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FOURIER TRANSFORMS AND INTEGER HOMOLOGY COBORDISM

MIKE MILLER EISMEIER

Abstract. We explore the Fourier transform of the d-invariants, which is particularly
well-behaved with respect to connected sum. As corollaries, we show that lens spaces are
cancellable in the monoid of 3-manifolds up to integer homology cobordism, and we recover
a theorem of González-Acuña–Short on Alexander polynomials of knots with reducible surg-
eries.
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1. Introduction

The relation of homology cobordism between 3-manifolds has a long and interesting his-
tory. Fix a ring R. Let Y and Y ′ be closed oriented 3-manifolds, and supposeW is a compact
oriented 4-manifold whose boundary ∂W is oriented diffeomorphic to Y ′ − Y . If both maps

i∗ : H∗(Y ;R)→ H∗(W ;R)

i′∗ : H∗(Y
′;R)→ H∗(W ;R)

are isomorphisms, we say that W is an R-homology cobordism and that Y and Y ′ are
R-homology cobordant.

This relation is most well-studied when H∗(Y ;R) ∼= H∗(S
3;R), in which case Y is called

an R-homology sphere. The set of R-homology spheres modulo R-homology cobordism form
a group Θ3

R called the ‘R-homology cobordism group’. The group operation is connected
sum, the neutral element is [S3], and the inverse of [Y ] is [−Y ].

If one instead considers the set of all 3-manifolds modulo R-homology cobordism, the

resulting object is a monoid, which we denote by Θ̂3
R; the R-homology cobordism group

is the sub-monoid of invertible elements.1 Some things are known about this monoid; for

1If H1(Y ;R) is nonzero, then Y is not invertible in Θ̂3

R; the purported inverse Y ′ should support an
R-homology cobordism between Y#Y ′ and S3, but |H1(Y#Y ′;R)| ≥ |H1(Y ;R)| > 1 = |H1(S

3;R)|.
1
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instance, every equivalence class contains an irreducible 3-manifold [Liv81] or better yet a
hyperbolic 3-manifold [Mye83]. In another direction, there are obstructions to finding a
Seifert-fibered manifold in a given equivalence class [CT14] or more generally to finding a
graph manifold whose graph is a tree in a given equivalence class [DH17].2

In this note, we will investigate integer homology cobordism between a class of 3-manifolds
which are not integer homology spheres. In what follows, we suppress the ring R = Z from
notation, and write integer homology and cohomology groups as H∗(Y ) and H

∗(Y ).

Theorem 1. Suppose L and L′ are connected sums of lens spaces. If L and L′ are integer
homology cobordant by a cobordism W , then L is oriented diffeomorphic to L′, and the
induced map W∗ : H1(L)→ H1(L

′) respects the natural direct sum decompositions.3

Further, if Y is any closed, oriented 3-manifold and L#Y is integer homology cobordant
to L′#Y , then L is oriented diffeomorphic to L′.

The first part of the result, that the oriented diffeomorphism type of L and L′ is determined
by their integer homology cobordism type, is not new. It follows from the more general results
of [Gre13] on alternating links, and indeed Greene’s results imply that double-branched
covers of alternating links are determined by their homology cobordism type. Independent
proofs of the more restrictive claim that the oriented diffeomorphism type of a lens space is
determined by its d-invariants have also appeared [Ném05, DW15]. Even before then, the
integer homology cobordism classification of lens spaces of odd order goes back to [FS87].

Our argument is independent of [Gre13], depending only on the computation of Rei-
demeister torsion for lens spaces and its relationship to their d-invariants established in
[Ném05]. Theorem 1 is also stronger in two ways: first, it constraints the structure of the
span H1(L)← H1(W )→ H1(L

′) of any homology cobordism relating L and L′; secondly, it

establishes that connected sums of lens spaces are cancellable in Θ̂3
Z.

The proof of this theorem is presented in Section 4. The key point is that — provided
a certain non-vanishing property holds — one can recover (a reduced version of) the d-
invariants of a connected summand from those of a connected sum.

To recover the d-invariants of the summands, we find it useful to pass to the Fourier
transform. Given a function f : A → C on a finite abelian group, its Fourier transform is

instead a function on the dual group A∨ = Hom(A, S1), defined by f̂(φ) = 1
|A|

∑
a∈A f(a)φ(a).

Here A will be H2(Y ) ∼= H1(Y ), and we will pick a base spinc structure to consider the d-
invariants as a function on H1(Y ).

The use of Fourier transforms is well-established in the theory of Reidemeister torsion: an-
alytic interpretations of the Reidemeister torsion (eg [RS71, Fri87]) interpret the torsion as a
function of oriented flat bundles, and hence take as input a representation φ : H1(Y ;Z)→ S1.
It is also profitable to rephrase the surgery relation in terms of Fourier transforms; Nico-
laescu uses this to compare Reidemeister torsion to a Seiberg–Witten invariant in [Nic04].
See also the discussion peppered throughout [Nic03].

Here we use a simple property of Fourier transforms. Given two groups A,A′ and functions
f : A → C and f ′ : A′ → C, the direct sum (f ⊕ f ′)(a, a′) = f(a) + f(a′) on A × A′ has

an especially simple Fourier transform; one can effectively read off the values of f̂(φ) and

2Though see [Dav17] for some errata and [Suc22, Proposition 9.2] for a simplified argument.
3This is meant in an unordered sense. Precisely, suppose H1(L) ∼= ⊕H1(Li) and similarly for L′. Then

W∗ sends each H1(Li) isomorphically onto some H1(L
′

j).
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f̂ ′(ψ) from the knowledge of f̂ ⊕ f ′ whenever φ or ψ are non-trivial homomorphisms. See
Proposition 4 for a precise statement.

Applying this purely algebraic observation to d-invariants, one can recover (a reduced ver-
sion of) the d-invariants of summands from those of a connected sum. Provided they satisfy
a certain non-vanishing property, this recovery process is well-defined up to automorphism
of H2(Y ) × H2(Y ′), and thus preserved by integer homology cobordisms. Because the d-
invariants of lens spaces satisfy this nonvanishing property, and these reduced d-invariants
— equivalent to Reidemeister torsion for L-spaces — classify lens spaces up to oriented dif-
feomorphism, the main theorem follows.

In fact, the proof of Theorem 1 exhibits a stronger claim: there exist monoid homomor-
phisms cp,q : Θ̂3

Z → N with cp,q(L(p, q)) = 1 and cp,q(L(r, s)) = 0 unless L(r, s) is oriented
diffeomorphic to L(p, q). The purely algebraic part of this claim is the content of Corollary
7 in Section 2, while the relevant computation for lens spaces is given in Proposition 13 in
Section 4.

If one considers the Grothendieck group Gr
(
Θ̂3

Z

)
, the group whose elements are pairs

([Y ], [Z]) with ([Y ], [Z]) = ([Y ′], [Z ′]) if there is an integer homology cobordism Y#Z ′ ∼
Y ′#Z, the existence of these homomorphisms cp,q shows that lens spaces (up to oriented
diffeomorphism) span a Z∞ summand of the Grothendieck group.

As an aside, the perspective of Fourier transforms appears useful whenever one has an
invariant which is additive in the sense above, including both d-invariants and Reidemeister
torsion. To demonstrate this, in Section 3 we reprove [GAnS86, Theorem 2.2]: if K is a knot
with reducible surgery Sn(K) ∼= Y#Y ′ with H1(Y ) = Z/p and H1(Y

′) = Z/q, the Alexander
polynomial of K is divisible by that of the (p, q) torus knot: ∆(Tp,q) | ∆(K). We hope that
Fourier transforms can be a useful organizing tool in other contexts as well.

Acknowledgements. The author would like to thank Danny Ruberman for a useful dis-
cussion during the preparation of this note, as well as Tye Lidman for comments on an early
draft and suggesting that one might reprove [GAnS86, Theorem 2.2] using the Fourier trans-
form technique. The basic algebraic observation used here came about during conversations
with Aiden Sagerman on a related question about products of punctured lens spaces.

2. Weighted torsors and Fourier transforms

In this section we cover the purely algebraic aspects of the main result: the context
of weighted torsors, the definition of the Fourier transform, and the process of recovering
summands of the direct sum of weighted torsors using Fourier transforms.

2.1. Weighted torsors. Here we rapidly define the relevant algebraic objects. Though the
initial discussion about torsors is valid for any group, the relevant groups for us will be
abelian, so we use additive notation.

Definition 1. A torsor is a pair (A, S), where A is a group and S carries a free and
transitive (right) action by A.

A choice of element s ∈ S gives rise to a bijection ms : A ∼= S, given by sending a 7→
s + a; for a different choice of element s′ ∈ S with s′ = s + a0, the bijections differ by
(m−1

s ms′)(a) = a0 + a.
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This observation shows that one may think of a torsor as a group where one has forgotten
which element is the identity, or as A ‘modulo translation’.

Definition 2. An isomorphism of torsors is a pair (f, g) : (A, S) → (A′, S ′), where
f : A→ A′ is a group isomorphism and g : S → S ′ is a function satisfying

g(s+ a) = g(s) + f(a).

By transitivity of the group actions, g is necessarily a bijection. If one chooses basepoints
s ∈ S and s′ ∈ S ′, and we have g(s) = s′ + a′, then the map m−1

s′ gms : A→ A is given by

(m−1
s′ gms)(a) = m−1

s′ g(s+ a) = m−1
s′

(
g(s) + f(a)

)
= m−1

s′

(
s′ + a′ + f(a)

)
= a′ + f(a).

Thinking of S as a group where we’ve forgotten the identity element (or as a sort of affine
space), one should imagine g to be an affine function whose ‘linear part’ is the homomorphism
f ; indeed, one can recover f from g.

Remark 1. The group of automorphisms of (A, S) is a group sometimes called the holomorph
of A, and can be understood as the group of affine automorphisms of A.

Definition 3. A weighted torsor is a torsor (A, S) equipped with a function d : S → C.
If S = A, we call (A, d) a weighted group.

If one chooses a basepoint s ∈ S, we write ds : A→ C for the function ds(a) = (dms)(a) =
d(s+ a). For a different choice of basepoint s′ = s+ a0, we have ds′(a) = ds(a+ a0).

Definition 4. An isomorphism of weighted torsors (A, S, d)→ (A′, S ′, d′) is a torsor
isomorphism (f, g) : (A, S)→ (A′, S ′) which has d′(g(s)) = d(s).

If one prefers to think entirely in terms of the group A (having chosen an arbitrary
basepoint), a weighted torsor is a function d : A → C, with d considered equivalent to
db(a) = d(a + b) for any b ∈ A. In this perspective, an isomorphism of weighted torsors
(A, d) ∼= (A′, d′) amounts to an affine isomorphism f + a′ : A→ A′ which has

d′(f(a) + a′) = d(a).

2.2. Fourier transforms and weighted duals. Given an abelian group A, its Pontryagin
dual is the group A∨ = Hom(A, S1).

Convention. For the rest of this note, abelian groups A and torsors (A, S) are assumed
to be finite. This is true in all cases of interest to us, and simplifies discussions of Fourier
transforms.

Given a function d : A→ C, we can take its Fourier transform d̂ : A∨ → C, defined as

d̂(φ) =
1

|A|

∑

a∈A

d(a)φ(a).

Remark 2. This differs from Nicolaescu’s definition in [Nic03, Section 1.6] by a scalar factor
of 1

|A|
. Our definition makes some important formulas later slightly simpler.

If d′ : A→ C is defined by d′(a) = d(a+ a′), we have

d̂′(φ) =
1

|A|

∑

a∈A

d′(a)φ(a) =
1

|A|

∑

a∈A

d′(a− a′)φ(a− a′) =
1

|A|

∑

a∈A

d(a)φ(a)φ(a′) = d̂(φ)φ(a′).
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This computation inspires the following definition, which we phrase intrinsically on the
dual B = A∨; the statement below implicitly uses the isomorphism (A∨)∨ ∼= A for finite A.
The terminology follows [Nic03, Definition 3.22] (though notice that Nicolaescu allows for a
sign ambiguity, and we do not).

Definition 5. If B is an abelian group equipped with weights d̂ and d̂′, and there exists some

ψ ∈ B∨ so that d̂′(b) = d̂(b)ψ(b) for all b ∈ B, we say that d and d′ are t-equivalent. We

say that weighted groups (B, d̂) and (B′, d̂′) are t-isomorphic if there exists an isomorphism
f : B → B′ and element φ ∈ B∨ so that

d̂′(f(b)) = d̂(b)φ(b)

for all b ∈ B.

The discussion above shows that given a weighted torsor (A, S, d), choosing a basepoint

s ∈ S and taking the Fourier transform of ds gives us a weighted group (A∨, d̂s), well-defined
up to t-equivalence. Furthermore, it is clear that isomorphic weighted torsors give rise to
t-isomorphic weighted groups.

Notice that d̂(1) =
∑

a∈A d(a), and if d̂ is t-isomorphic to d̂′, then d̂(1) = d̂′(1). Later, this
term will cause us some minor irritation, so we do what we can to remove it.

Definition 6. A weighted torsor (A, S, d) is reduced if
∑

s∈S d(s) = 0; equivalently, d̂(1) =
0. Given any weighted torsor (A, S, d), its reduced part is given by (A, S, dr), where

dr(s) = d(s)−
1

|A|

∑

s′∈S

d(s′);

that is, we subtract off the average value.

It is clear that dr is reduced, and that reduction doesn’t change the value of the Fourier
transform at any φ 6= 1. To see this, we need a small useful lemma.

Lemma 2. If A is a finite abelian group and φ : A→ S1 is a homomorphism, we have

∑

a∈A

φ(a) =

{
0 φ 6= 1

|A| φ = 1

Proof. This is a special case of the orthogonality relations for irreducible characters [Ser77,
Theorem 2.3.3]. The proof is included for completeness.

If φ is trivial this is obvious. For φ nontrivial, write ζ for a generator of φ(A) so that ζ is
a primitive mth root of unity for some m > 1. We have

∑

a∈A

φ(a) =
|A|

m

m−1∑

k=0

ζk.

But
∑m−1

k=0 ζ
k = 1−ζm

1−ζ
= 0 for ζ 6= 1 a non-trivial mth root of unity. �

It follows that if two weighted torsors have d′(a) = d(a)+c for all a ∈ A and some constant
c, we have

d̂′(φ) =
1

|A|

∑

a∈A

d(a)φ(a) +
1

|A|

∑

a∈A

cφ(a) =

{
d̂(1) + c φ = 1

d̂(φ) φ 6= 1
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Corollary 3. If (A, S, d) is a weighted torsor, its reduced part (A, S, dr) satisfies

d̂r(φ) =

{
0 φ = 1

d̂(φ) φ 6= 1

2.3. Direct sums of weighted torsors. Given two weighted torsors (A, S, d) and (A′, S ′, d′)
we say their direct sum is the weighted torsor (A×A′, S × S ′, d⊕ d′), where

(d⊕ d′)(s, s′) = d(s) + d(s′).

Notice that the (A × A′)∨ is naturally isomorphic to A∨ × (A′)∨; if φ : A → S1 and
ψ : A′ → S1 are homomorphisms, these give rise to the homomorphism φψ : A × A′ → S1

by pointwise multiplication: (φψ)(a, a′) = φ(a)ψ(a′).

The observation which motivated the present note is the following calculation of the Fourier
transform of a direct sum of weighted torsors.

Proposition 4. If d⊕d′ : A×A′ → Q is the direct sum of two weighted groups, the Fourier
transform satisfies

̂(d⊕ d′)(φψ) =





d̂(φ) φ 6= 1 and ψ = 1

d̂′(ψ) φ = 1 and ψ 6= 1

d̂(1) + d̂′(1) φ = ψ = 1

0 else

Proof. We have

̂(d⊕ d′)(φψ) =
1

|A||A′|

∑

a,a′

(d⊕ d′)(a, a′)φψ(a, a′) =
1

|A||A′|

∑

a,a′

(
d(a) + d′(a′)

)
φ(a)ψ(a′)

=
1

|A||A′|

(∑

a,a′

d(a)φ(a)ψ(a′)

)
+

1

|A||A′|

(∑

a,a′

d′(a′)ψ(a′)φ(a)

)

=

(
1

|A|

∑

a

d(a)φ(a)

)(
1

|A′|

∑

a′

ψ(a′)

)
+

(
1

|A′|

∑

a′

d′(a′)ψ(a′)

)(
1

|A|

∑

a

φ(a)

)
.

By Lemma 2, the first term vanishes when ψ 6= 1 and is |A′|d̂(φ) when ψ = 1, while the

second term vanishes when φ 6= 1 and is d̂′(ψ) when φ = 1. This gives the stated claim in

all cases except φ, ψ = 1; in that case, it gives d̂(1) + d̂′(1). �

In particular, for nontrivial φ and ψ, one can read off the values of d̂(φ) and d̂′(ψ) from

the Fourier transform of the direct sum d̂⊕ d′. In the non-reduced case, the fact that d̂(1)

and d̂′(1) are combined in ̂(d⊕ d′)(1) means that we cannot recover this information from the
Fourier transform of the direct sum. This is why we restrict attention to reduced weighted
torsors.

2.4. Nonvanishing properties and recovering invariants of summands. We will now
be more precise about the process of recovering the summands of a direct sum of weighted
torsors in a way which is well-defined up to isomorphism. To do so, we must make some
further assumptions.
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Definition 7. A weighted group (B, d̂) has the nonvanishing property if d̂(b) 6= 0 for all
nontrivial elements b ∈ B.

Notice that this property is well-defined up to t-isomorphism, because if (B, d̂) and (B′, d̂′)
are t-isomorphic, we have an isomorphism f : B → B′, an element φ ∈ B∨, and an equality

d̂′(f(b)) = d̂(b)φ(b). Because b is non-trivial if and only if f(b) is, and φ(b) ∈ S1 is nonzero,

d̂′ has the nonvanishing property if and only if d̂ does.

Definition 8. If (B, d̂) is a weighted group, a special subgroup is a non-trivial subgroup

C ⊂ B so that d̂(c) 6= 0 for all non-trivial c ∈ C. A maximal special subgroup is a
special subgroup which is maximal among special subgroups.

Notice that special subgroups are well-defined up to t-equivalence of weights, and that t-

isomorphism preserves maximal special subgroups: if f : (B, d̂)→ (B′, d̂′) is a t-isomorphism
and C ⊂ B is a special subgroup, then f(C) is too, and vice versa. Further, a t-isomorphism

maps (C, d̂|C) t-isomorphically onto (f(C), d̂′|f(C)). In particular, the maximal special sub-
groups (considered as weighted groups up to t-isomorphism) are t-isomorphism invariants of

(B, d̂).
It immediately follows from this that isomorphisms between direct sums of weighted torsors

with the nonvanishing property are rather constrained.

Corollary 5. Suppose {(Ai, di)}
n
i=1 is a collection of weighted groups whose Fourier trans-

forms satisfy the nonvanishing property, and similarly with {(A′
j, d

′
j)}

m
j=1. Write (A, d) =⊕n

i=1(Ai, di) and similarly for (A′, d′). If there is an affine isomorphism of weighted groups
ϕ+a′ : (A, d) ∼= (A′, d′), then n = m and the map ϕ preserves the direct sum decompositions,
in the sense that for all i we have ϕ(Ai) = A′

j for some j.

Proof. By Proposition 4, the maximal special subgroups of A∨ = A∨
1 ⊕· · ·⊕A

∨
n are precisely

the coordinate axes A∨
i (where all coordinates but the ith are nonzero). Comparing the

number of maximal special subgroups, we see that m = n. Because ϕ∨ maps maximal
special subgroups bijectively to maximal special subgroups, for some permutation σ we have
ϕ∨((A′

σ(i))
∨) = A∨

i for all i. That is, if ψ′ : A′ → S1 is any homomorphism, then ψ′ factors

through π′
σ(i) : A

′ → A′
σ(i) if and only if there exists some ψ : Ai → S1 with

ψπi = ψ′π′
σ(i)ϕ.

It will follow that ϕ(Ai) ⊂ A′
σ(i), and then equality follows because these have the same

cardinality (their duals do) and ϕ is injective. To see this first claim, pick xi ∈ Ai, and
consider yj = πjϕ(xi). If yj is nonzero, there is some homomorphism ψ′

j : A′
j → S1 with

ψ′
j(yj) 6= 0. By the discussion above,

ψ′
j(yj) = ψ′

jπ
′
jϕ(xi) = ψπσ−1(j)(xi).

This can only be nonzero if σ−1(j) = i by assumption, so that ϕ(xi) indeed lies in A′
σ(i). �

We will prove the main theorem similarly, by counting maximal special subgroups (con-
sidered as weighted groups up to t-isomorphism); we introduce notation for this special
concept.
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Definition 9. Given a weighted group (B, d̂), we associate the multiset

MS(B, d̂) =

{[
C, d̂|C

] ∣∣∣∣ C ⊂ B is a maximal special subgroup

}

of special subgroups of B equipped with the restriction of d̂, considered up to t-isomorphism.

Recall here that a multiset M is a set (by an abuse of notation written with the same
name M) where each element x ∈ M is equipped with a weight wM(x) ≥ 1 labeling how
many times it occurs in the multiset.

Notice that if (B, d̂) is t-isomorphic to (B′, d̂′), then the multisetsMS(B, d̂) andMS(B′, d̂′)
are isomorphic (there is a weight-preserving bijection between them). If (A, S, d) is a weighted

torsor, the multiset MS(A∨, d̂s) is an invariant of (A, S, d); isomorphic weighted torsors give

rise to isomorphic multisets. We write MS(A, S, d) forMS(A∨, d̂s) for some choice of s ∈ S.

If M,N are multisets, we write M ∪N for the multiset whose underlying set is the union
of the underlying sets of M and N , and whose weight is wM∪N(x) = wM(x) +wN(x). (Here
we write wN(x) = 0 if x does not lie in N , and similarly with M .)

The crucial observation, almost immediate from Proposition 4, is that this multiset is
additive.

Proposition 6. If (A, S, d) and (A′, S ′, d′) are reduced weighted torsors, we have

MS(A× A′, S × S ′, d⊕ d′) =MS(A, S, d) ∪MS(A′, S ′, d′).

Proof. For convenience, we write d⊕ = (d⊕ d′), and d̂⊕ for its Fourier transform.

As mentioned above, Proposition 4 implies that the maximal special subgroups of (A ×
A′)∨ ∼= A∨× (A′)∨ are precisely the maximal special subgroups of A∨×{1} and {1}× (A′)∨.

Given a maximal special subgroup C ⊂ A∨ (or similarly C ′ ⊂ (A′)∨), what remains is to

compare the restriction of d̂ to C with the restriction of d̂⊕ to C × {1}, but

d̂⊕|C×{1} = d̂|C

by the formula from Proposition 4 and the assumption that d and d′ are reduced weighted
torsors. �

We can now define monoid homomorphisms from the appropriate monoid to N.

Definition 10. We write Θ̂WT for the monoid whose elements are weighted torsors up to
isomorphism, and whose product operation is direct sum.

There is a corresponding monoid Θ̂RWT of reduced weighted torsors, and the map d 7→
(dr, avg d) defines a monoid isomorphism Θ̂WT

∼= Θ̂RWT × C.
Write RWTN for the set of reduced weighted torsors whose Fourier transforms satisfy the

nonvanishing property, considered up to isomorphism; because these are considered up to
isomorphism, we may think of these as weighted groups up to affine isomorphism and drop
the torsor S from notation.

For each [A, d] ∈ RWTN, we define a map cA,d : Θ̂WT → N with

c[A,d](B, T, f) = # of occurrences of [A∨, d̂] in MS(B, T, f r).

That is, c[A,d](B, T, f) is the weight wMS(B,T,fr)([A
∨, d̂]).
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Corollary 7. The functions c[A,d] are monoid homomorphisms. If (A′, d′) is another reduced
weighted torsor whose Fourier transform has the nonvanishing property, we have

c[A,d](A
′, d′) =

{
1 (A, d) is isomorphic to (A′, d′)

0 else

Proof. A maximal special subgroup is defined to be non-trivial, so for the trivial weighted
torsor with underlying group 1 and zero weighting,MS(1, 0) = ∅; so c[A,d](1, 0) = 0 and thus
c sends neutral element to neutral element. Additivity follows immediately from Proposition
6 and the fact that taking the reduced part d 7→ dr commutes with direct sums. So c[A,d] is
a monoid homomorphism.

Because the Fourier transform of (A′, d′) has the nonvanishing property, MS(A, d) =

{[(A′)∨, d̂′]}. If [A∨, d̂] appears in this singleton set, then in fact
(
(A′)∨, d̂′

)
is t-isomorphic

to (A∨, d̂), and hence (A, d) ∼= (A′, d′). �

It follows that the functions c assemble into a surjective monoid homomorphism c : Θ̂WT →
NRWTN, which behaves particularly well on reduced weighted torsors whose Fourier trans-

forms have the nonvanishing property: there is a map NRWTN → Θ̂WTN whose composition
with c is the identity.

3. A theorem of González-Acuña–Short

Before moving on to the main theorem, we use this opportunity to give an alternative
proof of [GAnS86, Theorem 2.2], suggested to the author by Tye Lidman.

For context, if Σ is a homology sphere and K = Cp,q(K
′) is the cable of another knot

K ′ ⊂ Σ, then the pq-surgery satisfies Σpq(K) ∼= Σp/q(K
′)#L(q, p). When Σ = S3, the

cabling conjecture [GAnS86, Conjecture A] predicts that this construction gives the only
examples of knots with reducible surgery. Among their evidence was the following theorem.

Theorem 8. Let K ⊂ Σ be a knot in an integer homology sphere with reducible surgery
Σn/m(K) ∼= Y1#Y2, where |H1(Y1)| = p > 1 and |H1(Y2)| = q > 1. Then the polynomial

∆p,q =
(tpq−1)(t−1)
(tp−1)(tq−1)

divides the Alexander polynomial ∆K .

Note that the Alexander polynomial of a cable knot K = Cp,q(K
′) satisfies ∆K = ∆p,q∆K ′.

Proof. The proof makes use of the Reidemeister torsion of a 3-manifold, and we quickly
recall some properties from [Nic03, Section 3.7]. When Y is a rational homology sphere, its
Reidemeister torsion TY : H1(Y )→ Q makes H1(Y ) into a weighted torsor, well-defined up
to isomorphism and multiplication by ±1. When H1(Y ) ∼= Z, by contrast, TY (t) should be
understood as a rational function TY ∈ Q(t), well-defined up to multiplication by ±tk. The

Fourier transform T̂Y : C→ C is a meromorphic function defined by evaluating TY on a given
complex number, and is well-defined up to a variation on t-equivalence: T̂ ′(z) ∼ ±zkT̂ (z).

In the case of knot complements, the Reidemeister torsion is related to the Alexander
polynomial by the formula

TΣ\K(t) = ±
tk∆K(t)

1− t
;

this first appeared as [Mil62, Theorem 4].
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We will use the surgery formula for the Fourier-transformed Reidemeister torsion as stated
in [Nic03, Theorem 3.23]: if ζ is a primitive nth root of unity, then

T̂Σn/m(K)(ζ) =
T̂Σ\K(ζ)

(1− ζ)−1
= ±

ζk∆K(ζ)

(1− ζ−1)(1− ζ)
.

In particular, the zeroes of T̂Σn/m(K) are identified with the nth roots of unity ζ for which

∆K(ζ) = 0.
Here we use the canonical isomorphism H1

(
Σn/m(K)

)
∼= Z/n, sending a meridian of the

knot in Σ \K to 1 to identify H∨
1 with the group of nth roots of unity.

SupposeK is a knot as in the statement of the theorem. The isomorphism Z/n ∼= Z/p×Z/q
induced by the connected sum decomposition sends the elements (i, j) with i, j nontrivial
to nth roots of unity which are neither pth nor qth roots of unity. For rational homology
spheres Y1 and Y2 we have TY1#Y2

(i, j) = TY1
(i)+TY2

(j) [Tur02, Theorem XII.1.2]. It follows

from Proposition 4 that T̂Y1#Y2
(ζ) = 0 for any nth root of unity ζ which is neither a pth nor

qth root of unity. Thus ∆K(ζ) = 0 for all such roots of unity, so that ∆K is divisible by

∏

ζ=e2πik/n

0≤k<n
p∤k and q∤k

(t− ζ) =
(tpq − 1)(t− 1)

(tp − 1)(tq − 1)
= ∆p,q

as claimed. �

4. d-invariants of 3-manifolds

If Y is a 3-manifold, there is a naturally associated torsor
(
H2(Y )tors; Spin

c(Y )tors
)
, where

the latter is the set of spinc structures with torsion first Chern class. When Y is a rational
homology sphere, every spinc structure is torsion.

When we refer to a homology cobordism, we mean a pair (W,ϕ) of a compact oriented
connected 4-manifold and a chosen orientation-preserving diffeomorphism ϕ : ∂W ∼= Y −Y ′

so that the corresponding maps Y → W and Y ′ → W induce isomorphisms on all integer
cohomology groups.

Given a homology cobordism W : Y → Y ′ there is an induced isomorphism of torsors

(W∗,W
c
∗ ) :

(
H2(Y )tors, Spin

c
tors(Y )

)
→
(
H2(Y ′)tors; Spin

c
tors(Y

′)
)
.

We will make use of three weighted torsors; the first and third are associated to rational
homology spheres, while the second is associated to an arbitrary 3-manifold.

• The d-invariant, dY : Spinc(Y )→ Q [OS03, Definition 4.1];
• The twisted d-invariant, dY : Spinc

tors(Y )→ Q [BG18, Definition 3.1];
• The Turaev-Reidemeister torsion, TY : Spinc(Y )→ Q [Tur02, Chapter X].

Remark 3. The Turaev-Reidemeister torsion is often written as an H2(Y )-equivariant map
Spinc(Y ) → Q[H2(Y )], eg [Tur02, Chapter I.4.1]. This gives rise to the function TY above
by extracting the coefficient of 0 ∈ H2(Y ). This can be extended to an arbitrary 3-manifold,
but the discussion is somewhat more intricate when H2(Y ) is infinite: instead, the torsion
defines an H2(Y )-equivariant map to the fraction field Q

(
H2(Y )

)
.

The twisted d-invariant is only used for a technical reason, to allow connected sums with
arbitrary 3-manifolds instead of merely rational homology spheres. When Y is a rational
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homology sphere, we have the tautological equality dY (s) = dY (s). The Turaev-Reidemeister
torsion — and the relation to d-invariants — will be used exclusively for calculation.

First, we establish the relationship to the work from Section 2.

Lemma 9. The assignment Y 7→ (H2(Y )tors, Spin
c(Y )tors, dY ) defines a monoid homomor-

phism Θ̂Z → Θ̂WT.

Proof. This amounts to three claims: that dY (S
3) = 0 (tautological), that the assignment

Y 7→ dY sends integer homology cobordisms to isomorphisms of weighted torsors (an imme-
diate corollary of [BG18, Corollary 4.2]), and that dY is additive, in the sense that

dY#Y ′(s#s
′) = dY (s) + dY (s

′),

which is [BG18, Proposition 3.7]. �

From this, we can immediately show that provided the d̂-invariants of the summands satisfy
the nonvanishing property, integer homology cobordisms between connected sums preserve
the natural direct sum decomposition of their homology groups.

Corollary 10. Suppose Y = #n
i=1Yi and Y

′ = #m
j=1Y

′
j are connected sums of 3-manifolds

so that the d̂-invariants of each Yi and Y
′
j satisfy the nonvanishing property. If W : Y → Y ′

is a homology cobordism, then n = m and the induced map W∗ : H1(Y )tors → H1(Y
′)tors

preserves the natural (unordered) direct sum decompositions.

Proof. As mentioned above, if W : Y → Y ′ is a homology cobordism, it induces an iso-
morphism of weighted torsors (Spinc

tors(Y ), d)
∼= (Spinc

tors(Y
′), d′). The statement follows

immediately from Corollary 5. �

The following corollary is simply an application of Corollary 7, applied to these particular
weighted torsors.

Corollary 11. Suppose Yi is a collection of 3-manifolds indexed by some set S with the
following properties:

• The groups H2(Yi) are non-trivial.

• The Fourier transforms d̂Yi
satisfy the nonvanishing property.

• The weighted torsors (H2(Yi), Spin
c(Yi)tors, d

r) are pairwise non-isomorphic.

Then there is a homomorphism c : Θ̂Z → NS with ci(Yi) = 1 and ci(Yj) = 0 for i 6= j. In

particular, the Yi are linearly independent in Θ̂Z and span a ZS-summand of the Grothendieck

group Gr(Θ̂Z).

Here dr is the reduced part of d as in Definition 6.
To prove Theorem 1, we need to show that the lens spaces L(p, q) — considered up to

oriented diffeomorphism — satisfy the assumptions of the corollary. This is classical; the
crucial observation is that the reduced d-invariant recovers the Turaev-Reidemeister torsion.

Lemma 12. If Y is an L-space, we have

T (s) =
1

2
(dr(s)) .

This follows immediately from [Rus05, Theorem 5.3.3-4]. For lens spaces (and thus their
connected sums, as both sides of this equality are additive) this was proven earlier as [Ném05,
Section 10.7], and indeed Némethi’s result is used in Rustamov’s argument.
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The Turaev-Reidemeister torsion of lens spaces is classical, and the sign-refined version
only slightly less so. For an appropriate choice of base spinc structure and an appropriate
isomorphism H2(L(p, q)) ∼= Z/p, we have [NN02, Section 7.1] for any nontrivial pth root of
unity ζ

T̂ (ζ) =
1

p(1− ζ−1)(1− ζ−q)
.

Notice that this formula has an extra factor of 1/p compared to Nicolaescu’s, owing to the
change of convention discussed in Remark 2.

We write drp,q : Spin
c(L(p, q))→ Q for the reduced d-invariants of the lens space L(p, q).

The lemma above establishes that (after choosing an appropriate base spinc structure and
isomorphism L(p, q) ∼= Z/p) we have for all nontrivial pth roots of unity

(d̂rp,q)(ζ) =
1

2p(1− ζ−1)(1− ζ−q)
.

Proposition 13. The Fourier transforms of the weighted torsors drp,q have the nonvanishing

property. Furthermore, if drp,q
∼= drr,s, then p = r and s ≡ q±1 mod p, so that L(p, q) and

L(r, s) are oriented diffeomorphic.

Proof. That these have the nonvanishing property is obvious.
What remains is the essentially classical claim that signed Turaev-Reidemeister torsion

classifies lens spaces up to oriented diffeomorphism; we include a short proof for completeness.
We may as well assume p > 2.

If drp,q
∼= drr,s we have Z/p ∼= Z/r, so that p = r. If d̂rp,q is t-isomorphic to d̂rp,s, such an

isomorphism induces a t-isomorphism f̂p,q ∼= f̂p,s between the simpler functions

f̂p,q(ζ) = (1− ζ)(1− ζq) = 1− ζ − ζq + ζq+1.

If q = 1 this is the Fourier transform of the function fp,1 = (1,−2, 1, 0, · · · , 0), where
we list off the values fp,q(i) in order starting at 0. If q = p − 1 we have instead fp,p−1 =
(2,−1, 0, · · · , 0,−1). For 1 < q < p − 1, we have fp,q(0) = fp,q(q + 1) = 1, while fp,q(1) =
fp,q(q) = −1, and all other values are zero.

It is transparent that there is no affine isomorphism of Z/p taking fp,1 or fp,p−1 to any of
the other functions above, as the values are different; this reduces us to the case 1 < q < p−1.

Now suppose there exists some integer k prime to p and some integer ℓ so that

(1) fp,s(ki+ ℓ) = fp,q(i)

for all i. Because fp,q(0) = 1, we have fp,s(ℓ) = 0 and thus either ℓ ≡ 0 or ℓ ≡ s+1. Because
i 7→ ki+ ℓ is a bijection, in the former case we must have k(q + 1) ≡ s+ 1 and in the latter
case k(q + 1) + s+ 1 ≡ 0. We handle these two cases separately.

• Case 1: ℓ ≡ 0. Applying (1) to i ≡ 1, we have either k ≡ 1 (which gives q+1 ≡ s+1
and hence q ≡ s) or k ≡ s (which gives qs+ s ≡ s+ 1 so qs ≡ 1).

• Case 2: ℓ ≡ s + 1. Applying (1) to i ≡ 1, we have either k + s + 1 ≡ 1 (in which
case k ≡ −s so −sq − s+ s+ 1 ≡ 0 and thus qs ≡ 1) or k+ s+ 1 ≡ s (in which case
k ≡ −1 so that −q − 1 + s+ 1 ≡ 0 and q ≡ s).
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In any of the four possibilities for the values of k, ℓ modulo p, we see that the desired claim
holds. �

The main theorem follows immediately from this proposition, as well as Corollaries 10-11.

5. Questions

We close with a handful of questions inspired by the results above.

Question 1. Which collections of 3-manifolds satisfy the hypotheses of Corollary 11? Does
this class include spherical 3-manifolds, or double-branched covers of alternating links?

It would follow that manifolds in this class are integer homology cobordant if and only if
they are diffeomorphic. For spherical 3-manifolds, an argument might proceed by an explicit
computation of their d-invariants (or of their Reidemeister torsions); for alternating links an
argument might follow through the lattice-theoretic techniques of [Gre13].

In another direction, recall that [Lis07] provides a complete classification of connected
sums of lens spaces up to rational homology cobordism. It would be interesting to determine
the intermediate case of R-homology cobordism for, say, R = Z/p.

Question 2. Determine the R-homology cobordism classification of connected sums of lens
spaces for various rings R.

The author has made no attempt to investigate this. It would similarly be interesting to
follow up on the classification of rational homology ribbon cobordisms between connected
sum of lens spaces given in [Hub21, Theorem 1.3] and classify the R-homology ribbon cobor-
disms for various rings R.

It would be interesting to understand better the interaction between the integer homology
group and the larger integer homology monoid. In the integer homology group, because all
elements are invertible, all elements are also cancellative: if [Y ] + [Z] = [Z] we have [Y ] = 0.
This is not true in an arbitrary monoid, so one might ask if integer homology spheres remain
cancellative when we pass to the integer homology monoid.

This question can be phrased in terms of the Grothendieck group Gr(Θ̂Z) as follows.

Question 3. Does the map ΘZ → Gr(Θ̂Z) have non-trivial kernel? That is, can one find
an integer homology 3-sphere Y and a closed oriented 3-manifold Z so that Y is not integer
homology cobordant to S3, but Y#Z is integer homology cobordant to Z?

One might imagine that the behavior of integer homology spheres under integer homol-
ogy cobordism is somehow orthogonal to the behavior of rational homology spheres; very

optimistically, one might believe that j : ΘZ → Θ̂Z splits, meaning that there is a homo-

morphism µ : Θ̂Z → ΘZ with µj = 1, and one might then try to understand the structure
of the Grothendieck group in terms of ker(µ) and ΘZ. If such a splitting exists at the
level of monoids, we also have such a splitting at the level of groups when we pass to the
Grothendieck group.

One way to guarantee this is impossible, while also giving an element in the kernel discussed

above, is to find indivisible elements in ΘZ which become divisible in Gr(Θ̂Z). We pose the
existence of such homology spheres as a question.
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Question 4. Is there an integer homology sphere Y with the following properties?

(i) Y is indivisible in the integer homology cobordism group: if n > 1 and Y ′ is another
integer homology sphere, there is no integer homology cobordism between Y and #nY ′.

(ii) There does exist an n > 1, an integer homology sphere Y ′, and a 3-manifold Z so
that Y#Z is integer homology cobordant to (#nY ′)#Z.

Note that if this held, then −Y#nY ′ would give an infinite-order element in the kernel of
ΘZ → Gr(Θ̂Z), answering Question 3 in the positive.
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