FOURIER TRANSFORMS AND MEASURE-PRESERVING TRANSFORMATIONS ${ }^{1}$

O. CARRUTH McGEHEE

Abstract

There exists a continuous function f on the real line, vanishing at infinity, such that, for every measure-preserving transformation h, the composition $f \circ h$ fails to be a Fourier transform. This fact is a consequence of a theorem about measurable functions which is obtained from the theory of idempotents.

When G is a locally compact abelian group, and Γ is its dual group, let $A(G)$ denote the algebra of Fourier transforms of elements of $L^{1}(\Gamma)$, as described in Rudin's book [9, Chapter 1]. Let Z, R and T denote respectively the integer group, the real number system, and the circle group.

Jean-Pierre Kahane [4] adapted the work of P. J. Cohen and H. Davenport [3] to show that there is a function f in $C_{0}(Z)$ such that for every permutation p of the integers, $f \circ p$ fails to be in $A(Z)$. In this paper, the following result is obtained in a similar way.
Theorem 1. There is a function f in $C_{0}(R)$ such that for every measurepreserving transformation $h: R \rightarrow R, f \circ h$ fails to be in $A(R)$.

Theorem 1 is a consequence of the stronger Theorem 2 below, which concerns measurable functions, not just continuous ones. If S is a Lebesguemeasurable set, let $|S|$ denote the measure of S. Let $L_{0}(R)$ denote the class of Lebesgue-measurable functions f such that $|\{x:|f(x)|>\varepsilon\}|$ is finite for every $\varepsilon>0$.

Theorem 2. For every positive number s, there exist small positive numbers $\alpha=\alpha(s)$ and $\varepsilon=\varepsilon(s)$ such that if $f \in L_{0}(R)$ and if

$$
|\{x: \varepsilon<|f(x)|<1\}|<\alpha|\{x:|f(x)| \geqq 1\}|,
$$

then there is a discrete measure $\mu \in M(R)$ such that $\|\hat{\mu}\|_{\infty} \leqq 1$ and $\left|\int f^{f} d \mu\right|>s$.
Theorem 2 implies that if $f \in L_{0}(R)$ and

$$
\begin{equation*}
\left|\left\{x: \varepsilon(s)<s^{1 / 2}|f(x)|<1\right\}\right|<\alpha(s)\left|\left\{x: s^{1 / 2}|f(x)| \geqq 1\right\}\right|, \tag{1}
\end{equation*}
$$

Presented to the Society, April 27, 1973; received by the editors June 26, 1973.
AMS (MOS) subject classifications (1970). Primary 42A68; Secondary 43A25.
Key words and phrases. Fourier transforms, idempotents, measure-preserving transformations.
${ }^{1}$ This work was supported in part by N.S.F. Grant GP-33583.
then there is a discrete measure μ such that $\|\hat{\mu}\|_{\infty} \leqq 1$ and $\left|\int f d \mu\right|>\sqrt{ } s$. It is easy to construct a function $f \in C_{0}(R)$ such that (1) is satisfied for a sequence of values of s tending to ∞. If h is a measure-preserving transformation, then $f \circ h$ also satisfies (1) for the same values of s. If $M_{1}(R)$ denotes the space of discrete finite measures on R, then

$$
\sup \left\{\left|\int f \circ h d \mu\right|: \mu \in M_{1}(R),\|\hat{\mu}\|_{\infty} \leqq 1\right\}=\infty
$$

Therefore $f \circ h$ cannot belong to $A(R)$, since

$$
\left|\int g d \mu\right| \leqq\|g\|_{A(R)}\|\hat{\mu}\|_{\infty} \text { for } g \in A(R), \quad \mu \in M(R)
$$

Thus Theorem 1 follows from Theorem 2.
This work was done while trying to answer a question attributed to N. N. Lusin ([1, Volume 1, p. 330] or [2, p. 168]), which concerns homeomorphisms instead of measure-preserving transformations:

Is it true that for every continuous function f on the circle group T there is a homeomorphism φ from T onto T such that $f \circ \varphi \in A(T)$?
Kahane's result, cited above, is that with Z in the role of T, the answer is no. The answer for T or R is not known. For related work see [5] or [6, VII. 9], and [7] and [8].

We do not know how to prove a satisfactory analogue of Theorem 2 for the case of the circle group. We offer the following conjecture: For every $s>0$, there exist small positive numbers $\alpha=\alpha(s)$ and $\varepsilon=\varepsilon(s)$ such that if f is a measurable function on T and if

$$
|\{x: \varepsilon<|f(x)|<1\}|<\alpha \cdot \min \left\{|\{x:|f(x)| \geqq 1\}|,\left|f^{-1}(0)\right|\right\}
$$

then there is a discrete measure $\mu \in M(T)$ such that. $\|\hat{\mu}\|_{\infty} \leqq 1$ and $\left|\int f d \mu\right|>s$. It would follow from this result, of course, that there is a continuous function on T of which no measure-preserving rearrangement is in $A(T)$.

It remains to prove Theorem 2. The next two results are from [3], and we omit the proof of the first one.

Lemma 1. Let m_{1}, \cdots, m_{r} be integers, and let z_{1}, \cdots, z_{r} be numbers of modulus 1 , where $r \geqq 3$. If g is a trigonometric polynomial, $|g(x)| \leqq 1$ for all real x, and

$$
G(x)=g(x)\left\{1-2 r^{-2}-r^{-3} \sum_{i<j} \bar{z}_{i} z_{j} e\left(m_{i} x-m_{j} x\right)\right\}+r^{-5 / 2} \sum_{j} \bar{z}_{j} e\left(m_{j} x\right)
$$

(where $e(t)$ means $e^{2 \pi i t}$), then $|G(x)| \leqq 1$ for all real x.

Lemma 2. Let P, Q and q be sets of integers, $Q \cap q=\varnothing, Q=\left\{n_{j}\right\}_{j=1}^{N}$, $n_{1}>n_{2}>\cdots>n_{N}$. For $p \in P$, let $N(p)$ be the number of integers in $Q \cup q$ that are greater than or equal to p. Let r be an integer such that

$$
\begin{equation*}
r+\frac{r(r-1)}{2} \sum_{p \in P} N(p)<N \tag{2}
\end{equation*}
$$

Then there is a subset $\left\{m_{j}\right\}_{j=1}^{r}$ of Q such that $m_{1}>m_{2}>\cdots>m_{r}$,

$$
\begin{align*}
& p+m_{i}-m_{j} \notin Q \cup q \quad \text { if } p \in P \text { and } i<j \tag{3}\\
& m_{j}=n_{t(j)} \quad \text { where } t(j) \leqq j+\frac{j(j-1)}{2} \sum_{p \in P} N(p) \tag{4}
\end{align*}
$$

Proof. The m_{j} 's may be chosen inductively. Let $m_{1}=n_{1}$. Having chosen m_{j-1}, let m_{j} be the largest integer in Q that is less than m_{j-1} and satisfies (3). Condition (3) rules out at most $(j-1) \sum_{p \in P} N(p)$ integers, and therefore

$$
t(j)-t(j-1) \leqq 1+(j-1) \sum_{p \in P} N(p)
$$

Statement (4) follows. Condition (2) assures that the process may be repeated r times.

Lemma 3. For every positive number s, there exist small positive numbers $a=a(s)$ and $\varepsilon=\varepsilon(s)$ such that, for all sufficiently large integers N, the following conditions hold. Let Q and q be disjoint sets of integers, Q containing N elements, q containing no more than aN elements. Let c be a function on Z such that $|c(n)| \geqq 1$ for $n \in Q$ and $|c(n)|<\varepsilon$ for $n \notin Q \cup q$. Then there exists a trigonometric polynomial g such that $\|g\|_{L^{\infty}(T)} \leqq 1$ and $\left|\sum_{n \in Z} c(n) \hat{g}(n)\right|>s$.

Proof. Let r be an integer, $\sqrt{ } r>5 s$. Choose a and ε so that

$$
\begin{equation*}
0<a<r^{-3 r^{2}-2}, \quad 0<\varepsilon<\sqrt{ } r /\left(20 \cdot 3^{r}\right) \tag{5}
\end{equation*}
$$

It suffices to find a polynomial g with these properties:
(i) $\|g\|_{L^{\infty}(T)} \leqq 1$,
(ii) $\hat{g}(n)=0$ for $n \in q$,
(iii) $\sum\{|\hat{g}(n)|: n \notin Q \cup q\}<3^{r}$,
(iv) $\sum_{n \in Q} c(n) \hat{g}(n)>\sqrt{ } r / 4$.

It follows from the last three conditions that

$$
\left|\sum_{n \in Z} c(n) \hat{g}(n)\right|>(\sqrt{ } r / 4)-\varepsilon 3^{r}>\sqrt{ } r / 5>s
$$

Require $N>a^{-1}$. Let Q be enumerated: $n_{1}>n_{2}>\cdots>n_{N}$. We shall construct a sequence of polynomials g_{k}, all satisfying conditions (i) and (ii), beginning with $g_{0}(x)=\left|c\left(n_{1}\right)\right| e\left(n_{1} x\right) / c\left(n_{1}\right)$. Finally, we shall let g be g_{k} for a suitable value of k (namely, $k=r^{2}$). Suppose that g_{k-1} has been defined. Let P_{k-1} be the set of its frequencies:

If

$$
g_{k-1}(x)=\sum_{p \in P_{k-1}} \hat{g}_{k-1}(p) e(p x) .
$$

$$
\begin{equation*}
r+\frac{r(r-1)}{2} \sum_{p \in P_{k-1}} N(p)<N, \tag{6}
\end{equation*}
$$

then Lemma 2, with P_{k-1} in the role of P, may be applied to obtain a set $\left\{m_{k i} i_{i=1}^{r} \subset Q\right.$. Let $z_{i}=c\left(m_{k i}\right) /\left|c\left(m_{k i}\right)\right|$ and let

$$
\begin{align*}
g_{k}(x)= & g_{k-1}(x)\left\{1-2 r^{-2}-r^{-3} \sum_{i<j} \bar{z}_{i} z_{j} e\left(m_{k i} x-m_{k j} x\right)\right\} \tag{7}\\
& +r^{-5 / 2} \sum_{j} \bar{z}_{j} e\left(m_{k j} x\right) .
\end{align*}
$$

By Lemma $1, g_{k}$ is bounded by one since g_{k-1} is. The frequencies of g_{k} are the integers in the set

$$
P_{k}=P_{k-1} \cup\left(P_{k-1}+\left\{m_{k i}-m_{k j} ; i<j\right\}\right) \cup\left\{m_{k i}\right\},
$$

and hence

$$
\begin{aligned}
\sum_{p \in P_{k}} N(p) \leqq & \sum_{p \in P_{k-1}} N(p)+\sum_{i<j} \sum_{p \in P_{k-1}} N(p)+\sum_{j=1}^{r}(t(j)+a N) \\
\leqq & \left(1+\frac{r(r-1)}{2}\right) \sum_{p \in \sum_{k-1}} N(p) \\
& +\sum_{j}\left[j+\frac{j(j-1)}{2} \sum_{p \in P_{k-1}} N(p)+a N\right] \\
\leqq & \frac{r(r+1)}{2}+\left[1+\frac{r(r-1)}{2}+\frac{r(r+1)(2 r+1)}{12}-\frac{r(r+1)}{4}\right] \\
& \sum_{p \in P_{k-1}} N(p)+r a N \\
< & \left(r^{3} / 2\right) \sum_{p \in P_{k-1}} N(p)+r a N .
\end{aligned}
$$

Since $P_{0}=\left\{n_{1}\right\}$ and $N\left(n_{1}\right) \leqq a N$, by induction we obtain that $\sum_{p \in P_{k}} N(p)<$ $r^{3 k} a N$. By the restriction (5) on the choice of a, and for all $N>a^{-1}$, (6) is satisfied for $k \leqq r^{2}$. Let

$$
I_{k}=\sum_{n \in Q} c(n) \hat{g}_{k}(n) .
$$

Then $I_{0}=1$ and $I_{k} \geqq\left(1-2 r^{-2}\right) I_{k-1}+r^{-3 / 2}$. By induction,

$$
I_{k} \geqq(\sqrt{ } r / 2)-\left(1-2 r^{-2}\right)^{k}((\sqrt{ } r / 2)-1)
$$

Therefore when $k=r^{2}, I_{k} \geqq(\sqrt{ } r / 2)\left(1-e^{-2}\right)>\sqrt{ } r / 4$, so that. (iv) is established for $g=g_{k}$. For every k,

$$
\begin{aligned}
\sum_{n \in Z}\left|\hat{g}_{k}(n)\right| & \leqq \sum\left|\hat{g}_{k-1}(n)\right|\left(1-2 r^{-2}+r(r-1) / 2 r^{3}\right)+r^{-3 / 2} \\
& \leqq \sum\left|\hat{g}_{k-1}(n)\right|(1+1 / r) \\
& <(1+1 / r)^{k} .
\end{aligned}
$$

When $k=r^{2}$, this quantity is still less than 3^{r}, and (iii) follows for $g=g_{k}$. Lemma 3 is proved.

Proof of Theorem 2. Given s, let a and ε be obtained as in Lemma 3, and let $\alpha=a / 4$. Let $F=\{x: \varepsilon<|f(x)|<1\}, E=\{x:|f(x)| \geqq 1\}$, and suppose that $|F|<(a / 4)|E|$. We must show the existence of a suitable μ.

Consider first the case when $|\{x \in E \cup F:|x|>b\}|=0$ for some finite b. Both the hypothesis, that $|F|<(a / 4)|E|$, and the desired conclusion are invariant under the change from $f(x)$ to $f(2 b x-b)$, and therefore we may suppose without loss of generality that $E \cup F \subseteq(0,1]$. Let $\eta>0$. There is a set $U \subset(0,1]$ which is the union of a finite number of open intervals, and such that the measure of the symmetric difference $E \nabla U$ is less than η. If J is sufficiently large, then

$$
\left|\frac{1}{J} \sum_{j=0}^{J-1} \chi_{U}(x+j / J)-|U|\right|<\eta \quad \text { for all } x \in[0,1 / J]
$$

For arbitrary J,

$$
\int_{0}^{1} \chi_{E \nabla U}(x) d x=\int_{0}^{1 / J} \sum_{j=0}^{J-1} \chi_{E \nabla U}(x+j / J) d x=|E \nabla U|<\eta
$$

and

$$
\int_{0}^{1} \chi_{F}(x) d x=\int_{0}^{1 / J} \sum_{j=0}^{J-1} \chi_{F}(x+j / J) d x=|F|<(a / 4)|E| .
$$

Therefore there exists an x such that both

$$
\sum_{j=0}^{J-1} \chi_{E \nabla U}(x+1 / j)<2 J \eta \text { and } \sum_{j=0}^{J-1} \chi_{F}(x+j / J)<J(a / 2)|E|
$$

Therefore for every sufficiently large J, there is an x such that

$$
\begin{equation*}
\left|\frac{1}{J} \sum_{j=0}^{J-1} \chi_{E}(x+j / J)-|E|\right|<3 \eta \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\frac{1}{J} \sum_{j=0}^{J-1} \chi_{F}(x+j / J)\right|<(a / 2)|E| . \tag{9}
\end{equation*}
$$

Let $Q=\{j: 0 \leqq j<J$ and $x+j \mid J \in E\}$. Then Q has N elements, where $N>J(|E|-3 \eta)$, so that by taking J sufficiently large, we can make N sufficiently large in the sense of Lemma 3 . By choosing η sufficiently small and using (8) and (9), we may ensure that the set $q=\{j: 0 \leqq j<J$ and $x+j \mid J \in F\}$ has fewer than $a N$ elements. By Lemma 3, there is a polynomial $g(t)=\sum_{j} \hat{g}(j) e(j t)$ such that $\left|\sum_{j \in Z} \hat{g}(j) f(x+j \mid J)\right|>s$ and $|g(t)| \leqq 1$ for all t. Let μ be the measure that places mass $\hat{g}(j)$ at $x+j / J$. Then $\left|\int f d \mu\right|>s$ and $|\hat{\mu}(t)|=\left|\sum_{j} \hat{g}(j) e(-t(x+j \mid J))\right|=|g(-t \mid J)| \leqq 1$. Theorem 2 is proved in the case when $|(E \cup F) \backslash[-b, b]|=0$ for some b, and in particular for all f with compact support.

Now to prove the theorem in the case of arbitrary f, let E and F be defined as before. Given s, let α and ε be such that, whenever $|\{x: \varepsilon<|g(x)|<1\}|<\alpha|\{x:|g(x)| \geqq 1\}|$ and g is measurable and has compact support, then there is a measure v with finite support such that $\|\hat{\nu}\|_{\infty} \leqq 1$ and $\left|\int g d \nu\right|>3 s$. Suppose now that $|F|<\alpha|E|$. For $c>0$, let $V=V_{c}$ be the function in $A(R)$ defined so that $V(x)=1$ for $|x| \leqq c, V(x)=0$ for $|x| \geqq 2 c$, and $V(x)$ is linear on $[-2 c,-c]$ and on $[c, 2 c]$. Then $\|V\|_{A(R)}<3$. For c sufficiently large,

$$
|\{x: \varepsilon<|V(x) f(x)|<1\}|<\alpha|\{x:|V(x) f(x)| \geqq 1\}|,
$$

and therefore there is a measure v with finite support Y such that $\|\hat{\nu}\|_{\infty} \leqq 1$ and $\left|\int V f d \nu\right|>3 s$. Let $A(Y)$ denote the algebra of restrictions to Y of elements of $A(R)$, with norm

$$
\|g\|_{A(Y)}=\sup \left\{\left|\int g d \mu\right|: \mu \in M(Y),\|\hat{\mu}\|_{\infty} \leqq 1\right\}
$$

Thus $\|V f\|_{A^{(Y)}}>3 s$. But $\|V f\|_{A^{(Y)}} \leqq 3\|f\|_{A(Y)}$. Hence $\|f\|_{A(Y)}>s$, so that there is a measure $\mu \in M(Y)$ such that $\|\mu\|_{\infty} \leqq 1$ and $\left|\int f d \mu\right|>s$.

Theorem 2 is proved.

References

1. N. Bari, A treatise on trigonometric series. Vols. I, II, Macmillan, New York, 1964. MR 30 \#1347.
2. ——, Trigonometric series, Fizmatgiz, Moscow, 1961. MR 23 \#A3411.
3. H. Davenport, On a theorem of P. J. Cohen, Mathematika 7 (1960), 93-97. MR 23 \#A1992.
4. J.-P. Kahane, Sur les réarrangements des suites de coefficients de FourierLebesgue, C.R. Acad. Sci. Paris Sér. A-B 265 (1967), A310-A312. MR 37 \#4494.
5. -, Sur les réarrangements de fonctions de la classe A, Studia Math. 31 (1968), 287-293. MR 39 \#6007.
6. J.-P. Kahane, Séries de Fourier absolument convergentes, Ergebnisse der Math. und ihrer Grenzgebiete, Band 50, Springer-Verlag, Berlin and New York, 1970. MR 43 \#801.
7. -, Brownian motion and harmonic analysis, Notes on lectures given at the University of Warwick in 1968.
8. O. C. McGehee, Helson sets in T^{n}, Lecture Notes in Math., no. 266, SpringerVerlag, Berlin and New York, 1971, pp. 229-237.
9. W. Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Appl. Math., no. 12, Interscience, New York, 1962. MR 27 \#2808.

Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803

