7 CE-1

Part B and they are complementary to obtain higher retrieval

rates. The complementarity between IDSC and SC is

described in detail in [4]. However, SC and IDSC still have

shortcomings. In terms of practice, they run too slowly to

meet the practical requirements as they all use DP (dynamic

programming).

In [38], Felzenszwalb et al. describe a hierarchical rep-

resentation for shapes that captures shape information at

multiple levels of resolution. Usually this method is called

Shape Tree, and it achieves very high retrieval rate (87.70%)

on MPEG-7 CE1 Part B. This high retrieval rate had not

been surpassed by Fourier descriptors before our method was

proposed. Overall most local descriptors with DP perform

effectively in terms of accuracy. However, all of them have

high computational costs.

B. GLOBAL DESCRIPTORS

Generally, in a global descriptor, a shape is represented

by a feature vector (or matrix) extracted from the whole

contour, and matching is conducted by comparing such

representation vectors (or matrices) [42]. In the matching

process, a global descriptor is suitable for using efficient

distance metrics such as Euclidean distance and city block

distance.

FDs (Fourier descriptors) are classical global descriptors.

FD-CCD (Fourier descriptor based on centroid contour dis-

tance) [40] is taken as an example to introduce the character-

istics of such descriptors. The Euclidean distance from each

contour point to the centroid point is put into a sequence

in order. Then, Fourier transform is used on the Euclidean

distance sequence and the transformed result is the FD-CCD

feature. The dissimilarity is the city block distance between

two FD-CCD features belonging to two shapes respec-

tively. WDs (wavelet descriptors) [41], [44] are also global

descriptors, and they have similar effectiveness and efficiency

as FD-CCD.

MDM (multiscale distance matrix) [39], which captures

the shape geometry while being invariant to translation,

rotation, scaling, and bilateral symmetry, is an important

shape descriptor in global descriptors. It combined multiscale
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description and distance metrics to achieve high efficiency

and effectiveness in plant leaf retrieval. However, unfortu-

nately, MDM’s discriminability is limited, and its perfor-

mance on some important databases, such as the MPEG-7

CE-1 Part B, does not reach the level of local descriptors in

terms of accuracy.

In [42], Hu et al. propose two novel shape features,

AP (angular pattern) and BAP (binary angular pattern), and a

multiscale integration of them (AP&BAP) for shape match-

ing. AP&BAP is a much significant descriptor, which allows

many scholars to see the hope of the global descriptor in terms

of accuracy. The previous FD [40] and MDM [39] are still

inaccurate, relative to the local descriptors. Yet, AP&BAP

is both fast and accurate. The retrieval rate of AP&BAP

with χ2 distance (87.04%) even surpassed SC+DP (86.80%)

and IDSC+DP (85.40%) on MPEG-7 CE-1 Part B shape

database. In terms of speed, AP&BAP continues the advan-

tages of the global descriptor.

The HSC (hierarchical string cuts) [43] method is proposed

to partition a shape into multiple level curve segments of

different lengths from a point moving around the contour to

describe the shape gradually and completely from the global

information to the finest details. HSC continues the great

breakthrough of global descriptors. In the experiments, it gets

a higher retrieval rate (87.31%) than AP&BAP (87.04%),

on the MPEG-7 CE-1 Part B shape database with a faster

speed.

Kaothanthong et al. [45] propose a shape signature named

DIR (distance interior ratio) that utilizes intersection pat-

tern of the distribution of line segments with the shape,

and a histogram alignment method for adjusting the inter-

val of the histogram according to the distance distribution.

DIR is a recent attempt at global descriptors. Its speed

is as fast as FD, which is faster than HSC. Its retrieval

rate is 10% higher than FD on MPEG-7 CE-1 Part B

shape database. However, it still does not reach the level

of AP&BAP and HSC in terms of discriminability. This

result shows how difficult it is to design an effective global

descriptor.

III. METHOD

A. GROUP FEATURE

Fourier transform is a commonly used technique in fast shape

matching. It usually transforms a spatial feature vector of a

shape into a sequence of coefficients in the frequency domain.

An element of the spatial feature vector is determined by its

corresponding contour point. These elements are arranged in

the same order as the contour points in the closed contour.

An obvious problem is that different starting point positions

in the closed contour will result in different spatial feature

vectors. In the Fourier transform, the operation of abandoning

phase information solves this problem (see Eq. (1)). This

special Fourier transform can get the starting point position

invariance, thus it avoids the computation process of finding

the best starting point. This is the reason why the Fourier

transform technique is widely used for fast shape matching.

f (k) =
1

N

∣

∣

∣

∣

∣

N−1
∑

i=0

vs(id )exp(
−j2π idk

N
)

∣

∣

∣

∣

∣

,

k = 0, 1, . . . ,N − 1 (1)

where vs is the spatial feature vector, N is the length of the

vector and f is the output frequency sequence.

With the uniqueness of transforming result of Eq. (1),

distance metric is used to measure the difference between

frequency coefficients sequences of two shapes. This match-

ing process has very low computational consumption. But

the discriminability of most previous Fourier descriptors is

not so effective. This is mainly because the previous Fourier

descriptors often rely on a single spatial feature, such as

FD-CCD (Fourier descriptor based on the centroid contour

distance) [40] and FD-FPD (Fourier descriptor based on the

furthest point distance) [46]. Therefore, it is a feasible method

to improve the discriminability of the Fourier descriptor that

more and better spatial features are used together in trans-

forming.

Such a combination of spatial features is called Group

Feature (GF), and the GF-based Fourier descriptor is named

as FDGF. For example, CCD and FPD can form a GF, which

is named GF-CCD&FPD. The experiments can prove that the

discriminability of FDGF-CCD&FPD is better than FD-CCD

and FD-FPD, but still can not reach the level of a local

descriptor (such as TAR [37]). In terms of discriminability,

in order to reach the level of local descriptors, it is necessary

to design an effective GF. The combination of CCD and FPD

is a simple GF containing two feature units. An ideal GF

should contain some feature units, which are highly comple-

mentary and lowly correlated. These feature units preferably

have the ability to describe any contour points in various

shapes. This is like the orthogonal basis in an Euclidean

space.

B. BIN VECTOR

Shape histogram can be used as a GF, although it always

appears in local descriptors [35], [36]. A histogram is rarely

used in FD, probably because scholars are accustomed to use

a single spatial feature vector. The histogram h
id
s describes the

distribution of the remaining points in the contour cd relative

to cd (id ).

hids (ib) = #{cd (jd ) : jd 6= id , cd (jd ) − cd (id ) ∈ bin(ib)},

id , jd = 1, 2, . . . ,N , ib = 1, 2, . . . ,B (2)

where h
id
s is the shape histogram of the id th contour point

cd (id ). h
id
s (ib) is the value of the bth bin in h

id
s . These

B bins uniformly divide the log-polar plane centered

on cd (id ). cd is a contour represented by a sampling points

sequence. cd (id ), id ∈ Z , is the id th point in the contour

cd that has N sampling points. Since the contour is closed,

cd (id ) = cd (id + N ). cd (id − 1) and cd (id + 1) are two

adjacent points of cd (id ) on the contour. Therefore, shape his-

togram is a set of feature units that describe a contour point.
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The feature units in this set are highly complementary and

lowly correlated. In other words, the shape histogram is an

excellent GF.

The Fourier descriptor based on the GF of shape his-

togram is called FDGF-SH. In the process of extracting the

FDGF-SH feature, a new feature Bin Vector (BV) is required

as Fourier transform cannot deal with N shape histograms

directly. v
ib
b (a BV) is a column vector generated by Eq. (3).

BV is the key that is used to transform a local feature to a

global feature.

v
ib
b (id ) = hids (ib), id = 1, 2, . . . ,N , ib = 1, 2, . . . ,B (3)

Setting v
ib
b as vs, f

ib is generated by Eq. (1). This Fourier

coefficient sequence is still a column vector, just like the

previous Fourier descriptor. Subsequently, f 1, f 2, . . . , f B are

used to form a feature matrix F .

F =
[

f 1, f 2, . . . , f B
]

(4)

Since the lower frequency components are more stable

than higher frequency ones in FDGF-SH, only a few low

frequency coefficients are used in the matching process with

weighted city block distance. The weighted city block dis-

tance between two contours C1 and C2 in the FDGF-SH

feature space are represented as D(C1,C2) in

D(C1,C2) =

B
∑

ib=1

K
∑

k=0

wk

∣

∣

∣
f
ib
C1
(k) − f

ib
C2
(k)

∣

∣

∣
(5)

where f
ib
C1

and f
ib
C2

are the f ib sequence ofC1 andC2. In Eq. (5)

K is far smaller than N . Usually, K < 3log2N .

FDGF-SH can surpass local descriptors easily in terms of

efficiency. However, in terms of accuracy, FDGF-SH may be

still not at the level of local descriptors. Therefore, FDGF-SH

should continue to be improved.

C. FEATURE ON A GENERATED COARSER CONTOUR

Human eyes sometimes automatically filter some local details

and preserve coarser features to reduce interference caused

by noises, when recognizing shapes. This approach can be

used in the design of shape descriptors. In our study, three

approaches for obtaining variable-level coarser contours are

proposed.

1) MEDIAN FILTERING TO A CONTOUR

Median filtering is used to generate the level t coarser con-

tour. It is characterized by a linear increase of filtering core

scale as t increases. The FDGF-SH feature on level t coarser

contour is represented as FDGF-SH-MFtC in this median

filtering approach. The level t coarser contour is generated

with

ctmf (i) =
1

t + 1
(

i+t
∑

i0=i

c0(i0)), i = 1, 2, . . . ,N ,

t = 0, 1, 2, . . . ,N − 1 (6)

FIGURE 1. ct
mf

and its corresponding shape when t = 0 or N/4. c0/c0
mf

are in the first row. c
N/4
mf

and its corresponding shape are in the second
row.

where the level 0 coarser contour c0 is the original con-

tour containing N sampling points. It can be seen that the

number of sampling points for the level t coarser con-

tour ctmf is still N . FDGF-SH-MFtC feature is extracted

from contour ctmf using FDGF-SH method. The weighted

city block distance is still used in the matching process of

FDGF-SH-MFtC. DMFtC (C1,C2) is the distance (dissimilar-

ity) in FDGF-SH-MFtC feature space between two shapesC1

and C2.

In practice, when t is large, for example t = N/4,

the adjacent points in ctmf may overlap each other. Even if

they don’t overlap, sampling points are excessive as shown

in Fig. 1. A large number of sampling points are used for

describing a very simple shape, and they are nonuniformly

distributed as shown in Fig. 1. It is not conducive to reduce

the computional cost of the large scale features in extracting

and matching processes. The advantage is that the variation

of coarser contours between adjacent levels is small, so there

are many levels to use. Enough levels makes it is easy to find

a tacit combination of levels for more effective description.

Theoretically, 0 ≤ t ≤ N − 1 and t ∈ Z . When t = 0, ctmf is

still c0. When t = N − 1, ctmf is only one point. The shapes

at different scales are shown in Fig. 2.

2) DOWNSAMPLING TO A CONTOUR

In this downsampling version N is required to be in the

power of 2. The number of points in the downsampled con-

tour decreases exponentially, as t increases. In this approach,

there are fewer (log2 N + 1) levels of coarser contours. The

level t coarser contour using downsampling approach is gen-

erated by

c
t,n0
ds (i) =

1

2t

i·2t+n0−1
∑

i0=(i−1)·2t+n0

c0(i0), t = 0, 1, 2, . . . , log2N ,

n0 = 1, 2, 3, . . . , 2t , i = 1, 2, . . . ,N/2t (7)
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FIGURE 2. The shapes of ct
mf

when N = 512 and t = 0, 4, 8, . . . , 116

respectively. The shapes in the first row are corresponding to c0, c4
mf

, c8
mf

,

c12
mf

and c16
mf

from left to right respectively. The shapes in the second row

are corresponding to c20
mf

, c24
mf

, c28
mf

, c32
mf

and c36
mf

in the same order as the

first row. Other rows are in the same rules as the first and second rows.

FIGURE 3. The shapes of c
1,1
ds

and c
1,2
ds

.

The physical meaning of Eq. (7) is to downsample 2t

points, which are consecutive from the ((i − 1) · 2t + n0)th

point in c0, to form a new point c
t,n0
ds (i). However, a new

problem has arisen. Though when t is small shapes of c
t,n0
ds

with different n0 are so similar (see Fig. 3), when t is larger,

the geometric features of the contour c
t,n0
ds are influenced by

what the variable n0 is.

When t = 6 and n0 = 4, 8, 12, . . . , 2t , the shapes of c
t,n0
ds

are shown in Fig. 4. It is clear that the difference between

them is large. The difference makes the FDGF feature of c
t,n0
ds

unstable. There is a solution for this problem. At first, each

c
t,n0
ds is computed out for n0 = 1, 2, 3, . . . , 2t respectively.

Then, the shape histograms of these contours are used to

calculate the average shape histogram h
id
s with

h
id
s (b) =

1

2t

2t
∑

n0=1

hid ,n0s (b) (8)

where h
id ,n0
s is the shape histogram of c

t,n0
ds (id ) in the contour

c
t,n0
ds . Finally, the FDGF-SH-DStC feature is calculated base

on the set of these average shape histograms. The weighted

city block distance is still used in the matching process. The

distance between two shapes C1 and C2 in the FDGF-SH-

DStC feature space is expressed as DDStC (C1,C2).

The number of contour sampling points at each level is

different from each other, the larger the t , the fewer the

contour sampling points. In addition, there are fewer levels

FIGURE 4. The shapes of c
6,n0
ds

when n0 = 4, 8, 12, . . . , 26 respectively.
These shapes are arranged in the same rule as in Fig. 2.

FIGURE 5. The shapes of c
t,n0
ds

when n0 = 1, N = 512 and
t = 0, 1, 2, . . . , 8 respectively. These shapes are arranged
in the same rule as in Fig. 2.

in this downsampling approach than in FSCtS-mf. The

above characteristics make the FSCtS-ds more favorable for

acceleration.

Theoretically, in downsampling approach, 0 ≤ t ≤ log2N

and t ∈ Z . When t = 0, c
t,n0
ds is still c0. When t = log2N − 1,

c
t,n0
ds is a line segment. When t = log2N , c

t,n0
ds is a point. c

t,n0
ds

at each level is shown in Fig. 5.

3) SPATIAL FILTERING TO A SHAPE

Inspired by [5], spatial filtering is also incorporated. Closing

operation, which is defined as a dilate operation followed by

an erosion operation using the same SE (structuring element),

is used to generate coarser contours, as it can reduce some

finer features and reserve coarser features of a shape. In this

spatial filtering approach, the FDGF-SH feature of the level t

coarser contour is represented as FDGF-SH-SFtC. To gener-

ate the level t coarser contour the original image is processed

by a SE of level t size. The ‘disk’ SE is used in this approach.

imt = im · set = (im⊕ set ) ⊖ set (9)
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FIGURE 6. The shapes of ct
sf

when t = 1, 2, 3, . . . , 30 respectively. The
size of SE at level t equals 4t . These shapes are arranged in the same rule
as in Fig. 2.

The level t coarser shape is extracted from imt . Then,

N sampling points are uniformly extracted from the contour

of the level t shape to form ctsf . The FDGF-SH-SFtC feature

is extracted from ctsf . The weighted city block distance is

still used in the matching process. The distance between two

shapes C1 and C2 in the FDGF-SH-SFtC feature space is

expressed as DSFtC (C1,C2). Different levels coarser shapes

are shown in Fig. 6.

D. MULTISCALE FOURIER DESCRIPTOR

FDGF-SH features on multiple generated coarser contours

can be used to generate the multiscale Fourier descriptor. It is

obvious that the higher the level, the coarser the feature, and

the lower the level, the finer the feature.

To achieve the goal of multiscale description, mul-

tiple FDGF-SH features are used together. FDGF-SH-

MFtC, FDGF-SH-DStC and FDGF-SH-SFtC features

are used to form multiscale features MSFDGF-SH-MF,

MSFDGF-SH-DS and MSFDGF-SH-SF respectively.

MSFDGF-SH-MF is used as an example to illustrate how

to integrate. The minimum distance (MD) and the sum

distance (SD) are two common approaches. In Eq. (10),

D
mf
m is the MD between the MSFDGF-SH-MF features of

two shapes.

Dmfm = min
t∈Sv

αtmDMFtC (10)

Since the range of the distance at each level of the coarser

contour is different from each other, αtm (αtm increases when

t increases) is used to normalize the distances. Sv is a set of

the used values of t , which denotes the level of the coarser

contour. Only a few levels are used in the matching process.

D
mf
s is the SD as shown in Eq. (11). Since the importance

of the distance at each level is different from each other,

αts (α
t
s decreases when t increases) is used to normalize the

distances.

Dmfs =
∑

t∈Sv

αtsDMFtC (11)

How to generate Sv is a problem. For consideration of

training speed, the Sequential Forward Selection method

in [42] is used in selecting the combination of scales Sv. First,

30% images in dataset are randomly selected as a training

subset. The single scale with the highest accuracy is set as

the starting point of the scale combination, and the remaining

scales are set as candidates. Nextly, each single candidate is

put into the combination by turn in order to find the best can-

didate, which makes the new combination obtain the highest

accuracy. Then, this best candidate is put into the combination

and removed from the candidates. This process of finding

best candidate is performed iteratively until no new scale is

put into the combination Sv, which means that integrating a

larger scale combination will damage the performance of the

descriptor in terms of accuracy.

When the MD metric approach is used with three descrip-

tors (MSFDGF-SH-MF+MD, MSFDGF-SH-DS+MD and

MSFDGF-SH-SF+MD), the αtm is computed by the Eq. (12).

αtm = (1 + difm · t)pwrm , t ≤ Tm, difm ≥ 0 (12)

where the Tm is the max level of the generated coarser con-

tour. In SD Eq. (13) is used. In MD difm ≥ 0, but in SD

difs ≤ 0 always.

αts = (1 + difs · t)pwrs , t ≤ Tm, difs ≥ −1/Tm (13)

In weighted city block distance wk (computed out by

Eq. (14)) decreases linearly as k increases in both MD

and SD.

wk = 0.008((K + 1)/2 − k) + 1, k ≤ K , (14)

MSFDGF is a framework to form a multiscale Fourier

descriptor. In this framework, many GFs can be used

and SH is just one of them. Three approaches in GCC

(generated coarser contour) are used to implement multi-

scale description. MSFDGF-SH-MF, MSFDGF-SH-DS and

MSFDGF-SH-SF are three descriptors using SH (shape his-

togram) base on the MSFDGF framework.

IV. COMPUTATIONAL COMPLEXITY

Eqs (15)-(16) are two commonly used formulas in this

section.

Sn =

n
∑

si=1

a1q
si−1 = a1 ·

1 − qn

1 − q
(15)

Sn =

n
∑

si=1

siq
si =q(1−qn)/(1−q)2−nqn+1/(1−q) (16)

The computational complexities of MSFDGF-SH

(MSFDGF-SH-MF, MSFDGF-SH-DS and MSFDGF-SH-

SF) are divided into several parts. To generated all lev-

els coarser contours, MSFDGF-SH-MF spends O(N 2),

MSFDGF-SH-DS spends O(N logN ) (see Eq. (17)) and

MSFDGF-SH-SF spendsO(nsN
2) where nsmeans howmany
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levels there are in MSFDGF-SH-SF.
log2N−2

∑

si=0

(N/2si · 2si ) =

log2N−2
∑

si=0

N = N (log2 N − 1) (17)

To extract shape histograms of all coarser contours,

MSFDGF-SH-MF spends O(N 3), MSFDGF-SH-DS spends

O(N 2) (see Eq. (18)) and MSFDGF-SH-SF spends O(nsN
2)

respectively, as the shape histograms of one contour cost

O(N 2) [36].

log2N−2
∑

si=0

((N/2si )2 · 2si ) =

log2N−2
∑

si=0

N 2/2si

= N 2

log2N−2
∑

si=0

(1/2)si

= N 2 ·
1 − (1/2)log2N−1

1 − 1/2

= 2N 2 − 4N (18)

On Fourier transform, MSFDGF-SH-MF spends

O(BN 2 logN ), MSFDGF-SH-DS spends O(BN logN )

computed by Eq. (19), and MSFDGF-SH-SF spends

O(nsBN logN ).

log2N−2
∑

si=0

B(N/2si )log2(N/2si )

= BN

log2N−2
∑

si=0

2−si (log2 N − si)

= BN log2 N

log2N−2
∑

si=0

2−si − BN

log2N−2
∑

si=0

2−sisi

= (2BN log2N − 4Blog2N ) − (2BN − 4Blog2N )

= 2BN (log2 N − 1) (19)

Then, in matching stage, MSFDGF-SH-MF spends

O(BN logN ), MSFDGF-SH-DS spends O(B(logN )2) (see

Eq. (20)), MSFDGF-SH-SF spends O(nsB logN ) when all

the scales are used. In fact, only a few scales are used in this

stage.

log2N−2
∑

si=0

Blog2(N/2si ) = B

log2N−2
∑

si=0

(log2N − si)

= B

log2N−2
∑

si=0

log2N − B

log2N−2
∑

si=0

si

= (B log22 N − Blog2N )

− (B log22 N − 3Blog2N + 2B)/2

= B(log22 N + log2N − 2)/2 (20)

The computational complexity in matching process plays

a decisive role in online large database retrieval [43], there-

fore the computational complexities of some state-of-the-

art descriptors in matching stage is used to compare with

MSFDGF-SH, as shown in Table 1.

TABLE 1. The computational complexities of some state-of-the-art
methods and MSFDGF-SH at the stage of dissimilarity measurement.

TABLE 2. The parameters of MSFDGF-SH-MF, MSFDGF-SH-DS and
MSFDGF-SH-SF when combined with MD and SD.

In Table 1, ns means how many levels are used in

MSFDGF-SH-SF and it is smaller than 7 in experiments.

B means how many bins in the shape histogram, and it is

smaller than N usually. Ba means how many bins in AP, and

it is 24 in [42]. Mb means how many bits the BAP festure

has at the largest scale. In the experiments in [42], Mb = 12.

In HSC Mh ≪ N , and Mh = 7 in the experiments in [43].

V. EXPERIMENTAL RESULTS

The MSFDGF-SH-MF, MSFDGF-SH-DS and MSFDGF-

SH-SF are evaluated in terms of both effectiveness and

efficiency. These evaluating databases include MPEG-7

CE1 Part B, Kimia 99 [47], Swedish Plant Leaf [48] and

Expanded Articulation Database [36]. All the algorithms are

written usingMatlab and run on a PCwith Intel(R) Core(TM)

i7-7700K 4.20 GHz CPU and 16 GB DDR4 RAM under

Windows 10. As the DP part in SC+DP and IDSC+DP

consumes large computation, it is implemented in C in order

to be comparable to global descriptors like AP&BAP [42],

HSC [43] and MSFDGF-SH.

N is always 512 in all the experiments. In MSFDGF-SH-

SF, to make one SE is suitable to all shapes, shapes are

normalized to have a convex hull’s area near 5000 [5]. The

size of SE is 5t at level t coarser contour.

In the experiment on each dataset, the SFS technique is

used to find a good combination of scales Sv. K = 23,

pwrm = 1, pwrs = 2, and the values of difm and difs
(as shown in the Table 2) are set emperically.

A. RESULTS ON MPEG-7 CE-1 PART B SHAPE DATABASE

MPEG-7 CE-1 Part B shape database [35], [36], [43] is

widely used in shape matching research. This database con-

tains 70 categories, each containing 20 different shapes,
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FIGURE 7. Some examples of MPEG-7 CE-1 Part B shape database.

so this database contains 1400 silhouette images. Two exam-

ples in each category are shown in Fig. 7.

The test method is called ‘‘Bull-eye test’’ [35], [36], [43].

In Bull-eye test, a shape in the database is set as a query in a

retrieval and matched with all the shapes in the database. The

correct (that is the query shape and the retrieved one belong

to the same category) matches of the top 40 most similar

(smallest dissimilarity) shapes are counted. The number of

correct matches divided by 20 is the score of a retrieval.

The retrieval rate of Bull-eye test is the average score of

all retrievals where each shape is set as the query in a

retrieval.

Matching time is used to test the performance of each

algorithm in terms of efficiency. Matching time refers to the

time it takes to match the feature of the query to features of

all shapes in the database.

In Table 3, it can be seen that MSFDGF-SH-SF+MD and

MSFDGF-SH-SF+SD get the highest retrieval rate (87.76%)

among all the descriptors including Shape Tree (87.70%)

[38], HSC (87.31%) [43], AP&BAP (87.03%) [42], SC+DP

(86.80%) [3], [36], IDSC+DP (85.40%) [36] and so on. It is

the first time that a Fourier descriptor performs better than

Shape Tree [38] in terms of accuracy onMPEG-7 CE-1 Part B

shape database.

In terms ofmatching time,MSFDGF-SH-SF+MD (21ms),

MSFDGF-SH-SF+SD (41ms), HSC (23ms) and AP&BAP

(85ms) consume less time as global descriptors than

IDSC+DP (3829ms) and SC+DP (4837ms) as local

descriptors.

The Precision-Recall curves of some descriptors are shown

in Fig. 8. For quantitative analysis, the area enclosed by the

curve and the coordinate axis is used to determine which the

best is. The Table 4 shows that MSFDGF-SH-SF+SD has the

biggest area 0.847558.

TABLE 3. The retrieval rates and matching time of some state-of-the-art
methods and MSFDGF-SH on MPEG-7 CE-1 Part B shape database.

TABLE 4. The area enclosed by the Precision-Recall curve and the
coordinate axis.

TABLE 5. The recognition rates of some state-of-the-art methods and
MSFDGF-SH on Swedish Plant Leaf database.

B. RESULTS ON SWEDISH PLANT LEAF DATABASE

The Swedish Plant Leaf database is a plant leaf database that

contains 15 categories, each of which containing 75 shapes.

Some examples of this database are shown in Fig. 9. This

database is often used to test the classification ability of

a shape descriptor. The test method in [36] is used to test

the classification ability of the MSFDGF-SH descriptor.

25 images randomly selected from each species are used

as models and the remaining images are used as testing

images [43].
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FIGURE 8. Precision-Recall curves of some state-of-the-art methods and MSFDGF-SH-SF on MPEG-7 CE-1 Part B shape database.

FIGURE 9. Some examples of Swedish Plant Leaf database.

Matching time is also used to evaluate the performance of

each algorithm in terms of efficiency. In the experiment of

recognition, matching time refers to the time it takes to match

the feature of a testing image to features of all model images.

In Table 5, it can be seen that MSFDGF-SH-DS+SD

(95.47%), MSFDGF-SH-DS+MD (95.47%), MSFDGF-

SH-MF+MD (95.20%), MSFDGF-SH-MF+SD (95.07%),

MSFDGF-SH-SF+MD(95.20%) andMSFDGF-SH-SF+SD

(94.80%) perform better than IDSC+DP (94.13%) [36],

TABLE 6. The retrieval results of some state-of-the-art methods and
MSFDGF-SH on Kimia 99 database.

FIGURE 10. All the shapes of Kimia 99 database.

IDSC−wFW (93.71%), MDM (93.60%) [39], ASD&CCD

(93.08%) [27] and SC+DP (88.12%) [35], [36]. HSC

(96.91%) [43] obtains the highest recognition rate. The

matching time of each algorithm goes on with the same trend

as in MPEG-7 CE-1 Part B, and global descriptors have

absolute advantages.
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TABLE 7. The retrieval results of some state-of-the-art methods and MSFDGF-SH on expanded articulated database.

FIGURE 11. All the shapes of expanded articulation database.

C. RESULTS ON KIMIA 99 DATABASE

The Kimia 99 [47] database is a common database. This

database contains 9 categories, each containing 11 shapes,

as shown in Fig. 10. In this experiment, each shape is set

as the query and matched to the remaining shapes. Then the

correct matches of the top 10 most similar shapes of each

query are counted. The post-processing algorithm LP (label

propagation) [3] on shape retrieval performs well on this

database when used in combination with IDSC+DP. In order

to be fair, all algorithms are combined with LP.

In Table 6, it can be seen that MSFDGF-SH-DS+MD+LP

(990), MSFDGF-SH-MF+MD+LP (990), MSFDGF-SH-

MF+SD+LP (990), MSFDGF-SH-SF+MD+LP (990) and

MSFDGF-SH-SF+SD+LP (990) all get the perfect sum

of the correct hits (990). MSFDGF-SH-DS+SD (989) per-

forms a little lower. MSFDGF-SH performs best among all

methods.

In terms of matching time, the approaches using

MSFDGF-SH (less than 1 ms), HSC (2.89 ms) and AP&BAP

(9.57 ms) consume less time as global descriptors than

IDSC+DP (392.05 ms) and SC+DP (592.73 ms) as local

descriptors.

D. RESULTS ON EXPANDED ARTICULATED DATABASE

The Articulated database [36] is a database to test the artic-

ulation insensitivity of shape descriptors. It contains 8 cat-

egories, each containing 5 shapes. The Tools database [51],

which has the same function, contains 7 categories, each

containing 5 shapes. In our study, these two databases are

merged into a new database Expanded Articulated Database.

Obviously, Expanded Articulated Database contains 15 cate-

gories, each containing 5 shapes (see Fig. 11).

The test method is as the same as that in the experi-

ment on Articulated Database in [36]. In this test method,

each shape is set as the query and matched with other

shapes in the database. Then the correct matches of the

top 4 most similar shapes of each query are counted. The

combination (IDSC) of SC and ID (inner-distance) [36]

performs well on Articulated Database. ID can also be

used in combination with MSFDGF-SH, so this database

is also used to test the compatibility of MSFDGF-SH

with ID.

In Table 7, it can be seen that MSFDGF-SH-DS+SD

gets the largest sum of the correct hits (271) among all the

methods includingMSFDGF-SH-DS+MD(267),MSFDGF-

SH-MF+MD (260), MSFDGF-SH-MF+SD (263),

MSFDGF-SH-SF+MD (241), MSFDGF-SH-SF+SD (247),

IDSC+DP (246) [36], IDSC−wFW (237) [49], SC+DP (92)

[3], [35], HSC (111) [43], AP&BAP (35) [42] and so on.

In terms of matching time, the approaches using

MSFDGF-SH (less than 2.5 ms), HSC (2.69 ms) and

AP&BAP (7.52 ms) consume less time as global descriptors

than IDSC+DP (308.56 ms) and SC+DP (467.21 ms) as

local descriptors.
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E. DISCUSSION

Three versions (MSFDGF-SH-MF, MSFDGF-SH-DS and

MSFDGF-SH-SF) of MSFDGF-SH all exceed the

classical IDSC+DP in terms of both effectiveness and effi-

ciency on MPEG-7 CE-1 Part B shape database. Surpris-

ingly, one version MSFDGF-SH-SF exceeds HSC, AP&BAP

and even Shape Tree. This is the first time that a Fourier

descriptor exceeds Shape Tree on this dataset in terms

of both accuracy and speed. MSFDGF-SH performs bet-

ter than IDSC+DP, SC+DP and AP&BAP on Swedish

Plant Leaf. The performance show that MSFDGF-SH have

strong robustness for different application scenarios. On other

datasets MSFDGF-SH also performs effectively, especially

On Kimia 99, on which all three versions of MSFDGF-SH

achieve the perfect performance. On Expanded Articu-

lated Database, all the 3 versions of MSFDGF-SH exceed

IDSC+DP, which is so good at dealing with articulated

shapes.

VI. CONCLUSION

AP&BAP [42] is a milestone for global shape descriptors.

Many researchers have attempted to design effective global

descriptors, however it is difficult to achieve both effective-

ness and efficiency. The MSFDGF frame and MSFDGF-SH

descriptor proposed in this article is a new attempt.

Our experiments show that MSFDGF is a flexible and

effective framework to form a global descriptor. The descrip-

tors usingMSFDGF, such asMSFDGF-SH, are both efficient

and effective.
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