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FOURIER TRANSFORMS AND THE HERMITE-BIEHLER THEOREM

G. CSORDAS AND R. S. VARGA

(Communicated by Irwin Kra)

Abstract. A new necessary and sufficient condition for real entire functions,

represented by Fourier transforms, to have only real zeros is proved. An appli-

cation of this result to the Riemann {-function is also given.

1. Introduction

The purpose of this paper is ( 1 ) to establish necessary and sufficient condi-

tions for real entire functions, represented by Fourier transforms, to have only

real zeros and (2) to apply this result to the Riemann ^-function. The present

investigation is a continuation of the work that began with the researches of

Pólya ([PI], [P2]) and de Bruijn [B] (cf. also [CNV], [CV1], [CV2], and [CV3]).

In Section 2, we review some pertinent definitions and provide the statements

of the results required in Section 3. An important assumption in the main

theorem (cf. Theorem 3.4) is that all the zeros of the entire function

/oo K(t)e'x'dt       (xgC),
-oo

lie in a horizontal strip, where K(t) in (1.1) is an admissible kernel (cf. Defini-

tion 2.2). The interesting and useful aspect of this result (Theorem 3.4) is that it

combines this geometric condition on the location of the zeros of F(x ; K) with

the classical conditions of Jensen (Theorem 2.2) and Pólya (Theorem 2.4). Our

method of proof is based on the Laguerre inequalities (Theorem 2.1), which

are satisfied by functions in the Laguerre-Pólya class (cf. Definition 2.1), and

the Hermite-Biehler theorem for entire functions (Theorem 2.5). With the aid

of the Hermite-Biehler theorem, we generate two families of functions in the

Laguerre-Pólya class and we express a classical necessary and sufficient condi-

tion for an entire function to have only real zeros (Theorem 2.4) in terms of

these functions, using a crucial technical result (Lemma 3.3). Finally, we use
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646 G. CSORDAS AND R. S. VARGA

the foregoing results and the known properties of the Riemann ^-function (cf.

(3.17)), to obtain (Corollary 3.5) a new condition for the Riemann Hypothesis

to hold.

2. Definitions and preliminary theorems

For the reader's convenience, we review here the definitions and theorems

which will be needed in the statements and in the proofs of the new results of

Section 3.

Definition 2.1. A real entire function f(x) is said to be in the Laguerre-Pólya

class, written f(x) G Sf - 9° , if f(x) can be expressed in the form

2 W

(2.1) f(x) = Ce~nx +ßxx" \[(\ - x/x^e*1*'       {to < oo),

7=1

where a>0,ß and C are real numbers, « is a nonnegative integer and the

Xj 's are real and nonzero with J2%i x]~2 < °° ■

A necessary condition for a real entire function f(x) to be in the Laguerre-

Pólya class is that it satisfy the Laguerre inequalities (2.2).

Theorem 2.1 (The Laguerre Inequalities (cf. [L] or [S])). // f(x) G Sf - 30,

then

(2.2) [/(w)(x)]2-/(m-1)(x)/(m+1)(x)>0       (xGR;m = l,2,3,---).

For a detailed proof of the following theorem of Jensen [J], see [CV3, Theo-

rem 2.10].

Theorem 2.2 ([J]). Set

f(z):=e~az2f(z)       (a>0, f(z)¿0),

where f(z) is a real entire function of genus 0 or 1. Then f(z) eJ? -¿P if

and only if

(2.3) \f(z)\2 > Rt{f(z)Y(z)}      forallzGC.

Before we apply Theorem 2.2 to real entire functions which are represented

by Fourier transforms, we introduce the following definition.

Definition 2.2. A function K: R —> R is called an admissible kernel, if it satisfies

the following properties:

(i)K is integrable over R,

(ii)*(f»0       (i€R),

{     > (in) K(t) = K(-t)       (iGR),and
Tip

(iv) for some e > 0, K(t) = 0(exp(-\t\     )), as / -* oo.

The Fourier transform of an admissible kernel is a real entire function. More

precisely, Pólya [PI] proved the following theorem.
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THE HERMITE-BIEHLER THEOREM 647

Theorem 2.3 ([PI], [P3]). Set

/OO

K(t)e'xt dt,
-oo

where K(t) is an admissible kernel. Then F(x;K) is a real entire function of

order p := p(F(x;K)), where, for some e > 0 (cf. (2.4)(iv)), p satisfies

(2.6) p< i±2 < 2.

While the problem of characterization of the admissible kernels, K(t), whose

Fourier transform F(x;K) (cf. (2.5)) belongs to the Laguerre-Pólya class, is a

long-standing open problem (cf. [CV2]), one can apply Theorem 2.2 to F(x ; K)

and obtain the following necessary and sufficient conditions.

Theorem 2.4 ([P2, p. 17, formula (18)]). The function F(x;K) defined by (2.5)

is in the Laguerre-Pólya class if and only if

(2.7) A(x,y;K)>0      for all x ,y gR,

where

/oo     /*oo
/     K(t)K(s)eiu+s)xe{'~s)y(t - s)2 dt ds.

-oo J —oo

In formulating an extension of the classical Hermite-Biehler theorem to

(transcendental) entire functions (cf. [Le, Chapter VII]), it will be convenient

to adopt the following definition (cf. [AK], [Le] or [M]).

Definition 2.3. An entire function w(z) is said to be a function in class HB if

(i) co(z) has no zeros in the open lower half-plane, i.e.,

(2.9) cú(z)¿0       if zgH~ :={z g C: Im z < 0},

and

(ii)

(2.10)
co(z

OJ(Z)
< 1        for Im z > 0,

where co(z) denotes the entire function obtained from co(z) by replacing the

Maclaurin series coefficients of co(z) by their conjugates.

Theorem 2.5 (A Hermite-Biehler Theorem for Entire Functions, (cf. [Le, p.

315, Theorem 4'])). Set

(2.11) co(z) := P(z) + iQ(z),

where P(z) and Q(z) are nonconstant real entire functions. Then a>(z) isa

function of class HB if and only if for any real constants a and ß , the entire

function aP(z) + ßQ(z) has only real zeros, and for some x0 G R

(2.12) Q'(x0)P(x0)-Q(x0)P'(x0)>0.
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h48 G. CSORDAS AND R. S. VARGA

Remarks. If the entire function (o(z) (cf. 2.11) of class HB has order less than

2, then it follows from Theorem 2.5 that P(z) and Q(z) are functions in the

Laguerre-Pólya class. Moreover, it is known (cf. [Le, p. 314]) that inequality

(2.12) can be replaced by the stronger condition

(2.13) Q'(x)P(x) - Q(x)P'(x) > 0       for all x G R.

3. New results with applications

We now introduce a geometric condition on the location of the zeros of the

Fourier transform

/oo K(t)e'x'dt,
-oo

where K(t) is an admissible kernel, and we use Theorem 2.5 to generate two

families of entire functions in the Laguerre-Pólya class.

Proposition 3.1. Suppose that all the zeros of the real entire function F(x\K)

(cf. (3.1)) lie in the strip

(3.2) S(x) := {zGC:|Imz| < t}       for some x > 0.

Then for each fixed ß > x,
/*oo

(3.3) P (x) := P (x ; K) := 2       K(t) cosh(ßt) cos(xt) dt e^ - 3a
Jo

and
/•OO

(3.3') Q [x):=Q (x;K):=2        K(t) sinh(/z?) sin(xi) dt G S? - 9>.
Jo

Proof. Fix ß > x . Then by Theorem 2.3, F(z - iß ; K) is an entire function of

order less than 2, and it follows from the assumptions of the proposition that

all the zeros of F(z - iß\K) lie in the open upper half-plane, Imz > 0.

From (3.1), we have

/oo
K(t)e>"(cos(zt) + isin(zt))dt,

-oo

which, since K(t) is an even function (cf. 2.4(iii)), can be expressed in the

form

(3.4) F(z-iß;K) = Pfi(z) + iQ^(z),

where

and

/oo /-oo

K(ty cos(zt) dt = 2       K(t) cosh(ßt) cos(zt) dt,
-oo ./0

/oo /*oo

K(t)eß' sin(zt) dt = 2 /     K(t) smh(ßt) sm(zt) dt.
-oo Jo
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Since F(z\K) is a real entire function of order strictly less than 2, and since

by hypothesis all the zeros of F(z ; Ä") lie in the strip S(x), it is known (cf. [B,

Theorem 6]) that there is a sequence {A„(z)}^L, of real polynomials such that

each hn(z) has all its zeros in S(x), and such that

\im hn(z) = F(z;K),
n—»oo    "

uniformly on compact subsets of the complex plane C. Thus, as hn is a polyno-

mial, it is evident (cf. [Le, p. 307]) that for each n(n = 1,2,3, •••), hn(z-iß)

is a function of class HB and that

lim h (z- iß) = F(z-iß\K),
n—»oo    "

uniformly on compact subsets of C. But the uniform limit (on compact subsets

of C) of functions in class HB is also a function in class HB (cf. [Le, p. 314]),

and therefore F(z - iß;K) g HB. Hence, by the remarks following Theorem

2.5, P„(z) and Q„(z) (ß > x) are functions in the Laguerre-Pólya class.     D

As a direct consequence of the foregoing proof, the integral representations

of (3.3) and (3.3'), and inequality (2.13), we obtain the following corollary.

Corollary 3.2. If all the zeros of the real entire function F(x;K) (cf. (3.1)) lie

in the strip S(x) (cf. (3.2)), then for all x G R and ß > x
roo     roo

(3.5) /     /    K(t)K(s)smh(ßs)cosh(ßt)A(x,s,t)dtds>0,
Jo   Jo

where

(3.6) A(x,s,t) := scos(xs)cos(xi) + tsin(xs)sin(x/).

Remarks. We remark that Corollary 3.2 is only one of several consequences of

Proposition 3.1 and Theorem 2.5. Indeed, under the hypotheses of Proposition

3.1, we know from Theorem 2.5 that for any real constants a and ß, the

function aP (x) + ßQ (x), where ß>x, belongs to the Laguerre-Pólya class.

Hence, in particular, aP (x) + ßQ (x) satisfies the Laguerre inequalities of

(2.2).
Our next result, while elementary in character, is the crucial fact needed, in

conjunction with the foregoing results, to prove Theorem 3.4. The proof of

Lemma 3.3 will be omitted, however, since it merely involves the verification

of the given formulas. (Note that differentiation under the integral sign with

respect to x in (2.5) is readily justified since K(t) is an admissible kernel.)

Lemma 3.3. If K(t) is an admissible kernel, then for all x, y G R
roo     roo

(3.7) A(x,y;K) = S        /    K(t)K(s)y¥(x ,y ,t ,s)dtds,
./o    Jo

where A(x,y;K) is defined by (2.8) and

(3.8)
*¥(x,y,t,s) :=

5 [cos(x?j cos(xs) cosh^i) cosh(^j) + sin(x?) sin(xs) %mh(yt) ún\í(ys)]

+ s;[cos(xí*) cos(xs) sinh(y/) sinh(ys) + sin(x?) sin(xs) cosh(yí) cosh(yi)].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



650 G. CSORDAS AND R. S. VARGA

Moreover, for each xjgR, the double integral in (3.7) can be expressed as

(3.9) ^A(x,y;K) = L(Pfi(x)) + L(Qii(x))       (y = fi),

where

(3.10) L(Pß(x)):=[P,ß(x)f-Pß(x)P'ß\x)       (x G R),

(3.11) L(Qß(x)):=[Q'ß(x)]2-Qß(x)Q"ß(x)       (x e R),

and P (x) and Q (x) are defined by (3.3) and (3.3') respectively.

With the aid of Lemma 3.3, we next prove the following theorem.

Theorem 3.4. Suppose that all the zeros of F(x ; K) (cf.   (3.1)) lie in the strip

S(x) (cf.   (3.2)) for some fixed x>0. Then F(x;K) &5? - 3s if and only if

(3.12) A(x,y;K)>0      for 0 < x < oo and 0 < y < x,

where A(x ,y;K) is defined by (2.8).

Proof. The necessity of (3.12) is clear from (2.7) of Theorem 2.4. To prove the

sufficiency, suppose that ß > x, and consider the functions Pfl(x) and ß„(x)

defined by (3.3) and (3.3'), respectively. Then by (3.9)

(3.13) ±A(x,ß;K) = L(Pli(x)) + L(Qll(x)),

where L(P (x)) and L(Q (x)) are given by (3.10) and (3.11). Now, by Propo-

sition 3.1, P'(x) ,Qß(x) E-zf -3s for all ß > x , and consequently PJx) and

Q„(x) satisfy the following Laguerre inequalities with m — 1 (cf. (2.2), (3.10)

and (3.11)):

(3.14) L(Pß(x))>0   and   L(Qß(x) > 0       (xeR,ß>x).

From (3.7) and (3.8) we see that

• A(x,y;K) = A(-x,y-K)    (x,yeR)

(3.15) | and

. A(x,y;K)=A(x, -y;K)    (ijeR)

and thus by (3.14) and (3.15)

(3.16) A(x,y;K)>0       for all \y\ > x and x G R.

Finally, it follows from (3.12), (3.15) and (3.16) that A(x, y ; K) > 0 for all

x ,y G R, and hence, by Theorem 2.4, F(x;K) e2C -2? .     u

We conclude this paper with an application to the Riemann ¿¡-function £(x),

where

(3.17) W_j;=8y        Ç>(t)ÇQS(Xt)dt,
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and where
oo

(3.18) 0(0 := Y^n ne'-^n ne5')exp(-n neAt).

For simplicity of notation, we set

/oo <b(t)elxtdt.
-oo

Now, it is well-known (see, for example, [CNV, Theorem A]) that 0(0 satisfies

the properties (2.4), and hence 0(0 is an admissible kernel. Moreover, it is

easy to check that £(x/2) g J? - 3° if and only if .F(x ; O) G S? - 3° . Now

the Riemann ¿¡-function is related to the Riemann zeta-function by the formula

(cf. [P2, p. 10])

(3.20)        í(íz)4^^)^-"r(| + I)í(z+I).

Thus, as the nontrivial zeros of Ç(z) lie in the critical strip 0 < Rez < 1 (cf.

[T, p. 30]), it follows that the zeros of £(x/2) lie in 5(1) (cf. (3.2)), and a

direct application of Theorem 3.4 yields the following corollary.

Corollary 3.5. // K(t) := 0(0 , then F(x ;0) G & - 3o if and only if

(3.21) A(x,j;O)>0      for 0 < x < oo and0 < y < 1,

where A(x ,y;K) is defined by (2.8).

To underscore the significance of Corollary 3.5, we compare (2.7) and (3.21)

and observe that the Riemann Hypothesis is valid if and only if inequality (3.21)

holds.
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