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ABSTRACT

ﬁUch.interest has been expressed, of laté; iﬁ the possibie
involvemeﬁt of the Fourier transform in.the primate visual
process. ‘Such iﬁvdlvehent is investigated here,-Qié Fourier
transfofmation‘of well known optical illusions, which are used
as inpﬁts.to a Fourier model of the viSual"procéss because'they
cénstitute knOWn failures of the real visual system. Through
study of such failures, knowledgé of thevworking:system may be
gained, as is the case in the field of genetics, where mutations
have been valuable tools of research. The essential‘feathres of
the visual pathway are outlined, and an'extensiQé'introduction
to the'Foufier traﬁsfofm and its applications pfesénted. A
current modcl inQolving Fouricr transforms is d;scussed, and
arguments for the significance of optical iIluéiéns in testing
that, and other models, are presented. A commqn'géometrical

illusion, the MﬂllerfLyer illusion, is mathematically described

“and itstourier transform calculated ‘analytically. Finally, the

effects of spatial filtering of a Fourier representation of the
Miller-Lyer illusion are investigated, using computer methods.
Numerous different filter functions are tested, to accommodate

different neurophysiological schemes, and it is shown that any

centrosymmetric filter applied to the Miller-Lyer Fouriecr array

will give rise to the known illusory effect. It is concluded
that as far as geometrical illusions and ordinary geometric
figures are concerned, the hypothesis that Fourier transformation

is involved in the primate visual process is confirmed, provided
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that some biologically realistic method of spatial filtering is

included in the hypothesis.
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INTRODUCTION

For many years, é precise understanding)of the nature of
human visual information processing has gvaded tﬁe efforts of
researchers, largely due to the enormous complexity qf the neural
networks involved. The 1ack df detailed information on the
morphology and electrophysiology of the visual pathway continues
to prevent any conclusivé mode1'for the system'asfa whole,
though much progress has been made towards elucidation of
numerous.elemcnts thereof. The exterhally verifiable properties
of the human viéual system, suéh as invariance.of.object‘recogj'
nition with wide variance ‘in object pos;tion, orientation, or
viéual coﬁtext, have played a dual role in the efforts‘to.formA
a model: ﬁhey constitute a majdr challenge to aﬁy‘prospectivg
model of human pattern recognition, but alsd'provide usefulu
guideiines for engineers and inférmation scientists attempting
to appiy,the general principles of ‘pattern recognition to the
viéual pathway.

One of the most controversial and interesting models under
current investigation is that in which avFourief LransformaFion
takes place wi;hih the visual pathway.. That,is; aécording to thg
model, thellight infofmation sﬁriking the surface of the retina
is transformed into a different kind of data by the time signals
réach fhe cortex.of the brain. As the visual pathway ié so
complicated, there is no direct method of verifying the model on
the basis of the neurophysiology involved--no "poll" of cells in

the visual pathway can be realistically taken which would indicate
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whe ther tﬁe cells contain Fourier components or notQ-therefore,
reseafchers afe forced to .resort to ﬁore indirgét methods of
verifiéation. One suchvmeans is to give the ﬁodel an inbut

' stimulué which is knowm in:thevactual human visuél system to
give’rise to an illusory effect( and see if the mbdel detects
the illpsion. This approach is the one taken hefe, for reasons
given at a later p;int, and it is suggested that it has'proven
fruitful in this case.

Tﬁe experimental épproach chosen for this thesis is based
on several important concepts, which iﬁ turn are baSed on’'a
somewhat extensive mathematical and biological framework. In
order that these concepts can be made clear, an outline of the
essential features of the primate visual paﬁhwéy»is‘presented,
as well as a fairly thorough introduction to thé:Fourier trans-
fbrm and ifs applicatibns.‘ In the description:Of the visual
pathway, it is presumed that the reader has some fémiliarity
with thé.vOcabulary'of neurophysiology, while the mathematical
introduction to the Fourier craﬁsform is writﬁeﬁ»with thev
assumption that the reader has some familiaritvaith calculus,
complex_nﬁmbefs and linear algebra (vectors and matrices). It
is inteqded that after reading thé mathehatical introduction,
the reader will feel comforgable with the basic prbperties of
Fourier traﬁsforms and theirvapplications, and will be equipped
to undérsgand the various manipulations of Eréhsforms thét.aré

involved in the experimental approach.

The reader should note that all illustrations are arranged by
section, and are located at the end of each section (unless otherwisc

indicated).
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OUTLINE OF THE VISUAL PATHWAY

The‘principle features of the eﬁormously qomplex network
that constitutes the visual pathwéy should be_underétood‘beforeb
any.modeis of the system are propqséd or stuaied, if the models
are to.have any basis in éhysiolbgical reality. ‘A schematic>and
simplified summary of this network is outlined Beiow for
monocular. vision. The author recognizes that the brévity_ of this dis-
cussion requires that it be incomplete, but believes that the most im-
portant elements are covered sufficiently forv' tHe reader fo under -
stand the njaterialijlthis thesis.

v Lightiwaves passing through the pupil and the lens are
focused on the retina thgough a liquid intefmed?afy medium
.cglled the vitreous humor (Fig. 1).. The photofeceptive layer
consists of ~126 million photosensitive cells,.of'which ~120
million are rod-shaped and are thus called rods, and ~6 million
~are called cones, for their conical shapé. Theée'cells'convert
light energy into electrochemical energy, excite the neufal
éellsvattached.to them, known as the bipolar cells; and stimulate
_Surrounding_rods and cones via the. horizontal qells.

The bipoiar ceils, of which there are many types, link the
rods and Cones‘tq'the ganglion'cells, usually directly, but often
via amacrine cells, whqse ﬁumerous extensions spread the signal
to many génglion cells. The complex nétwork 6f interconnections
between the photoreceptors and the>opfic nerve is‘illustrated
schematically in Fig. 2. As can be seen in Fig. 2; the flow of
information is by no means Qnidirectional from retina to optic
nerve, and even involves transmission of information from the
higher centers of the brain to the rods and conés, via so-called

"centrifugal'-type bipolar cells,.



Ip the mammalian retinva, which is a rﬁultiléyered structure,
the pho‘tbreceptivé iayer of rods and cones lies: farthest a.way
from the'bbject in space, and thus it is ﬁot Surpfiging f:hat all
the other neural layers which precede it are .hi.g}').ly' tranéparént
(1). '._['he' bipolar, horizontal aﬁd amacrine cells respond to
~excitation not by geherati'ng >én actioh po'tenL.ié‘i or impulse, but
by cohtinu-ously varyingi the degree of polarization of their ééll'
membranes (1). The first cells in .the visual pavt‘hway‘to trans=-

late thé light intensity information at the le;/el' of rbds and |
cones iﬁto neural impulse frequenéy, or firi:ng'r;a\te‘, are the
gar.xgvlion cells, whose long cell bodies (axons) merge to form the
optic nerve,

The refinal surface is non-homogeneous 1n many respects--one
of particular importance is that the cells in the.pb‘rtion lying on the
visual axis (Fig. 1), which constitute the fovea, afe much smaller
“and more densely packed than in the extremit:ies' of the retina. In
this region, each cone is connected to a single, correFSpondin‘g bi- -
polar cell, Qhereas in othér retinal areas, many photorece;ptorsj
feed iﬁto a bipolar cell. As a result, the foveal region is the area
of highést visual acuity on the retina, and this accounts for the fact
that the best visual detail is seen when ‘theiobje’c.t .of interest is

cehter’ed in the field of view.
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' As shown in Fig. 2, each ganglion cell is linked to many
photoreceptors via the network of bipolar, horizontal and amacrine
cells; the portion of the retina to which a given ganglion cell re-

sponds is called its receptive field. The receptive field of a ganglion

cell is usually composed of two parts: an excitatory portion, in
which illumination will cause an increase in the rate of electrical
.impulse generation ‘by the ganglial cells (incréa’sed firing rate),
and an inhibitory portion, which has the opposite effect when
_illuminated. Illumination of a randomly selected point in the re-
ceptive fiéld many either increase or decrease the.firing rate of va
given ganglion cell, so that a single ganglion may simultaneously -
receive scveral excitatory and several inhibitory impulses from a
complicbated image on the retina. The response of the ganglion to -
 such stimulus is an averaged or net response to the multiplicity
of inputs (10). -
When the excitatory part of the receptive fiel_d of a

ganglior; cell is illumina t:ed with light intvensity' I, thé

ganglion reSponds. by firing impulses of equal a_mplitud(; at a
frequency dependent upon I; in general, the higher is I, the
gréater the frequency (but not the a_mpli.tude) of t.he ganglion
impulses (1, 10). “The precise mathematical relationship [between
the intensi;y distribution (the focused image) on: fhe retina ana
" the response of the corresponding g'anglion cells.ihas ye.t to be
e’lucidatéd,"' but 1L is clear that ganglion ccll'behavior 'is not

a simple function of the intensity distribution. For example,
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it has Seen shown that the information at thé'génglion levél
corresponds to a modified version of the focusea imagé,‘in'
wﬁich'Borders and béundarigs 6f.object§'have beeh'great1§
enhanced, and the Sensitivity to mOvemenL_in tﬁe-?isual écene
has been increased (10). The axons of the gangiidn cells merge
to forﬁ the optic nerve, and carry the retihal iﬁf0rmation tb
the lateral geniculate body via the chiasm, a juﬁcﬁion region
wherein half the optic nerve fibers from each'eyé cross over to
the opposite side of the brain (Fig. 3).

In the lateral geniculaté body, a multilaminar structure,
the retinal ganglion cells synapse with the so-called geniculo-
: \ _ _ :
calcarine neurons, which connect the 1atergi geniculate to the
visual cortex. Recent gvidence indicates thaf néurons carrying
information from other.senses than vision also Syﬁapse with the
ganglion and geniculo-calcarine neurohs in the 1agera1 geniculate
body (14), supporting the theory that there is direct interéction
between the senses prior to processing in the bféiﬁ. -In trans-
ferringvthe information from ganglion to genicﬁlo-éaicarine
cells, the lateral geniculate further nnodiﬁes‘thevinfbfj
mation, although the mathematical nature of thé ﬁodification'is
not precisély»known, However, the information'passed by the
geniculo-calcarine neurons to the striate cortex is thought to
be still, essentially, a one-to-one mqppiﬁg of_thé retinal
information (4, 1), and thus the cortex ;eceiyeé ;s its visual
input a modified but more or less direct transfer of the focused
image on'the retina. Oné should not undergstimate the importance

i
'




i

-7-

of the modifications, though, as they are surely essential to

_the visual process and are enormously complicated. For example,

" there is considerable evidence that many axons of the optic

nerve cérry signals from t‘he bréiﬂ to the retina, suggesting a
feedback system (1, ‘p. 109). | |
Before discussing the striate or visual cortex, some
important additions should be made to the above comments on
the subcortical part of the‘visual i)athway. Firs.t, as‘ has
been‘ pointed out by Westheimer (17), the input to the visual
system is resoluﬁion-limite'd from the start by . the d_ibame.ter 6f

the pupil, which acts as a variable aperture on the lens, and by

‘the constant, random movement of the eye. These factors combine

to produce an effect known as line spread, whereby a thin line
placed in the field of view is degraded to appear spread out

(thicker) in a gaussian or other distribution on the retina.

‘For a pupil of diameter 3 mm, one experimentally determined

best-fit line spread function is f(x) = e-('7|xl) (17), which

means that a vertical line is distorted as follows:
Intensity _ Intensity -
Cross section of

vertical line on retina,
after line spread

I Cross section of
vertical line before
eritering eye

—_—
Line spread

0 : -4 0 +4
Minutes of arc on retina

Fig. 4
DBL 728 5425
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. Other experiments have shown that the minimum angular separation
between parallel lines (aﬁgle measured on the éurface of the
curved retiha);that the retina‘canvdetectﬁis 0.6 minute§ of afc,
under thé most favorable coﬁditions for high resolﬁtion viewing
(17). This is then an upper limit one could expect.for the JY ;
résolﬁtion of the entire visual system, |

Another iﬁportant point is the nature of the receptive
fields of the ganglion and géniculate cells. Thevganglion cell
responds to a more or less circular région of the retina, the
region.having a smaller concentric subset (Fié.vS).v If iilumi-
nation of the central portion gives rise to incréased ganglial

firing rate, illumination of the concentric surround inhibits

the rate, aﬁd this type of receptive field is calléd an '"on''-
center field. Similarly, an "off"-centér receptive field has

' an inhibito:y center énd an excitatory surrodnd; For a given
cell and intensity of illumination, the réSponse to illumination
of the retina variesiwideiy~according t6 thé pdrtion of the
receptive field iliuminated.v Two beams of light striking
different portions of the "on" centrgl region_pronCe a greater
increase-in,firing rate thaﬁ either beam alone, ﬁhereas tke two
beams hévévlitgle combined effect if onebstrikeSgthe‘center énd
the otherIStrikes,thé surround (10) at the same time. Diffuse
illumination of the entire rekina has far less effect on a

given ganglion cell than a single spot of ligﬁt éhat‘strikes,
‘only the excitatory center of its reéeptive field. Geniculate

cells have very similar receptive fields to those of gahglion
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cells, tne basic shape being circular with concentric excitatory
and inhibitory regions. A significant difference between the
two, however, is the greatly enhanced capaciry of a genicuiate
cell's periphery to cancel the effects of its cenrer (10). This
implies that geniculate cells are even more sensitive tn the
precise distribution of intensity in the focused image than the
ganglion cells, and thus the lateral geniculatebbody.effecrivély
increases the disparity, already present in ganglibn cells,
between response to small spots of light or shérp edges, and

diffuse light.

" The visual cortex is a vastly more complicated structure

" than the lateral geniculate body, consisting of a multilayered

sheet of billions of cells, folded and convolnted‘on itself to
form a compact structure. The'geniculo-caléarine neurons attacn
to the rortex in the layer of cells thar is}fourth from the tnp'
of the cortex, the layer known as area 17 (4). From hére.thé
information is eventually diséeminated to ali tnevmanf layeré
of the cortex by‘richbinterconnections between theﬁ. Tne:célis
of the visual cortex respond to illumination of definite areaQ:
of the retina, but their receptive fields are not éoncenrric-—a
distinct difference from the ganglion and geniculate cells (10).
Hubel and Wiesel (10) founn two types of cortical éell, termed
"simpleﬁ and ”compléx", for their respective rééponses to
optical stimuli at the retinal level. A simple cell respondn
to line S§imu1i;-5uch‘shapes as slits (bright lines on dark

background), dark bars (dark lines on a light background) and
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edges (straight boundaries between a light and a_dérk area), when.
loqated in a specific region of its receptive field, and respond
maximally when'the line is in a specific orientation. Such

cells respond to movement of a stimulus on the retina only as

the stimulus crosses a vefy narrow boundary between '"on' énd

"off" regions, and it is thus said that simple céiis have long,

' narrow ;eéeptivé fields ("on'" centers). Complex éells also

respond to line stimuli; but are far more sensitive to angular
orientation than simple célls, while being far léss specific 55.

to position of the sfimulus on the retina. Complex cells respond

to stimuli of a particular orientation, respond rr;aximally to those

of a particular width, and show {rirtually no'v_aria.t'io_n in their excited
firing rate as line stimuli of the proper orientation are moved across
large segvmen‘ts (ai‘voxind 20% each) of the total fetinal area.

Thus, their receptive fields cannot be undersfépd in terms of clearly :
demarked "on" aﬁd "off" regioms. Rather, sucﬂ-beﬁaviof strongly |
implies suﬁerposition of similarly-oriented receptive fields,‘

which would be the case if each complex cell recéived its input

from many simple cells whose receptive fields all had the same
orientation (10? p. 63);v Such a scheme would call for inter-
cohnectiqns between simiiar'simple cells and tﬁeir complex
counterparts, and Hubel (10) has found strong éhysiblogical

évidence for such interconnections: '"Functionally, the cortex

is subdivided like a beehive into tiny columns .or segments, each

of which extends froh the surface [of the cortex] fo ;he’white

matter lower in the brain. ‘A column is defined not by any

»
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anatomically obvious wall--no columns are visible uhder4the
microscope--but by the fact that the thousandsfof cells it cdﬁ-‘
tains all have the same receptive-field orientation". (10, p. 62)
(Fig. 6). The elecffophysiological data on which these state-
ments ére based can be summarized as follows: as a midroéleétrdde
is pushed into the cortex and the recepﬁive fieids'of the cells
thrOugH which it passes recorded in sequence, éli céllé show the
saﬁe field orientation when the penetration is made in a difeé;'
tion perpendicular to the surface of ;he cortical ségment. When
the microelectrode is inserted and samples taken at an obliqué
angle, the data show first a few cells with the same réceptivé
field orientation, then several cells with a common, new
orientation,‘and S0 oﬁ, as though the electrode weré passing
from column to ;olumn. Receptive field orientétidn appears tof
be the only common denominator of the cells of a'giveg coluﬁn;
however, as they may be simple br complex cells, reSpond.tav
slits ohly, or réspond breferentially'fo dark bars or edgeé.'
Anatomically, the columns are irregular in croésvseétidnal shape
but aVerage about 0.5 mm2 in cross-sectional area. Also, it is

well known that the preponderance of interconnections among

cortical cells is in a direction perpendi cular. to the cortical

surface, and this fits well with the long, narrow,'more>or less

~cylindrical shape of the columns. The relative lack of

connections between cells of different columns implies that a
column may be considered -an independent functional unit of the

cortex, in which simple cells receive connections from lateral

’



geniculate’cells and éénd projections té compléx cells. The
result of this is: that a line stimulus with é'gi?én brientation
‘iwill most-strongly stimulate the cells of the qblumn whose
"receptive fields éorrespond to that orientation. As the‘areas

bf the ré;iha.representeA'in each_coiumﬁ overlap'with one another

to a great extent, each small region of visual field is represented
"over and éver again, in column after column [ of the cortex], first
for one reégptive-field orientation and then fdrzanother." (10,
p. 63). This cxtensive redundancy will be meptioried ;gain, as a key
ingre‘dier‘lt to the Fourier model for Qisual infofmation processing :
and storage.

ThiS comp1etes ﬁhe brief sketch of the viéuéi'pathway

intended for this thesis. At least one'major point remains to

“be emphésiéed, though, and it should be borne Earefully in ﬁind.

The foregoing description is of the machinery of vision and

pattern recognition, and some of the phenqmenoiqu'ﬁhefeof. The
ﬁrecise ﬁéchanisms by which the phénomenology is linked to the
machinery havé, in most cases, yet to be élucidéted, and many

models are presently atteﬁpting to make the connection. However,
there is a clear concensus of scientific opiﬁion on the viéual

process as a whble,'that there is a distinction between the

process of visual information processing and that of interpreting

the processed information. Anatomically, the former is believed

. . : I
to take place between the retina and striate cqrtex (the.sub-
cortical part of the pathway) and the latter in centers deeper
within the brain, though feedback networbs between the two.are

a virtual certainty. The mutual interdependence of the two

_systems'is-clearly indicated by the fact that a change in the
. . . R |

S
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information being.processed visually causes a change in the
intefpretation thereof, and conversely, that pfior knowledge
abbut an input td the system may affect the way it is processed,
An example of the latter is the phenomenon of-figure-ground
reversal, wherein an ambiguous picture is viewed, in which it
is difficult to distinguish between object and.sufroundings.
After one has been informed which is which, the saﬁe input

elicits a different interpretation from that when uninformed.
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FIGURE 2 (EXPLANATION)

The structure of the primate retina reduced to its

- essentials, including the synopsis of the propagation of the

retinal impulsgs from the photoreceptors to other parts of the
retina, to the brain, and from the brain back to the retina
(directioﬁ indicated by arrows).

Labling of the cells: a, b, rods and cones, or the
photoreéeptors; ¢, horizontal cells by means of which the
impulses are transmitted to the surrounding réds_and cones ;

d, e, £, h, centripetal bipolar cells of the mop, brush, flat,
and midget varieties, which "transmit" the impulses from the
photorécep;ors to the ganglion cells,.the bipoiars serving as
"analyzers"; i, centrifugal bipolar cell, a variety of the

"amacrine cells,"

which probably recei ves the impulses from the
centripetél.bipolars, from the ganglion cells, and also from
the brain by way of the centrifugal or efferent fibers.(t)

and transmits them back upon the photoreceptoré (a, b);

1, an "amacrine cell" which possibly intercepts’é part of the
bipolar impulses and spreads them over the surrounding territory;
m, n, o, p, S, gaqglion cells which receive impulses from the |

centripetal bipolars and transmit them to the brain along their

axons called "optic nerve fibers." (Polyak; The Retina,

Univérsity of Chicago Press, 1941.)
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FIGURE 6 (EXPLANATION)

Functional arrangement of cells in the viSual cortex
resembled columns, although columnafistructure is not~appareﬁt
under a microscope. Lines A and B show paths of two micro-
electrode penetrations: colored lines show reéeptiveffield
orientations encountered. Cells in_a single column had same
orientation;_change of orientation showéd new column.

(FronuI{ubel{.Referencé 10, p. 62).
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MATHEMATICAL BACKGROUND

Ohé 'of.' thé basic concepts of linéar‘;\lgebra is that of a vector
space. A two-dimensional vector spéce, for examplé, éonsists of the
plane. in .whiCh two nonparallel vectors & and B lie. That i_s,‘ the set of
all éoints ‘(vectors) which can be located by 1i»neavr >c6mbinations
C1K + ng constitutes a two dimensional vector space, and that space
is a’plané..‘ The twé vectors, A and _B’ are said to constitute a basis set
fof the space in which they lie, and if they are perpendicular to one

another, form an orthogonal basis set for the plane. In either case,

& and B are said to span the plane, meaning that they 1inéariy com-
Bine to corhplctely determine all points on the plane. It should be
noted tha‘fthere are infinitely many pairs of orthonormal basis vectors
in a given plane. Iﬁ general, a‘space which is spanned‘}va'y n inde-
pendenf véctdrs (i. e., no one vector can be generated by linear com-
_binationé of.the others), is said to have dimension n, and the set of
n such veqfors constitutes a basis set for vector n’-bl_'space.

The extent to which one vector " overlaps' with another is ex-
pressed by the projection of the one onto the other, as seen in the

- illustration below:

A measure of the amount of projection is

the inner product between A and f;’, also

known as the dot product because of the

INAll cos §

'Fig. 1 ‘symbolic form in which it is usually written,

-

‘B . If Ais (a5,a,) and B is (by,b,), B =ab, +ab, =

| A]] I B lvcos 8, where |]A| l means the length of K and is gi{zen'

by | |A]]| = \/a12+‘a§ , and ® is the angle betwgen'x and

LT )

(see 'figure. above)., If A and B are orthogonal, then 8 =



B
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and []A]] - |IB |} cos 8=0. Thus, two orthogonal vectors have an-_iinbne“r .

product of 0. The inner product can be applied to vec.fors in n-space
by extending the definition to be:

-+-,a ) and B - (bi,b

If A :(ai;az, 2,-~,bh), then
L n . ‘n . )
A.B =Va1b1+ a2b2+ R anbn = -Zi ai’bi' If )_1 ai_bi = 0,
' i= Coi= o

the two vectors are orthogonal, as in the two dimensional case. If"

e4»€y ", e arean orthogonal basis set for vector n-space and each

have length 1, they constitute an orthonormal basis set for vector n-

space. Al_lyvecwr A=(@g,arre,a )=l tay, teetaly
the vectors 1, T

1,.i)2, -+-,1 are one basis set for the space, must also be

expressable as a linear combination of the basis vectors 31, 32,-- .. ’gn'
That 1$, A = C1e1+.C2e2+ e vt Cnen’ where the Ci’ CZ’ . ., Cn are

constants. What are the constants? The sum of n vectors is another
vector, so it is appropriate to speak of a dot product (inner product) of

the right side of the above equation, with another vector. ~Let's take

the inner product of both sides of the equation with the vector gj,"‘one o

of the basis vectors. Since the inner product is distributive over addi-
tion, we have:

A-ej = (Cie1 + Cze2

4 e+ Cle.t e +C o) o
o)) - nn J

o

= C.e, .e.+C.e,.¢. ++++4+C.eee. +C'e ...
j 2 J.

2 33T T et

By their mutual orthogonality, the dot product between one basis .vec;
tor and another must be 0, é.ns since eacvh‘ vectpr has length 1, |

Ej.ég - 1, so the sum of theb.right side becomes .ngj —é_] =C.. Thus, '
we have A- ej = <X,gj > = Cj’ where <,> is another common nota-

tion for the inner product of two vectors, 'in this case A and -gj'

So, each constant, Cj' is determined by the inner product of
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A with the basis vector —éj’ .and therefore,

A:Z<‘"ej>ej='(C'1’C2'...'Cn)e....‘ (1)

Such a change of basis sets within a space, with its corresponding change

in the n-tuple representation of a vector, is called a linear transforma-

tion, and will be seen to have diréc_t anaiogies in the discussion to fol-
low. \ |
The concepts of a vector space can be extended to other domains

than the set of real numbers, to that of a function spa\cé. To understand
the connection, one must first know what constitutes a space. A space
is a set or clolléction of elemen;:s that have c'e'r.ta_in propertieé in com-
mon. A vector n-space is a collection of elements, each of which is an
ordered set of n numbers; the number of numbers, n, in each element

is the dimension of the space. For example, each point in a plane isde-
fined by an ordered pair of numbers where each ''slot' can have any
real number xeR1 (the real line). To say that the dimension of this vec-
tor space is ''two'' is to say that the combination (x'i,xz), ‘where both Xy
aﬁd x, are free to take on any real value, yields a collection of all pos-
~sible points that are elements of RZ, the real plane. The method of com-
bination is called the Cartesian product and is written R‘1><R1 = RZ.' Now
Ri, being thé set of all real numbers, can be generated and regenerated
in many ways; e.g., a real-valued, monotone function .f(x) takes a num-
ber in R1 and _rnanipﬁlates it to give another number in Ri, so_t;hat R1
is both the set of all .values of x and the set of all values of f(x). Fbr
any pértiqular value of x, say x :. 1, one can conceive éf a sth of func-
tions {f(1)} such that the values of these functions "fill up'' the whole
real line. Thus, an equivalent way of expressihg RY is the set {f(i)} of

all real-valued functions of the number 1. So, upon looking at the

concept of a vector space from this standpoint, one can write
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an equivalent form of a pair of'nhmbers (xl,pxz)'asbé.pair of
sets ({f($_v s {f(Z)}), where - £(1) 1is the set of all real
valued fﬁnctions of.l, and {%(2{} is the set offail real-vélu;d
functions of 2.. Thebadvaﬁtage of this more genéfalvformulation
is thaﬁ vector n-space can be understood as the set of all _
functions on the otde;ed infegers 1,2,3,...,n =}({f(1i>,{?(2».,
{f(35} yee {f( n)}), and an important conceptual exténéion can |
schematically be grasped; -A vector n-space could"ﬁﬁgn be represented

as follows:

Fig. 2 [6RDEREDINTEGERS-———> ALL FUNCTIONS [—| VECTOR n-SPACE

This is extendable to indéfinitely large dimension by letting
n increase without BOund. A question arises, though: what happens
if insteéd of using the integers as a start, we'usevthe seﬁ §f all
real numbefs, Ri? The result is called.a FUNCTIO&.S?ACE over the
real line éna has analogies té all the pfopéftie§ ofvvector n-space.
However, the set of all functions 6f a real variéble‘is éertainly
an enormous sét, and we néed not deal with so vas£ and varied a
coilection..mThe set that will be dealt with is fhg Setvof all

‘functions that obey the following condition:

+ o0 _
,jlf(x)lzdx'< w .
This set constitutes a space, called an LZ space, which is a
particular version of a more general notion calledv\é.‘Hi'lbe'rt space.
_ , .
We will allow f(x) to be complex-valued, meaning that the function
f takes a real number x and converts it to a number a+ib, where
a and b are real numbers and i=¥-1 . The set of all complex

numbers, {a+ib} constitutes the complex plane Ci,_ whose horizontal
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v

axis is the real line,R1,and whose vertical axis is the set of
all real numbers multiplied by i. The latter set is referred
to as the set of imaginary numbers; the figure below depicts the

complex plane and some important features thereof:

iy
bij~——-— ,'(a,b.‘) = a + bi
. : C -
Fig. 3 ' ) i r=+/a* +b?
, . + X —
i\a

(a.~bi) = a — bi

The point a-bi, the reflection of a+bi through the real axis, is called

the cofnplex conjugate of atbi, and is written a-bi-= (a+bi)*. Since
each member of the range lof a complex-valued function is compésed
of one real and one imaginary term, a small a. complex-valued
function can be considered as the sum of a purely reg.l-valued func-
tion and. a purely.ir’naginary-valued function, f(x) = y(x) +iZ(x). The
inner product of two functions is analogous to th_af of two vectors,i.e., if
£1(x) = Y00 + 2 (x) and £, = Y (x) + iZ,(x)
where o Y‘l(x),‘ Zl(x), Yz(x) and Zz(x) ar‘e"real, then the

inner product of f, & f2’ is

1

+ .
< fl(x) s fz(x) > = f fl*(x)- fz (x) dx,
w,herew fl*(x) ='Y1(x) - iZl(x)._.

) .
) *
A]. ’ < » =
s0 < £, £() > j_£2 (0 £ (x)dx

= (< £, £,(0 >,
1 2

+o0 Jo

‘ If fl(x) -and fz(i)w are orthogonal,_jmf1 (x). fz(x) dx = 0, and

conversely, if j f1 (x)e fz(x) dx = 0, fi(x) and fz(x)are orthogonal.
- 00 . .

A set of functions hn(x_) forms a basis set for the space of functions

defined on a finite interval of the real line, a.< x < b, if any
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function f(x) on that interval can be expressed as f(x) =

‘ZAC h (x) . If the set h (x) is such that
nn"~ . n

< hi(x),h'j(x) > = 0 for ifj, then hn(x) is an -
orth'ogonai' basis set, and if < hi(x),hi(x) > = 1; then the set
hh(x) is .an::tifthonormal basis set, and the values of Crl in the

above summation can be determined in precisely analgous manner'

to the situation in vector n-space: Thus, Cj = < f(x)»,hj(x) >
and £(x) =£S-;ff(x),hn(x) > h_(x) AN E))

There are infinitely many' sets of orthogonal basis sets |
(hn(x)>, among them being the Taylor, laguerre, Hermite and other
polynom:/i.als, of great importance in éua_ntum mec‘hanics. Each set
may be used to expand f(x) into an infinite seri:es;, .with
appropriate coefficients of the basis bfunctior}s b‘eing summed.
The large number of functional basis sets is analogous to the situationina
 two-dimensional vector space, where any two perpéndicular vectors form
an orthogonal basis set for the space. | |

It can be shown that the set of complex-vaiued functions

{eZ'irinx}’ n=*4,+2,43,..., forms anorthogonal basis setfor all L‘2 functions of -
' )

2rinx, ' .
TINX forms a basis set f

Vi .

the interval 0< x< 1. The proof that {e
for the space is beyond the scope of this paper but can be found ‘

27rinx] :
> are orthogonal is straight-

J

forward, as will be shown: First, note that e

_ 1
~in (13). The proof that ie ‘

2 . . L
mnx cos (2 nx)

+ 1 sin (2wnx) by Euler's identity.

Then T = (cos(2mx) +isin(2mx))
. ' 21
= cos(2mnx)-isin(2wnx)=cos(-2mmx)+isin(-2mx) =e crinx




Then:
The inner product of two functions fl(x) and’ fz(x) over

the interval a <x< b, is defined as < f_ (x),f (x) >
b LT [a,b]

. * o .
= f1 (x)-fz(x) dx, and will be 0 if and only if 'fl and f2 are

a . .
orthogonal on the interval a < x < b. So, putting these notes

together, we have. that {e vlnx} will be orthogonal. on the interval

[0,1] if and only if for every pairrez_ X eZTrilx

(!- & m integers

< n), the inner product is O .

" Thus:
2 - 2 - - 3 2‘ .
<e mmx, . Tidx s (0.1] =f 277—1mxe 'nfxdx
'0 . L. .
1 . .
_ 2ri(f-m)x -
o

‘and 1f [f-m#0 (£L#m), we have

1 ZWi(f -m)x 1 '\; 2ri (L-m)x 1 v
j ¢ dx 2mi(l —m)/' €
o . ‘ 4 o
. . | 1
= i lom) [COVS(ZW(Z-m)X) + is_in(ZTr([-m)x)] o Now

({-m) is an integer, so sin{(27(£-m) = sin(o~{-m)= 0, and

2rimx e2‘rr(£ -m)x

coslrfmi- cos(0.{L-m)= 0, 0 <& T, ¢ ¢ >0,1]
' L -2rinx 2mimx s o
0 ifx4mo If ’(:m) we have f e 21r1mxe mmkdx =f1,‘ eod.\' = 1.

. ) . 0
Another way of writing this is ‘

. . 2 3 . . v |
< e277'1mx e i fx > = or"' , where S:(m =1 if {=m
€. ’ [0,1] im - 0 if f#+ m

"With this background, the Fourier Transform becomes a simple

application of the principles stated above.
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THE FOURIER TRANSFORM

Suﬁpose f(x)_is,a function which satisfies the following

f
i

restriction: 1 v S i
| - 2
f|f(x)| dx < o
Then the set of all such functions comprises afunction space,

and that space is spanned by many different sets of eigen-

2ring

functions, among them being the set (e }. By the previously

mentioned property of functionspaces, any functiondefinedona
finite interval of the space can be expressed as a linear

' 2rin
combination of the functions {e m }3,
+oo

so f(x) = Z Cne277‘_in.‘~2 e (2),. where the Cn are

n=e
complex constants. The C_, term, also known as the "DC term",
is of particular interest, as shall be shown: 1let the length of
the interval on which the function is defined be 1, for some

appropriate unit of length. Integrating over this period, we

1 Al | o A1
- 2rinx . A 2‘,'rinx
f f(x) dx = fn:-z Cne dx = n=-Z-o‘ “n_/' € e

o o (o]

have:

For any k # 0, the integral is ' I

" ,
leZTriIc»;dK 1l 2rikx] 1 jcos2iKx
I FT ik | +isin27Kx

1
= 0. When k=0, the integral isJ[‘ efdx = 1 (length of interval), so,

o

1 : 1 (interval)
S'f(x)dx—-_cd. (interval), and G, = oo (T £(x) ax = Fix), the
(o]

'ov

average value of the function.
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Now, to determine the general constant Cm’ t!we multiply both sides

) -2 .
of equ. (2) ‘by e Mimx and integrate from x = 0 to x = 1. Thus,

oo e N
/\ e Timx f(v) dx =f Z ~Cne21r1n_sj emeg dx

0 o \1=7%
+ 1 ' 1 :
27ri -2 » » - 3
= . Crfe nxe dx . But / e27r1nxe 2rimx dx is
n=-" o ’ “o |

< e277-1rnx,eZ

just and from previous arguments,

.4
2rimx  2rinx S
< e2‘n" ,e > = §mn. So, all terms in the series will

be zero except where n =.m, so

1 , . 1 v‘ o
f‘f<><> e Ty l'Cm%Cff £x) e M ™yx | (3)

.0 . [o] '
The set of constants {Crn} constitutes the DISCRETE FOURIER
TRANSFORM of f(x), ' '

" Rewriting equ. (2) using the new vélue_s for Cm, we have
' o -
f() = E' < f,e TN oMk . ' %)
Nz=% [0,1]
This is precisely analgous to expansion of a vector, seen :
earlier. [équ. (1)].,The discrete Fourier transform was defined

for the set of all L, functions which map the interval [0,1] of

2
the real’»line into the complex plane. What if functions are to
» be considered that map (i..ev.,' are defined on) the ybg_l_e_ real

line iﬁto the complex plane? - The discrete summation then becomes
an integfal and the discrete constants Crn become functions 'gtju) |

‘of a continuous variable u instead of the integer-valued K,

as follows:
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-0

k= -00

=)

so, o
‘ . A 27 o 2 .o
£(x) :\/~g(u)e I 3y, and g(u)i/1f(x)ef THUXqy
: E o, . - ‘
g(u) = F{%(x%"= "the Integral Fourier transform of f£(x)"
f(x) = F-l{?(uj} = "the inverse Fourier transform:of g(u)" -

All of the foregoing arguments can be extended to functions
of more than one variable, x. A two-dimensional L, space
is the set of functions defined on the real plane, that

obey the condition:

e

. 00 o]
2 ) .
f f ]f(x,y) ' dxdy < . All the arguments for

1

inner products, basis sets and expansions follow in an
analgous manner to those for the one-dimensional case, and

the set {} 2ni (kxfny)}-forms a basis set for the L, space

on the region 0<x <1, 0< y <1 of the real plane. Thus,

the expansion of a'function f (x,y) on that region is given

v : 2wi (kx + ny) A
by £ (x,y) = z Z Crn® _ ", where CknﬁﬁLf(X. yle

k= == n= =

When the interval of the real plane becomes the'whole plane, this

becomes an integral transform, with Fourier variables u, v

"instead of integers k n, and we have

e ff e w0 G, B RS e N |

.ux

o o | -
2 . 2 . . -
z Ce T_rlkx 7 [ g(u)e ™ du » where g(u) =f f(x)e oM

dx

i

-2wi(kx+ny)
dxdy



. where © o _ _
o] fo o G

F (f v(x,y')“} means, "the Fourier 't-ransfor.m:of £ (x,y)" and
f-l {g (u,'v)'] méans "tHe inverée Fourier trans‘form of g (u,v)".
Several ‘important prdperties of Fourier trérisforms emergé from
the definitions: | |
1. INVERTIBILITY OF THE FOURIER TRANSFCRM:

F-1 {F {f(x, y)}} f(x,y) N - '

and F {F‘i{g(u,v)}} = glu, v)

The detailed proofs of these two identities afe_ too lengthy'.

i

to be of use in this paper, but it is hoped that these properties
seem at least to be reasonable results of the defimitions.

2, LINEARITY OF THE FOURIER TRANSFORM: .

F {f (x,y)* g_(xQ Y)} =F {f(X,y)}/ +F {g(X,_.Y)} and.

F {c‘f(x,y)} = cF {f(x, )}, c being a constant.

This property f§llows directly‘ from the linearity of the
integrals ihvo}ved in the definitions.
3f THE SHIFT THEOREM: ,

The Fourier transform of a function t-ﬁat has been shifted
"with resp_ect.to the origin is the same as that of the‘non-

- ghifted function, multiplied by a phase factor:

F {f(x-a,y-b)} = F {f ('x,y)} e dmt (ua +vb) (7

This is shown as follows for the one dimensional case, which is

simpler but precisely analgous to the two dimensional case:



let y —'x?a'then dx = dy and x = y+a

e o 7 T
{f (Y)} f f (}') e - Tdy'= £ (y)e 27r1 (uy) -Zm(g;)
R o »

- mua ff o) e Ty L F {f (y;} -ariva {f (x)} risa

(yuénd x.are arbitrary names for all poihts»én the real
line and_are thus "duﬁmy variables" that are ih;erchangable)
An interesting énd impdrtant'conseduence of the:éhifc theorem
is the positional invariance of the Fourier traqsférm, except -

for a phase term e-zﬂl (au + bv)

, where a and b represent
the x and y'displacemenfs of thé fdnctionf(x,y)ffénuthe
origin of the x-y plane. - This is a crucial ﬁroperty‘for'any
proposed'ﬁafhematical model of the visual system, as it is
weil-known that fecognition-of objects is invariant to their
linear translation in the field of view. However, the phase
térm.ggggiindicate a function's position rélativé7to the origiL.

A good physical in§ight into the action of';he Fourier
transform on a f;nétion can be had from an examination of ﬁhe'

- ’ v ' T

" complex exponential factor, known as the PHASE‘FACTOR in the
integral. Note tHa; when ux + vy.= n; any'intégé:é the phase

Y _ | T |
term is ,

Fig. 4




-i2mn
e 0

= cos(-2mwn) + isin(-2mn) = cos2tn =1 = e

Such a situation is referred to as zero phase, and for any u,v

we have

.ux+vyv=nba.nd y_=%-(%)x,n=0,t1',:t2,_--
The angle 6, the '"direction' of these zero phase lines, is given
by
| _ -1 v
6 = tan (E)

and d, the " SPATIA‘L PERIOD',. is given by

d = T12=7 . (See Figure 4, previous page)
u +v ‘ : :

Also, between these lines of zero phéée, the phase factor varies
sinusoidaily, yielding a sinusoidal grating in two dimensions for
each (u,v). As u and v vary, 6 and d vary, so that sets of
parallel lines at all possible angles and at all possiblek spacings
cover the entire plane. It is thus'often said that a Fourier
Transform DECOMPOSES a function of two variables into such
sine wave gratings, each grating appropriatelf weighted by
f(x,vy), the function being transformed. | |

| Another irhportant insight iS gained from furthgr ex/amina-
tionl'_of the p.hase term: fhe argument of the _e:kponential rr;ust be
dimensionless, a§ s‘ines and cosines are only defined to operate
on real numbe‘rs‘ and not on seconds, meters,b etc. This means
that ux + vy is dimensionless, and since x 'and‘-y are usually‘
measured in unifs of distance, u and v ﬁust_ be 1n units’ of
INVERSE DISTANCE or SPATIAL FREQUENCY’.. Similarly, a

Fourier transform of a function of time would yield a function
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of frequency, measured in Hertz. It is because of these rela-

tionships that Fourier space is often called Reciprocal Spéce, |

|
|

as the units of measure are the inverse of the corresponding
. o o i

units ir:lvf'Efu'clid'ean spaice. A particularly signif.icar__it irhpliéatioﬂn
~ of this 1s that minute features of a function on the X~y plane-‘,»
that occur within a small.interval of the plane.,".wil'l be spread
into the extr;emities (1 e., the high spatial freqii‘e".h‘cies.) of the
Fourier u-v plane. Op the other hand, gross.,‘b'of overall features
of the same function will be repfeéenied iﬁ the lower spatial

frequencies in Fourier Space. As an example, consider a simple

f(x)={1/2! if-f<x=1t

step function in one dimension, S
: 0 otherwise

- p . | .
. ) !

- =2wiux 1 ~2miux -1 -2miux )

F{f(X)} = f f(x)e dx EI— f e N dx =4—Tl'i_\ﬂ e ] )

oot [ -2miut | 2miue] 1 glmiut _ -2miuf
= Zmiud | - € = 2wul 21 1

ix -ix »
‘= sin x, so we have:

F i} - 5l

Both the ﬂiﬁ—f envelope 3and the frequency of the sine function

but

vary with 2, éo that large £ will imply a stee.plyvdecreasing en-
velope and a lérge number of oscillations within a small intervai
of u cehtered afound u = 0. Thus, most of thé_af.e_a under thé '
curve will be in the low spatial frequencies ofthé Fourier vari-

able u. A small £ will bring about the opposite" effect, with a
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slowly decreas1ng envelope and oscillations of 51gn1f1cant amplltude
spread out tp high spatial frequencies. The above arguments are
illustrated in Figure 5. Thus, a particular region'of the Fourlier u-v
pla.ne does not correspond to a partlcular region in the x-y plane, but
rather .to a partlcular set of frequency characterlstlcis of the functmn
f(x,y). This can be understood by the fact that at each point (u, v) on
the Fourier plane, "the pfecise height of the Fourier r.epresentation
g(u, v) i‘s a result of adding contributions from a_ll_ points in the x-y
plane. ‘This sithation involves extensive multiéligity, a!s ’f(x, y) is

. represented at each point (u,v). Likewise, each-pbint on the x-y plane
exerts its influence over the entire u-v plane. This kind of m‘ultiplicity.
.then,A is a key ingredient to the Fourier transfo.r'm; |

f(x)

Fig. 5

1

; : ‘ DBL-728-5428
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FURTHER INTERPRETATION AND APPLICATIONS
‘ OF FOURIER TRANSFORMS .

The process of Foqrier Transforming a funétion is ana1§gous
to tran;lating a stéory from English to Spanish, assuming th..at #
translé;fio’n could be done so that the story in eéch language is
exactly identical. | This assumption is further based on the
premise that there exists a universal set of c'onéepts that are
precisely equivalent, regardless of the languégé in which they
are expressed. A few important notions can be grasped via this
analogy: The equality of the length or total content of the story

in each language is analogous to the integrated area under

. 2 ) ’
lf(x)l 2 being equal to j l F(u) | du, which can be thought of as

the conservation of ' total energy' of the fun‘ction (story);

the fact that the stories in each language aré equivalent raises

the questibn of which is the '""real" story, co_rresponding to the
fact that Euclidean and Fourier space representations of a given
function are completely equivalent; the fact that there are many
other languages into wﬁich the story can be translated c_orres"ponds
to the exist}ence of many different orthogonal basis sets for tlflxe
space of all square integrable (LZ) functions, of v_vhich eZvinx

is only oné; two stories which are very sirnilvar in one language:
are very similar in another language, correspbnding to the fact
that if f(x) and g(x) are very "' similar" (i.e., their shapes ,ana
scale are very simi—lar), their Fourier transforms will also t;e
very similar; the fact that the words of the st'oyri-y. in English

may bear little resemblance to the corresponding words in
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Spa’ni.sh parallels the fact that functions and .their‘.Fourier 'repfe-
sentations rarely show any resemblance to one another when viev.ved
graﬁhically.

Aﬂ,important and useful mathematical conc’epf that fits in well
with the‘se\ others is the convolution of one functioﬁ with another, some-

[

times referred to as the cross-correlation between two functions. A

precise definition of ' convolution'' will be given shortly, but first

some brief ba_ckgi'ound. Let f(x) and g(x) be L2 fdhctions such that

(2] 0
J ‘ If(x) Izdx =c j |g(x)|2dx, where ¢ is a constant. That is, both

o - 00

f and g cover a finite amount of area, but not necessarily the same.

-0

’ L) 2 0 L 2
It is stipulated that j |f(x)| "dx = cj 'g (x)’_ ‘dx. We shall
.o - '
show that this relation inlmplies a precise analogy in Fourier space,

namely o
o0 [ < I
2

j |F(u)|2du=cj | G(u) ! “du,

where the same c¢ applies, due to Parsevals theorem. That

theorem states that

| j |f(x)|2dx=/ | F(w]2du, - (8)
) -~ . -0 ‘ ‘ )

and expresses the conservation of energy (are‘é. bounded by f on
the x axis or F on the u axis) spoken of earlier. Now

<f(x), f(x) > = I If(x.).I l,z = f 'f(X)l 2‘d>;c, and similarly

- 00
for g(x), F(u) and G(u), so Parsevals theorem 5ays
I 'f(x)vl I = l lF(u)I I and | Ig(x)l I = I }G(u)! !; :therefore, ih.

substituting for the original stipulation,
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= 2 2 2 .
j ]f(x)l dx = ¢ j | I.g(x)] dx, we now‘h_ave

|1£e| | = <] lee] |,
and thus, | [£60 || = [ |F@|| =¢|[g6]] =c| |G|
Therefore, HYF(u)| I = -c! IG(u)l ’

The convolution of f(x) with g(x), dehoi-ed'h(x) :f>(x)>:‘g(x)’ is

defined as
_ . e
h(x) =f f(u) g{x-u)du (u hereis a (9)
<00
dummy variable, not a Fourier variable).
The significance of h(x) is that it is a quantitative measure of
. how similar f(x) and g(x) are. This will be shown as follows:
It was argued earlier that due to the equivalence of Euclidean
and Fourier representations, similarity between f_unctiohs in

one space implies similarity between their representations in

the other space. If it can be shown that the Fourier representa_tién-

of h(x) is a measure of the similarity between F {f(x)} and

F {g(x)} , then it would follow that h(x) is a mvéas.ure of sirhilarit*

between f(x) and g(x). First, we need some important relations:

The magnitude of a function f(x)is givenby ” f(x) l ‘l: (<f(x), f(x)> )1/2,
) .

and expresses the amount of area bounded by f(x). If f(x) and

g(x) are two functions, we have the Schwartz Inequality,

| <f,_(X).g(>.<)> = | 1f=x)] |- | | gx)] |. (3. Chapter 1)
The equality holds when f(x) = g(x), in which case
<flx), £x)> = | [£x)] |- | £ )] | = <£(x), £x)> /2 <), £)> V2,

from the definition of ] [f(x)l | above. Now, let's look at the

. 4 .



Fourier tr'ansform of h(x):

F{h(x)} =/ j flu)g(x-u)du b e 2msxdx F(s)

let v=x-u, sodv=dx and x =u + v; Here, s is the Fourier variable,.

and u and v are merely dummy variables. Then, interchanging the

order of 1ntegrauon ylelds

e h(x)/ j / f(u)g(v) st(u+v)d dv

=j f(u) e studu ] g(v)e-Z-wisvdv
= Flf(x)]- Flg(x)] = H(s) = F(s) - G(s) ---  (10)

So thei Fourier transform of the convolution of f with g is the V
prodﬁct ..ov_f‘ the séparate transforms of f anci g Thus, the
Fourier :representation of h(xv) will have a lérge' magnitude,“
i. e., | ‘ , .‘

| |H(s) || = <H(s).H(s)>1_/2_
'wilibela_rgg_when ..<F(s)' G(s), F(s)- c;(s,)si/2 = | [F(s)G(é)vl, |
is large | | |

But by the Schwartz 1nequal1ty (13)

| |F(s)c(s)|.| = |IFs) || | ]as)] ],

we see that | IF_(s)G(s)I | is maximized when F(s) = G(s)
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(since we only stipulated that I IF(S)! ' = c| IG(-s)! ! , when

F(s) = oG(s), maximum will be reached). Shoff of rﬁaximum,
we see that the greater the similarity bétweenvF(As'.)' and G(s).[ the .
greater vi}ill_bg l ]H(s)l l , so it can be said thét ! ?.H(s), I is a
measure of the similarity of F(s) and G(s). Sin.c‘e H(s), F(s),
and G(s) are equivalent representation‘s of h(x), f(k) ahd g(x)
respectively, relationships among each set of th%ee must be
equivalent. .Therefo're, the fact that | ‘ H(s)l | Ais' large, when
F(s) and G(s) are very similar,corresponds to.the‘ fact that

| lh(x)l ] is large when f(x) and g(x) are simila'rA. " Thus, the
convolution io a convenient device for. comparing one function -
with another. The mechanics of the convolutioo ‘Can be viewed
as follows: Graphically the convolution can be seen as holding
f(u) in a fixed position relative to the origin on the >u axié, and
sliding g(-vu) along the u axis; at each g(-u) position a new function
is formed by the product of g(-u) and f(u), and fhe ‘integrate'd area

bounded by the new function is calculated. That is, for each x,’

] f(u) g(x-u)du is calculated, and the rhagnitude of the convolution,
- 00

’ ' h(x),' l-, is the total area accumulated as g(x-ti') is shifted over

the entire u axis by varying x from -« to + .
‘ t
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1

¢

Convolution is pa_rticglari'y useful in the -pattern x.'ecobgnition
process. By pattern recognition, it is meant th‘aﬁ.a system
i:rying to idéntify a given "input function' or '""message'’ does
so by cornparing it with a library of previously identified functions,
to find that function to which the input. is most similar. One way

: . o
of nlé,king a'.systematic comparison of this kind 1s by convoluting
ihe input function with library functioné, and identifying the input
as most like thé library function with whi‘ch ] ]h(x)' | is maxi-
mized. .However, snch' a process in Euclidean space requires

: 0

computatibn of a difficult integral, j f(u)g(x:-u)d_u, while in
Fourier space the convolution proces.sooconsists of a simple
multipliéation of two functions. An intrinsic advantage of Fourier
representation over Euclidean‘representation of functions is thus
seen','. andith"is.' hasvconstituted one of the prim‘e.reasons why
students of the human visual system have sbu’.ghtvévidenc'e of a
‘Fourier transform of optical informaiion as it pas'ses from the
retina to the brain—were the retinal information vCOded in the ‘
~brain as a Fourier representation of the retinal image, a method
Qf pattern recognition involving convolutions would be vastly
simplified. |

Let us 'rei:urn, for a moment, to the discrete Fourier
Transform. It was shown carlier that high speitial fi‘equenCies
corresp_onci to rninute details of a fun'cvtion, while low spatial.-
frequencies represent general features of the function as a wh.ole., -

In a Fourier expansion of a function, it is necessary to add up the

contributions of all terms to represent the given function in all
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its detail. However, the elimination of the_high,venst frequency
terms may be advantageous in certain instances‘where precise\lv '
details ‘are not needed, as an infinite sum is s.i'r‘n-pblvy not_calc‘iulabvle.v
It wouldv.ﬂbe expected in such a curtailment that_"the-overall_fela-
tures and a lot of detail of tAhe given function 'woulld' still be repre--
sented, and one could design the ex.te‘nt of curt;ilment around the
desired amount of defail, using the appropriate eéuations. The
point is that a pattern recognition system may not need all of the
details of a given input function to-distinguish it from all other.
functions, and thus in Fourier space it would need. ‘only a certain

number of terms (called '"harmonics'" ). A qﬁestio’n which arises

is, what is the method of curtailment? Multiplication of the array

of Fourier terms by different kinds of step functions is one possible

method where the terms are multipliedby 1if theyare withina certain
region of.thhe array, and by zero if they lie outside the region.
Ingeneral, curtailing or modifying functions are known as filters, and
they need not be only step functions. To see what happens to -

the Fogriér representation of a function as a fiiter} is applied, it
is most.convervxient to use the continuous transform. If

F[g‘(x)]| .= G(u)‘is the f‘ourier transform of g(x), and P(u) is a -

~ filter fﬁnction by which G(u) is multiplied, we see the following
interesting relationships: » P(u) fnust be the Féurier transférm IOf
some function of x, say p(x).v (because there is a one-to-one cor-
respondehce between functions in Fourier spa(:ve_vand functions in
vEuclidé"an space), so‘the product C(u) P(u) is a'prroduct of the

Fourier transforms of g(x) and p(x) respectively. From previous

I

I . ’ |
| .
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| 'argumenbts,- thi; is the same as -fhe Fourier tx;_anéform of the con-

E Qolufion ofv g(x) and p(‘x), F {g(x);k p(x)} . whé.i-e p_(x) is the inverse
transform of the fiifer_ function P(u). If‘one were now to inverse
transform the filtered Fourier repre.sentati.on (i.e., to attempt to

reconstruct g(x)), the result would be
-1 S ' '
F [ F{egkx) * px)}] = glx)* p(x)-- , (11)
a convoluiion of g(x) with the Euclidean equivalent of P(u). Thus,
in two dimensions, the imposition of a square filter on a Fqurier :

transform of g(x,y) will result in a Fourier representation of

glx,y) * (conv'ovlu.ted with) F'1{[j}

which is g(x,y) % sxn(ZTerxZ)sux(Zvly) -
. Tl “xy

Such a convolution in real space will give rise to distoi-ting

oscillations in g(x,y), whose amplitude will depend on £, the

léngth of a side of the square filter.
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The Projection Theorem and Strip IntégLration

Le"t f(x,y) be a funcifion of two va‘riables,i x and y.. The pofrtion
of f(x,‘.y) Whichbli.es above a line x = k 1 (constax;t).is a funcjt.ioi:‘l of y |
and the constant, /ki' f(>k1, y). Tﬁe integral'of f(ki.Y) c')ver‘ all y is
call_ed' a "line integral"’ 0;1 the lipe X = ki; and fésults in the area
upder f(ki; y) (a number) be.ing stored inbt.hge 1o¢atiqn (ki’ 0).

If such integrals are computed at all valués- of x, and a cor-

;eSponding;number recorded at each x, the result would be a function

of x, o

£, (x) =j fx,y)dy -0 . S (12)

fL(x) is the projection of f(x,y) 6ntp the x—éxis,vwhi-ch is the 1inevy = 0.
If we take the Fourier transform of fL(x) we have

r N <o - ] .
-2miux
d

Pt oop= [ g e 2= 1 g,y
Lx)_f —J Lx)e ; /, | (x,y)dy, e 1x
. -0 . J—ooL/"-oo» :

and assuming order of integration can be reversed,

) P - ® o e -
: -2 - -2 . .
:,/ | foe,y) e 2T :/ j e, y) e Migay oY) =G, 0),
the portion of the two dimensional Fourier transform of f(x, y.)v

which lies above the line v=0 in Fourier space. . Were we to choose

|-
i
l

i

another line [See illustration in fig. v7, next page].
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through the x-y origin, say y = ax, on whiéh to préject f(x,vy),
the one-‘-dimensional transform of that prbjéct_ioﬁ ‘would yield‘j that
portioh of the Fourier representation of f();', y)-\i&h_ich lies above
the line v = au in Fourier space; where "a'' is the same con-
stant in ééch case. One can see that the full .'t.wbov-_dimensio_nal'
Fourier representation of f(x,y) could be assém_bled by super-
imposing the one-dimensional transforms of projections in the
x-y plane, provided the projections are onto allﬂ possible lines |

. through the .x—.y' origin. This is a special cas.e of"the Fourier

Projection Theorem, which asserts that the full Fourier trans-

form of a function of n dimensions can be cofnpletely deter-
mined by appropriate combination of (n-1) dime.hs_ional trans-
forms of projcctions of the original function. .Such a'.v teéhnique

is of great importance in.the fields of Xfadio astr_é_no'r;ly and
cz;ys'talllography,' and in information pr‘oces'vsix;g-_ in‘general. How-
ever, in all physically realizable applications of the theorem, an
importaﬁf_ approximation must be used: the liin'ersamples, f(k,y)
from which the projections are constructed, are not physically
realizable, due to their .i.n‘finite'si_mal v;/idth, and must be approxi-
ma.ted by thin ' strip" samples' of f(x,y). Such projections are -
called " strip integrals. " The use of finite samplés intll'oduces
error into the mathematically pre.cise technique _.outlihéd -ai)ove,
but offers computational compensation (aside fréfn the fact that

it is physivcally unavoidable): the fwo-dimensional transform of

f(x,y) can be approximated to any desired degree of resolution,
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provided the function f(x, y) is identically zero outside a.‘ﬁ.nite cirléé of
radius X. If this condition is nﬁet, then F { fl(x,y)} cah be de- -
terminea' to within resolution f by on‘e-dim'ensional‘ transforms

of strip integrals taken at equal angles, %;—1 » through the x-f

origin, whe.re n = X/ZB. ' o . '(R_eference. 3)
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COMPUTER FOURIER TRANSFORMS

The analytxcal or mtegral Fourler transform is directly
calculable for only a very restricted set of functlons;those for
which the d1ff1cult integrals involved are solvable in closed form.
However, a c.omplicated function can be'appn‘)xiima:ted By an array
of sampled points from the function, and t.here"avre computer
algorithms to calculate the discrete Fourier transform of such
an array. One such algorithm, Rnown as the I‘_':"asvt' Fourier
Transform Algorithni, makes use of the shift theorem and the
linearity of the transform to significantly rreduc'.e .the‘ compﬁtational
‘time neces'.sary to perform a given ‘transform. That is, using
the definition of the discrete Fouriér transform, aﬁ array of N
data points brequires NZ-' computational 0peratidns, employing

the formula:
' N

c, = 5 f(k)e“z"ikn. B C . (12)

However, the sampled points can be divided into two parts, as
follows: let f1 fz, cee, 'f64 be 64 sanipled points from the desired
functiox; f(x), at equal intervals of x, and divide ‘the set of pqints
into t\yb subsets, {'fi.f3, - '£63} and { £y, 6 .- aa f64} . Now by

the linearity of the Fourier transform,

BB 60 mafqd = Flfyutgnrorifga} +F (650850080,

and by the shift theorem, each f2’ f4, f6’ +-- etc. can be shifted
- to the left on the x axis so that it corresponds tobthe same x value

‘as f1 f3, fS’ etc., respectively. The transform of such a shifted
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1. . v

array would be the same as the unshifted array, multiplied by -
th’e‘ phase factor é+2v}n' as the shift for each element is one

unit in the negative x direction, so ' |

: _ | 1 3 63, 2min
F{fiofzn"':f64} - F{fi,f3’-",-f63} + F{fzyf4,"',f64}e »lv

wher.e. f-k"1 means, ""the sampled value at the kt—h_v locati.on7 on the
x axis, shifted to the ,(k—‘i)E position on the x axis. ' ‘I.\Iow, were
the algorithm simply to use fhe formula (12) at this time, the
time necessary to compute the t‘ransfor.m .wo.‘uld be about half :
the original required time, as each of the transforms on the right _
side would take 322 'operatiéns to perfdrrn. Thus, 6:42= 2(322+32,2),
'and_ not counting the relatively few st'eeI:;s needed to calculate the
exp.onent_ial shift term, s‘peed of calculation has been roughly
doubled. Further bi‘nary divisions can be made, ‘each time re-
ducing the previously needed bcomputation time by a factor of two, .
until the transforms of sinéle points-are left. The final com- |
put‘atio‘n of these single point transforms and the coi-réspondin_g -
' phase férms requirés_ a total of NlogZN computation_ai operatioﬁs, ’
~as oppésed to NZ_ for the sfraightforward ;’n‘e'thocll of forndu_la 12), '
which for N = 64 is 384 as opposed t§ 4,096, operavti'c;ns. It
~should be 'n_ofed thét; since binafy diVisibns_ are éhe.b;sis for the
' r_edﬁ'ctionAin co;riputation .time, it is 'nec’gssary that the input
array of sampled points have a totai of _Z‘M points, whére |
.M =0,1,2,3,--.. Other fast Fourier algprithmé cohld"‘be bés’ed .
on ternary, quaternary or other divisidr}s of t‘h’e1 original data s.'et,'
| M

requiring the input to have 3M,, 47" or nM,_ points, re'sp‘.ecti'v.ely.

-
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MODEL OF PROPOSED FOURIER TRANSFORM

One mathematical appeal of the Fourier .t;'ansform as an
element in the visual process was shown to be_in:the shv'ift th“eoref\n,
which:':»'%ifilioWs for invariance of functional shape with linear trans-
lati'on"in.'Euclidean space. The phase factor, »-ef-21ri(au+bv)’
represénts the relativé position of the input fuhétion, and thus_‘
between the structural representation (g(u, v)) Ian’d"thve phase
term,. fhe Fourier transform of f(x+a,y+b) completely describes
both what and where f(x,y) is. In addition to the attractive
property of positional invariance, the Fourier transform was
shown to greatly simplify the process. of convc;.luti'onvor correla-
tion between functions. Impressive evidence has been accumulated
to suggest fhat c.ross—c'orrelations,do occur inv.thé .‘visual process. (8)

From an anatomical-physiological approach, certain ele-
ments of the visual pathway are highly suggestivesv of an informa-
tion processing method that incdrporates»a vastv amount of infor-
mational ;edundancy. For example, Hubel and Wiesel have shown
that the striate cortex of monkeys primarily contains columnls of
cells whose receptive fielcis overlap to the extent that, within any
column, a large section of the total visual fielci .is‘ represented
many times over. (10) As was stated earlier, this kind of multi-
plicity is essential to the Fourier Transform. Psychophysical
¢xperiments on visual detection of various types of gratings
(s.quare. wave, sine wave, etc. ) show that over a wide range of
spacial frequencies, detéction is determined only by the amplitude

(6)

of the fundamental Fourier component of their wave forms.
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Tl'xeSe flndings and others have contributed to the .pr.omo'tion of the
hypothesis_that somewhere in the vi«eual pathway,‘: a Fourier
transform of the informal:ion takes place. In lieu of a‘v direct
anatomical method for.'d)ete rmining the nature of visvual informa-
tion proceissing, “which is presently.tbeyond reach due to the ‘-
phenome’nal._conlpleXity of neural networ’ks 1n the visual pathway,
‘indire»ct clues such as these are often combined Qith what may be
termed, '""seductive reasoning‘, " to reach clonclusions. that may |
be premature Given thle seemingly hopeless complexity of the
overall problem of visual information processmg, and the rather
attfactivé_ nature of the above-cited data,_ it is .understandable
tlllat. a great deal of enthusiasm has been generated by a fairly
comprehensive model. involving the Fourier transform, that
has recently been proposed by Pollen and Lee (“) As one of the )
majdr goals of this thesis has been to test the validity o'f their
‘model, it is appropriate that the essential elements of their
proposal be outlined here. |

" Pollen and Lee assert that the output from the lateral geniculate
into the striate cortex 1s. essentially a topographlcal (i- e. ., one-to-
one) repreeent‘atlon of the retinal image, (wh1ch is a two dlmen-
sional intensity dietribution,\ f(x,Y))» and that transformation of
wsual information takes place pr1mar1ly in the cortex and h1gher
centers of the brain. They propose that the mforrnatwn coded
‘in the " complex cells, ' noted by Hubel a'nd Wie'sel, is a partial,.
if not cornplete, Fourier transform of the information cocled on the

retina by the focused image. (They assert that the transform is



-52--

c'omplet‘ed' By the time the information reache‘s.tl.xe hvighér center§ :
of the l_srain_). This, they claim, is achieved .vi.a Fourier trans-
formation of strip integrals of the focused imbagé',i'nform'ationl, |
which ar‘e'rg_ott_gln. in turn, by combinations ot.'v 'Sigﬁals from simi-
larlly-ori.‘ented“" simple'’ cells. It will' be rec;afl‘led that " simple"
cells have. long, narrow receptive fields—Pollen and Lee cite

) data to show that the firing rate of such cells is a monotonically
increasing function of the total intensity_illuminating theirvreceptive_
fields. They assert that as such, each cell's bout'put is equivalent
to an elerﬁ_éﬁt of the projection of f(g; y) 'onfo .a 1ihe-perpendicular
to the receptive field. ‘Combinations of outputs ’f.br‘om many |
similarly-oriented cells would thus constitute" the érojection or
strip intégral of f(x,y) onto a line perpendicular to the rjecep.tive
five_lds. According to Pollen and Lee, such s;tri*p _Iintegration |
takes pIacé, along with at least the start of a fourier tfansform
of the strip integrals', between the simple and.c'_o‘rn.';.)lex céll stages
of the cortéx. | .

The precise method by which the Fourier. transform of a
given strip integral is perforfned'is not elabor.aféd by Pollen and
Lge, but‘they do offer some suggestions rega:diﬁg the imporfant
".ingredient_s" of the transform. Phase informétidn, which is av
method of coding position of a function relative. to an origin, could
be codéd by delay of the response of a given complex cell to
. stimuli, depending upon the position of the stimul;J.s in thé
receptive field of the cell. Indeed, Pollen ax_xci Lee cite daté

to support such a coding of phase information,  provided that the -
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visual érééess SCANS the-ingbming‘informati‘on at discrete in-
v tervalé-, ais opposed to continuously pr.ocessiﬁg the ivhfo?mation.
They procééd to show that a given complex 'c'e'lbl--devrnonstrates
Superpoéiti.on of responses and interfe'rénce,“whevn présented_
with multiple stimuli Within its receptive field, supédrting their
claim that response latency could map phase (p‘o'sitionai) informa-
tion; Spatial frequency information, they claim,. ié éo_ded in the
individual c‘omplex cells, as each .c‘obmpl_ex cell has been found to
respond maximally to a slit of a sf;ecific widt,h (and orientation).
It should be noted that their mo&el seeks oﬁly,to account for
statiopary visual phenomena, not those associ_at_éd with motion
(i. e., time-varying étimuli), and they argue convincingly that
a firm understanding of such tinug—independeﬂ pr'o;t_esse_s is a
rhlecessary prerequisite to dealing with moviﬁg-of otherwise

time-dependent-stimuli.
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OPTICAL ILLUSIONS AND MCDE_LS
In .addition to their intellectually fascinating ‘and aesthetica’.}ly
“enjoyable qualitieé, optical illusions can.vbeb valuable scientific
tools, fcb?r.th‘_é”yg can be approached as truevshdxl-téoihings "of the
visual system. That is, their varied origins ‘nc_>t.w:ithstanding, | all
illusions constitute contraaictioné between w}.lvat'is pe.rceived and’
whal; is known through experience to be the éaée; ‘and thus repre-
sent impréper recognition by the optica;l systérﬁ. In order to |
learn how a complex system operates, it is somét'imes advan-
tagebous to examine how it fails —such was the case in ti‘xe study éf
genetics, which has beén_done essentially enti‘xje.ly via mﬁtations,
"which constitute failures of the reproductive :syste'm. It is hoped
by many stﬁdents of the visual process that a si_rnilar.approach
will prib;r.e. fruitful in eluéidating the meth‘ods .of"o'ptical informa-
tion processing, . using illusions. |
One im.portant class of illusiqns pertainsjvto the geometrical
illuéions of size ;nd shape. They can be generally characterized
as a distor__fion in shape or size of an other;nisé .nvon-dinstort.edv |
figu.re,r 'bro‘ug'ht about by placing it in a peculiaf Backgfoung.
Apparently, there is so‘rne. interaction bet“‘/ee'njfi‘gur-e and back-
ground during the' ﬁrocevssing of optical information, which gives

rise to misinterpretation of the visual scene. Several examples

of well known ge'ometrical illusions are illustrated on the following

(

2 pages. 1) They are divided into two basic groups: illusions of
shape and illusions of size. The two are cerfainly' related, as

~each involves apparent distortion of the relativtek"positions of
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DISTORTIONS OF SIZE |
Some exam'plles that might be cons‘idered are:

The Muller-Lyer illusion

N 8 < B

The B’s are of equal length,
as are the A’s B

Arigles. affect the apparent length of lines

X — ' : X -has the .same length in all three cases
X : ,
/ o ' \ 11 Two equal diég‘on_als
X ~ which appear unequal

l I HI

An illusion of contrast
o _

L The A’s are of equal length /

Contrasting angles

8 is the same in both cases

DBL 728 -542C

Fig. 1~
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DISTORTION OF SHAPE

Some examples that might be considered are:

. . \
Parallel lines which do not appear so / o \\\
y' ; ; . NN

N
&‘ Z B \
3
AN \& \§
. N
Wundt’s iilusion of direction L
Distortion of a circle - . Distortion of a square
m due to superposed lines due to superposed lines -
W
Z—.Parallé/ lines are distorted " “"Twisted cord’* illusions
Hering’s illusion of direction 7 :
See following two sheets.
These are conéentr/c circles ) These are straight cérds .i

DBL 724-5119

Fig. 2
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DBL 728 -5429

Fig. 2a
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’ constituent parts of the illusory figure. The basic distinction
between them, however, is that a size illusion pre serves the

overall shape of the illusory figure, whereas a .shape illusion

i

preserves the overall size thereof. Both types;‘jh:o.wever.‘ are
sufficientlj'];g"(‘)rhmo'n among humans that they cannot be dismissed
as mere st'éf‘islvtical deviation from the normal \}.isual process.
This is not.to_ say, however, that such illusions must be ascrib- '
able to only the visual pathway, as it is cert.ainl'y_conceivable'
that memory, other sensory information, leéfned responses or
inhibitionsv,v or other factors could influence th.e iilusory éffect
in any given indiv'idual. | | |

Indeed, wid'e. variation in response to illﬁ;ory fig;zre.s has been
notéd ’a‘rnong people of widely differing cultural ba;cvkgr'ounds. .S\.xch
firidings', however, do not preclude the possib‘ilvitybof a fundamentally
physiological origin of the geometrical il'lusioris o if illusior;s are
| understood as ''causes'" or ''stimuli'', rather_._t.h_aﬁ as specific effects.
That is, illusory figures constitute unusual st_irriuli which may be

interpreted'and responded to by the viewer in more ways than one.

Their unusual quality is that they have a high‘Apro'bability of eliciting
r_espons-es_thét ;cio not correspond to éorﬁmonly évcl':cepted ‘reality;f but
such responses‘ are not absolutely ceftain cons'equences of viewing
an illusory figure. B

One way' of testing tirxe validity of a pio?os_ed mo.del' of the

visual system is to use common illusory figures as inputs, and
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B

see if the: 'Outpﬁt of the model shows a respionsev to the illusory
.effect. Ini the case of the Miiller-Lyer illusion, for example,
the model ishould interpret the open-ended figure as‘”having a
longer center line than that of the co.r‘respondi_ng cl.osed;ended
figure. An affirmative result of such a test constitutes one im-
portant p1ece of evidence in a long list of anatomical, physio-
logical and behavioral qualifications for a f'.itting:model, the con-
ditions under which the logical property of SUFFICIENCY is
est;‘lblished. That is, a model which manifests all the known
charactérisﬁcs 6fthe visual system may be regar&ed as satisfying
ﬁhe requirements for ' candidacy", fhough its uniqueness has yet‘
to be egfablished through the logical exclusion of all other models.
However, it is very doubtful whether, in a complex and empi;‘i;ai
study such as that of the visual process, all"concc;iv‘able alternatives
té)_ a prOposevd model could even be listed, lét a'l_cine IOgically dis-
pvrove'd, So the question of lqgical qniqueness_ is _spmev'vhat res'tr\icvted.
In'nnost_enuéirical science, ''unique'" refersvtO'ﬂnat single_
‘model whicﬁ has withstood, and gontinues t:o withstand, the
,.p.'a'.ssage of timg and further experimentation. Exclusion of rival
ri._uodéls happens by virtue of new evidence that sﬁch rivals fa_i‘l_h
_fp predict, and it is in this sense that the passagé of time selects
éut the '"unique' model. In the case of models of the visual
system, héWever, the field is so relatively 'young and the numbér
of proposed models so vast that it is doubtful that even.vthe re-
stri;:ted sense of uniqueness just described will be established m '

the near future (as of 1972). Most of the present efforts are
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toward the .goal of establishihg sufficiency, and even this is
formidé.ble in view of the lack of precise knowledge on much of" '
the phy_siology and anatomy of the visual pathway. |

The hypothesis that Fourier'transforms are invol;red in the
visual process, discussed in the previous section, is a'nbvexamplwe:
of a; proposed model (or setiof moaels). for which sufficiency has:l
yet to be fully demonstrat;ed. As a test of fhis }.i.ypothesis, one
~ .could use »geomévtrical illusions as inputs éna check to see if
their Fourier representations, or some physiologically reasonabl’g _
modification thereof, demonstrate the illusory effects. By
"physiolovgivcally reasonable'' is meant a modific'ation that could
be effected with the acceptea machinery of the vi%ual pathway,

- and that would be a functionally useful part of a model of the

- visual pattern recognition process. For examp'le',‘ in the interp‘xje:
.ta.ti'on _o.fv Qisual information a process of selective attention may

- be emplvdyed, in which. 6n1y C_ertain poftion_s o'f the. information éré

_.:examined at any oﬁe time. If the informétioniw.e.r‘e coded as a

 Fourier trapsfqrm of the re,tinél informatioﬁ, _;this. wou.ld'mean

exémining, only part of the transform at a particular instant, and

this would constitute émodification of the transfdfm data rea’ching‘

the brain.
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XBB 738-4851

Fig. 3 - "Twisted Cord' Illusion #1

These are concentric circles:
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XBB T738-4852
Fig. 3a -"Twisted Cord'" Illusion #2

These are straight, parallel lines:



[ S0 B

L
e
K
s
s
[
.
&
s,
2
=
ot

-63-

'THE MULLER-LYER ILLUSION: ANALYTICAL
FOURIER TRANSFORM -

I.n accbrdahce with the reasoning outlinedvin'_ithe previous

' sectio‘n, the MULLER-LYER illusion wva's sel.écte‘c‘l as a convenient
illusvo;v'y‘input by which tb test the sensitivity of thé Fourier

g Trénsform to geometrical illusofy effects. T._wé ;pproﬁches were
taken: (1) a purely analytical approach in which th_e. illusory
figure is expressed in terms of a mathemaitic‘all’y ‘canonical bfunction -
of two vériables, Fourier transformed, and comparisons made
between the transforms of the two Mﬁller;Lye'r figures; (2) dig-
itized véxfsions of the figures are computer trva_r.ls._formed, the
transforms modified by various filters, and the‘.bré"‘suiltingv arrays
inverse tr'.ansformed to produce modified ve'rsions_.of the original
fi.gur'e.. The first approach is discussed here.

As Seén in Fig. 1. represents a 'f‘primitive" form of the
Miller-Lyer figures. from which they can be dexvfivevdv, as in
and . Now, the notation _@v(a,O) refers to iine' @ shifted
in the positive x direction by an amount " a'", and not shifted in
the y di.rection. Using the shift theorem and other properties
of the Fourier tr.ansform, we. now proceed to céiculate :

I l F (> ' )l. IZ. l I F( )-l |2, and thei; diffferencve. As |
‘we are interested in the effect on line @ , .pértiéulér attention

will be paid to terms involving @ .

F{ . } - F{ @ }»e_ZTri(-a.u)‘_*F{.'@'}.e-Zwi(au)
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. {Q® } o+ FY @1} e.'z_“.li(_'au)-”‘“{V@}edﬁ,(?u)“’
PO B} =r( @)™ r @) an @)

+ F{ @ }e-Zwi(au) + F { @-}e-Zﬁ(-au)
Let F (s) denote F { @ } , where s represents u andv

Note that  F (s) -F (- s) Do s1m11ar1y for @ @ . and

CS) . Then,
IFCEND | F=rC A F" ([

. [Fi(s)Fi(-sv)+F4(s)F4(-s)+F1('s)F4(-s“)+F;(sv)F1(-s)]

+ e'4"i?“ [P, (a)F | (<8145, (51 4 (-8 4P 5 (6)F  (-s HF ()7 (-]
sodmiau [Fi(s)Fz(-s)+F1(s)Fs(-s)+F4(s)Fz(—s;).-i.-F‘}(s)F.S(-s)]
+ Fyls) { [fi(-s) +F (-s)] e ~2miau

+[F,(- ;)+F (-5)] ™29+ F (- s){[F (5)+F (s)] 2miay

+[F, (s) +F5(s)_] -2miauy +F3(s)F3(-5)

Only the terms on this page involve line - @ , 8o let us con-

cern ourselves only with them.

|| F{ lm -F{l} r{ [B]}

= F,(s) { [F (-s)+F (- s)] -2miau

+[F (-s)+F 4 (-5)] 2T2Y +_F3v(s‘)F3<-s) |
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| +F‘3(-s)..{[F1(s) + 1.7‘4(5.)] e-Zﬂiau‘l‘[FZ(S)f’Fs(S)] eZnaiu}

+ other terms not involving @

012 2
TR 12 -1 e [a] )]
= 2i sin(zmau) [F,(s) {Fi(-s)-FZ(-é)iF4(-s).4.Fs(-s)} =
+F3(-5) {F,(s)-F, (s)+F ;(s)-F(s)}]
= 2i sin(2mau) [F3‘(s){ Fi(-s)-FZ(—S)+F4(-s)+F5(-s)+Fé(s)-F1(s)-

+F(s)-F (s)} ]
because. 'F3(s) =F (—s) ( @ is centrosymrr_iet'ric).
Now F(s), being a complex valued function of u and v, can be rep-
presented as the sum of a real- valued fuﬁctlon, vxv(u v), apd an |
| 1mag1nary-va1ued funct1on iy (u, v), where i = /\/_-T and y(u, v)

is real—\)alued.
. * )
F(-s)=F (s) =x(u,v) -iy(u,v).
So,
~LET
F (é) =x, + Yii
F (s) =x, +y,i

-‘F3(S)—X3 o (Y3=0)
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F4(s) = x4'+ y4i

Fs(s) = xg +‘y_51 |
' where xi(u,v) and yi(u,v), and s, on_cevag.ain,_ xfepreéents ti".xei
variables u, v.

Therefore: -
e (B 12 e @] P
= i2msin(2nau) [x,(x, -yii-x2+y2i+x4~>;’4i-x5+y'5-i;+;..;.2+Y.2?
-xy oy ibxgtygioxgygi)] N
=-4nsixi(znau)[x3(y2+y5-y1-y4ﬂ

= 41rsin(2vau)[x3( y2+y5-y1—y4)] e e e e ; | .. .. .Eq1
Now, if @ and @ are considered ‘as '92?4 fﬁnction of (x,y)
(see illustration below, showing finite ' thickness" _) that function
is centrosymmetric, which imi:lies thatvitAs transforrn is real,

or y, = - Vg By analogous argumentatlon. YZ = - y4 Thus,

Eq. 1 can be written as 4wsin(2wau) [x (Zy'1 + 2y4)J |

81r51n(21rau) [X (Y1+Y4)]

i {

NOTE: All of the above analysis was Fig. 2
made without specifying the angle @ _ ‘ @

between @ and (3) , etc.,_or
the actual functions and , l

etc. The only restriclijon is that ,
and @ , and (2) and /
by symme<§ic about the origin,

n
. ke
and that also be centro-
symmetric. ' /\
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As can be seen from a; comparison of figure% IIT and '\}"II @ .
the difference in thé'ivntensvitiels of the two figures that is pfe-

' &ictéd by the above analysis is essentially whr;.tt is seen in the
computer ﬁlot of the terms of Eq. 1, shéwn in Fiéure VII. The
dominant feature is the pair of spikes at the first order Fourier
terms (exact location of the spikes was gotten ffoin print-out).'
indicating a véfy significant diffe.rencevin the intensities of the‘
two figufes at the very low frequencies. :

It should be noted that subtraction of F{ (3} from
F-{. >——<} without squaring the transforms, éliminates the

representation of the center line, indicating that in the cdmgléte“
Fourier transform of each figure, the center line is identically
represented. This, however, does not imply that there are no
differ‘eﬁcés in the center line repreéentation between the trans-
forms of the two figures, as correvsponding éLe_gg bf the two 
Fourier i'epresentation may not contain identical infoi‘matioﬁ.
about the center line. This is investigated in the section on com-
puter transforms of the .Mt'ille r-Lye.f illusory figures and the

4

effects of spatial filtering them. What has been demonstrated
h_e.re, however, is that from a purely fnathematical‘ standpoint,
there is a diffefence in the Fourier intensities of the two figures,
despite there seeming similarity in c'ornpositlion. |

| The results of the pfeceding calculations, and‘their com-
pa.rison .to those gained by computer techniqges, are shown in the

following 7 figures. .The first is a graph of 4 sin(2mau), the first
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factor (divided by m for illustrative convenienééj in Eq. 1. Second is
a gr'auh. 4bf X3, the real part of the transfor'm.c-at.' the qenter line of the
illustory_.'figﬁre (i.e., the complete t’rénsfdrrﬁpf the line, since its
vtransfozb'm contains no irhaginary terms); this term is the Secdnd
factor in Eq. 1. The third figure is a graph of Eq. 1 .'(di,vided by );
note the prominant spikes at small valﬁes of u symmetric about the
ori,’gi‘n, and their signs. Fourth is a computer{g_enerated perspective
pklolt of the four arms of the canonical formulati‘én of the illusory
figure (Figure 2, this section), prior to.transfdr‘m_ation. Fifth is a
perspect.i‘ve pl.ot of the real terms in the transform of the central

line (now a function of two dimensions, whereé;s_ it was only single- .
dimensioned in the pfevious graphs). Sixth is a :perSpective plot of
the terms yi-F V4 -Yp - Vg from Eq. 1, calcula’tzed 'yia. straig}ittjbrward
computer transformation of the arms of the cahén:iéal figure. | Last
is a perSpective plot of the difference in Fourierr’int'enéities between |
the two Mi‘xller-Lyer figufes, calculated by céfnputer transform. |
Note the prominant spikes at low frequencies, and théir signs, and

note their fundamental similarity to those of the second gfaph.
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4 sih (‘2 a au)

From 1-dimensional

version of

DBL 728~ 5432

" Fig.
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sin (2T au)
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Fig. 4
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4.sin (27au).

Tu o - TUu
8a- :

'~ 6a-+

4a -

2a

-

: .‘—63 1

—8a+ |
'DBL 728 5431

Fig. 5

“sin(2mau) _  sin2(2wau)
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'Y plane

in the; X
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U-V PLANE
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COMPUTER TRANSFORM OF THE
MULLER-LYER ILLUSION .

In this :__section,’ the second approach-is discussed, wherein
computer transforms of the illusory figures aféperformed. -

In order to use the library subroutine for the fast Fourier
Transform .availabie, ‘the illusory figures were digitized in
64 X 64 square arrays (see figuré 1). The justi’fié'ati.on for
‘_this approximation to the straight line drawing shown earliér is
the fact thaf the illusory effect is still eﬁdent 1n the digital version
(examine fi'gure 1a,b). Digitation was achieved by drawing the
illusory figures, using'45° “angles between brahches and center
line, on a 64X 64 grid, and assigning to each square a value of 1
if a line traversed it and 0 otherwise. The digitized figure was
then " thickened' to a line-width of three squares; fo avoid the
noise problems associated with Fourier Transfor.ms/ of lines that
are one ellement thick (such lixjes have the propertiés of 6 functions, -

|
N
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which yield a constan.t amplitude, i.e., backg‘:éund noise,v in
Fourier space). - An algorithm for generating a duplicate of the
arréy was devised, and this was used as the input array to the
‘ tfa.nsform subroutine. An output display package was assembled
 using a three-dimensional perspective plbf subro’_ﬁt}ine called
PLOTSD and numerous print subroutines.
The .display system and transform routine were tested

using a simple two-dimensional step function input. As the input

function was centrosymmetric (i. e., symmetric about the origin

so that f.(x, y) = f(-x, -y)), no imaginary term ‘was anticipated,
and to the limit of the resolution of the 64X 64 array, none was

obtained (see Figure 2).

* F{ £(x,y)} :j f f(X'Y)e_Z“i(ux-*-vy)dxdy : - _

o0 ©

J J £(x, y)cos 2 (wxtvy)d dy

©
-iJ J f(x, y)sin 2n(ux+vy) dx dy.

~ Sin(x,y) is an odd function, f(x,y) is an even fuﬁction, éo their
product is odd.

So, we have

,.oa aﬂ. .
j j (odd function)dxdy = lim ’] j (odd function)dxdy =0.
a—+» «© ,.
- 00 ‘ —a' -a .
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The real part of the transform of the step function was expected

to look like

sin(2mf _u)sin(2nl_v) | where £, and £, are the lengths
mou- M v of the step function in the x and
y directions, respectively,

and the fact that the plo.t showed this (see Flg '2), established

the dependability of the whole package. ‘The digital versions of
the illusory figures .we‘_re‘transformed (see Figures 3-6), and

the transfo.rnl arrays compared. As.can be seen in illustrations
3 through 6, £here is little obviously discernable difference be-
tween the transforms of the two figures. It should be noted that,
relative“‘t'o the real part, the imaginary part of the Fourier array
has very small amplitude, a fact that is ob'scu_red by the nor-
malization of amplitudes within eéch_ array, but is evident in the
intensit_.y plots (Fig. 6), where real and vimag';na{ry f)arts are édded,
and which are ‘virtual.ly identical to the réal plots.. To further in-
vestigate the trahsforms, it was decided to truncate the high
frequencies of each transform array and examine the effect on the
original figure. This was done by inverse transforming each
truncated array, calculating the values of the intensities from the
resulting array, and plotting the array of intensitiea'é.
Thg calculated intensities were plotted i'néte.ad of the complex

amplitudes, because the arﬁplitudes of the modified| output array,
unlike t..h,e input, contained imaginary terms. As the pu.rpose of

the reconstruction procedure was to view the modified, but still

real-valued, input figure now represented by the truncated Fourier

array, no imaginary terms could appear in the final outputarray.
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Calcul-ai:ing the intensity was a good comprdrh_iée, -as contributions
from Both real ana imaginéry parts.were ‘taken into acéount,;v as
tfollows the amplitude array was arr_anged so that the odd rc‘>ws
vlaf.h:‘:elemer;t.s were real-valued, the even rows irhag_inary. KA com-
plex point in the amplitude array consisted of a pair v<‘)f elémenfs:

a real—vé.lued term in an odd row and the c:orr‘e'5ponding imaginary-
valued term directly below it in the next row. 'The complex ampli-
tude array consisted of 32 complex rows and 64 vertical columns,
and was converted to a 32 by 64 real-valued in.tensity array by
converting each complex point to a real point. »T'his was done by
adding thé squares of the real and the imagina_ry:elements of each
complex point (i, j), to obtain a hew real value, and storing it in
the corresponding location (i, j) in the intensity ar.'ray. The plots
shown in figs. 2-46 are perspective plots of the intensity arrays
calculated from the various trunéations. It is _111 no way claimed
that such a reconstruction actually océurs in tﬂe -\riSuai process,

as there would be no need for tranélation of the Fourier informa-
.tion back _ihto Euclidean terms; ‘the brain need dperate only in the
Fourier domain, and learn to associate Fourier representations
with pafticular'stimuli in Euclidean gpace. These plots are
strictlf a visual aid tothe researcherin interprefing modifications

in Fourier space. Truncationwasachievedby impbsing a square-shaped
filter (step—function of height 1 and variable side l.éngth) onthe transform
array, which set all array elements equai to zero that lay oﬁltside

a square centered on the zero-order Fourier element (the point
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(33, 33)). As was discussed in the section on Mathematical

-Ba.ckgrouhd, the inverse transform of such a filtered transform

1a.rray byie'lds a convolution of the original figure with the Fourier

tra.hsforrn_ of the square step-function used as the'filter, i.e.,

{ e } * F{O}. The length of the square side was varied

from 12 elements (Fourier terms) to 32, which is about half

maximum resolution, and some of the results are shown in

illustrations 7 thru 10. What is clearly demonstrated is that the

-illusory effect has been brought about by clipping high frequency

terms in the transform array with a square ﬁltér—the center

line in fi.gu»r‘e 10A is only 29 elements long, while that of figure 10B
is either 33 or 35 long, depending on where the ends of the centér'
line are defined to be. The center lines in the original figures
were identical in every way, so the process. of t.runcation, using

a square ﬁlter, has beén shown to give rise to the illusory effect.
The question of disto.rtion in the reconstruction due to the specific

filter shape, rather than the general process of filtering the trans-

form array, remains, because of the oscillatory properties of
the particular convolution involved. However, the inverse Fourier

transform of a square step-function in Fourier Space is a sinusoi-

i

dally oscillating function in Euclidean space,

sin(2mx)sin(2rly)

'vzlzxy_ - o

where £ is the length ofthe square's side. Now, if £ is small (such
as when £ = 12, (Fig. 7A)) the frequency of oscillation is low,

and the 1/2 ny envelope drops off siowly, so sihus‘pidal
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distortion extends over the whole transform ar’ra‘)‘r.;' large £
- yields a much higher frequency oscilllation, bﬁt .C'or_lce‘r.lti'atedv
within a small region of the x-y plaﬁe. ‘- Thus, when f is large,
the oscill.atory effects on the convolution are vaétl& reduced com-
pared fo the case when £ i‘s srnall.v It was thusvpos'tulat'ed that
the effects noted at a'square size of 32 elements were due virtually
only to loss of high freguency terms. g
To test the above postulate an algorithmﬁ &;/as writtcnvto
generaté a variable Gaussian filter. (Fig. 34A)‘t’o impose on fhe
transform .array, centered arround fhe zero order Fourier term.
The Gaussian function,I e—(x2+y2)/v02-, is particularly»désirablé.
because its Fouricr transform is ano_ther"Gaussian function in
the Fourier variables u and v. As no.distorting oscillatory
phenomen# are involved in the éonvolution 6f ré_c;_onstruction, the
théo’retvi(':avl difficulfies of the square filter are avoided by using the
Gaussian filtér. The algorithm included a va'ria;b'l'e ""standard
deviation'', g, for the Gaussian func'ti;)n, which was varied
from 2 terms to 64 terms. On the circle who’.se' radius is ¢,
that is, ‘\) xz-i-y'2 = 0, the value of the Gaussian‘ function is 1/e
‘times the value at #,y = 0. By varying o, .thev width of the filter
is varied., and thus the amount of high frequencfy information used
in the reconstrl‘;lc‘tio.n is varied. To sée how éﬁiékly the function
e-(x2+y2_)/o'2 approaches zero as the radiﬁs, N }.{2+Y2" is increase;i,

consider the following table:
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*

| | , 2 g
\ vx2+Y; o e-(x ‘+Y /o

0o 1

o S /e ~1/3
20 1/e* ~1/55

3¢ 1/e? ~1/8000

Multiplicafion of the elements of a transform array bf this func-
tion, é_entered aboxflt the zero order term, smoothly eliminates
Fourier in_formafién beyvond é radius of about 2'0" ’(measured in
number of elements, or terms from center). Thﬁs, reconstruc-
‘tion from a Gaussian filtered transform array with ¢ = 2 uses
essentially only the Fourier information within a radius of 2
terms arobund the zero order term and strongly diminished terms
out to a;'radius of 4 eiernents. With ¢ = 64, the Gaussian func-
tion impose'd on the transform afray leaves.the Fourier informa-
tion;es'sentially unmodified. Some results of f.hi‘s experiment are
shown in Figs: 11 thru 17: at any given ¢ up to o =28, the
center line in thek second Miiller-Lyer figure is longer than that
of the first, as measured in number of array éle'meints. It is of
particular note tha.t at any givern 0 uptog = 28, 1t is far easier

' to distinguish a bracket vertex from its adjacent cehter-line

endpoint in the open-ended figure than in the closed-ended figure.
: : |

o
- This can be explained by the fact that the closed figure contains

elements of'highér‘- spatial frequency than the open figure, at the

bracket vertices. The intersection of three lines within a 45°

angle, as in the closed figure, involves very hﬂi:gh si)atial fre-

quencies ‘at the vertex, and this situation is lacking'in the open-
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ended figure, where three lines intersect within a 360° angle.
When high spatial frequency terms are truncated in the Fourier
domain, the closed figure is thus more’affect.e"dvby a given amount"

of ‘truncation than the Opefx figure. This would seem, in part, to

account for the -ill‘usory effect. ‘l
One.vmight' ask what b'iolbgically realizablé form such ’ ’
truncations could take, and ﬁow they would b¢ bfought abdut. [It
was mentioned in the séctioh on optical illusibps that the processes
of information manipulation and of .pattern int'e_rpx."etation interact
with al;iother, and it was suggested that one such interaction
wouldvbe a._' selective attention mechanism. With such a rﬁechanism,
the brain would evaluate only certain portions of the input at any
given time, and this could take the férrri éf a fllter Were the
interprefétion process of the brain to proceed fror'n low 'resoluvtion

to high, processing more input information as it_'is needed, this

could be accomplished in the Fourier domain b_y_i‘mpo'sing a centro- -

symmetric filter of variable diameter on the array of Fourier com-
ponents. In the Pollen an& Lee model, this wogi'ci,correSpond to
selective '"read out" of the information in the coﬁ_iplex cells of fhe
cortex, which couid be effected by selective ir}hiﬁ:ition of the firing
rates of thbse cells connected to adjacent cells 1¢ading further into
the brain. "I‘i—xe precisé nature of the inhibition would determine.
the mathematical shape éf the imposed filter,;‘and several filter
shapes ‘ha\.re been used in this experiment to ac_:‘c.:orvnmodate various

inhibitory schemes. The square filter corresponds to a precise
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inhibitory mechanism in which individual neurons are separately
and binafily controlled, a model of somewhaf dubious biological
relevance because of the sharpness of the cutloff bb'e;t\v)veen_ " on'"
and " off" cells. | The Gaussian filter cor'respohdéito a situation
in which readout of corticé.l information is irihibit.ed most of the

~ time and occurs only when a specific "excitatory.s_ignal” is sentto
the des’ire'a’region'of the. cortical array. The'Gaussian shape
would arise if the ekcitatory signal had non-ldéal effects which

: stimuiate readout of surrounding neurons in a manner which de-
creases as a Gaussian function of distance.from the signal center.
Other inhibitory schemes involving Gaussian-like filters are
also possible, but the _abové example should s.uffi’ce to illustrate
the biological relevance of a Gaussian filter.

Anbther filter to be tested was a trun'catedr Gaussian filte.r,
in which the ' flat top" had a height of 1 and a vaﬁable radius
equal to the "o'" of the Gaussian function whiéh '§vas truncated
- (Fig. 34B) Beyond a radius of 0, the function steeply falls off
'bas -(x ty /0 ) This filter corresponds vto a biologi‘cal model
similar to that of the Gaussian filter, in which the " readout"
néurons have a maximum output threshold Wthh i$ reached when
an exc1tatory signal equals 1/e times the strongth ch the signal -
at its center. This would occur within a radius of ¢ of the s1gnva1
center, and sub-threshold neural f1r1ng rates would continue be-

-y )/0

yond ¢ , falling off as e The sharp transition be-

‘tween the circular step function for distances < ¢, Land the steep '
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Gaussian dfop—off thereafter, predictably gave risetooscillations
in the reconstructed figure, somewhat similar to the square filter .
oscillations. However, as can be seen in ﬁgu.;"e_'s 1822, this

- like the other filters, produced the illusory effect out to high
re"si"c';l'utions, ‘indicating that virtually any sort of symmetric selec-

tive inhibitory mechanism in a Fourier transform neural array
i

would give rise to the Miller —Lyer illusory effeets.. Indeed, ;
Ginsberg has shown that the use of either square, rectangular,
or circular filters in‘ the Fourier domain 'gives rise to the known
illusory effects of all major geometrical illueions, for filter
svizes. of about four to eight Fourier te’rms.(?)

The last filter to be tested was a combination of a

Gaussian function with a cubic function of '\/x2+y2, f('\/x2+y-2)

= f(r) = a.r3 + br2 + cr+d, se that the two-di-r;ie’nsional filter looked
like a "' smooth volcano'" (see Fig. 34C and D) The odd shapevwas
suggested, qualitatively, ifx a recent article on contrast illusions
(Scientific American, June, 1972), inwhich the author propesed amodel
for visual information processing involvin_g an ekte.neive amount of lateral
inhibition in the retina and other neural networks. The re sult of such.’in-
| hibition, the author claimed, would be supressien of _le_‘x_i Spatiel '
frequency arﬁplitudes, relative to intermediate frequencyvam.pvlitudes,
and other factors:would cause high spatial ‘f'reCiuervxrcy. filtering, the
the net combination leading to emphasis of intermediate spatial
frequencies over &_all. As the proposed ﬁlterIYWasr_only qualitetively

described, a certain amount cf liberty was taken in mathematically

designing a function which effectively emphasizes the intermediate
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'frequency. range. Two approaches were taken: The low frequency

‘terms were actually reduced in arhpli'tude‘-, while intermediate

terms were essentially unchanged and high f.req'uerhcy--terms

filtered by a Gaussian function. The actual function used was:

2(d-1) ( x2+y2> +—-———3(1'd) («/x2+y2> +d.05\/x2+y2<0

) 03 g2

f(x’Y)" . 5 ’
| exp- G{ 2,02462 24 (’x"z'+_y2> /6. o= [x"'z_“+y2

.where "d" is the adjustable height of the z-int;ervcept, £(0,0),
and '""g'" is the adjustable width parameter_f’or. the Gaussian
function. ':I‘husv, as can be seen in Fig. 31C, vf01" the interval
0sr<o alonganyradius from the origininthe x-y plane, the filter
is a cubic function of distance along the radius,"with z-intercept:
at the adjustable value "él_" , and height 1 at a distance’ bf O units
‘from the.‘origin.v At both ends of its domain, 0= '1.-<.o' » the func-
tion has derivatives equal to zero, and at r = % , the second
derivafiye is zero.. For r = ¢, the function is " Gaussian-like' ,
meaning that its héight is 1 at r = ¢ and decrea#es as

>

e-(rv.O) /0 thereafter, for increasing r. Thus,’ "d" varies

the number of both low and high frequency 'terrhs t}lat are sup- |

""[

The second approach was to leave the low frequency te rms

‘pressed.

essentially unchanged, while boosting inte rmed_iate@ frequéncy

amplitudes and, again, filtering high frequency terms with a
Gaussian function. This took a mathematical forr'n:inearly identical

to the first ,:Tpproach:
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» 2i-d) 13-d) (N x2+y2) + -——J3(d?:1 (N x2+y2) +1, 0=~ x2+y2 <@g
) ‘ o .

'f(X.y)' =

: o !
kd' exp- [(x2+y2+o' 2-20’ N x2+y2) o 2] R o'_<_~)x2+y2
Hé"’-xl"e, however, the z-intercept is fixed at 1, while the peak "
of the Gaussian has height ''d'", which is adjustable. Once |
again, 0 varies both the peak and the width of the Gaussian f\J.nc-
tion (see Fig. 34D).

For both approaches, it should be noted th.at terms out to a
radius of aBout 20 around the zero-order term are taken iﬁto
account in reconstruction, using this filter, as opposed to a
radius of ¢ in the previous case using a pure Gaussian filter.
Some illustrative results of the first approach are shown in
Figs. 23—-30. These figures are representative of the 'resu_lts
obtained when ''d" assumed the values 0.25, 0.50 and 0.75,
while '"¢g''"" was varied from 2 to 22. As can be seen in all those
rr;arked"'A” » the center line is clearly separated from the
vertices of the closed brackets, giving the line a shortened
length of 29 or 30 elemer;ts, as compared with the " B' figures,
whose leng.ths are all 33 to 34, depending. on where the endpoints
are defined to be. It is of particular intere‘st'that when
0> 10 and d = 0.25, (Figs. 26 and 28) the center line and vertices
of both Miiller-Lyer figures are significantly r:educed in height,
an effect which is most striking at the intersections of center
and br#cke’t lines in the " closed" figure (those labeled '"A''). It
- will be recalledv,that when the pure Gaussian filter was used, at

any but the highest reconstruction resolution, these points of
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intersection were greatly magnified in heigh with respectv to the
rest of 1.:hev figure, and for the closed figure, if:was difficult to
distinguish center'line. from brackets at such pdints. This i‘s
more'of less the case wit.h the new filter fof o 15-‘10, even when

d is a small as 0.25 (Figs. 23, 24 and 27). 'HoWéver, .when

0> 10 and d = 0.25, the effect is reversed dramétically. Some

. insight into this effect can be seen in Fig. 35A. | I‘nvthe figure,
plots éf the icross-section of the filter functiori ‘alo'ng the bpositive
x-axis are‘sg-:en for d = 0.25 and 0= 6,10, 14 and 18. The nurﬁber
of Foufie'r terms which each function diminishes by 50% or rﬁorc
is indicated by fhe vertical afrov&, and the nundber of termé v'
diminished by 25% is indicated for ¢ = 10 and ¢ = 14. When

o = 10, the Fourier terms inside a radius of 4 from the zero-
order term are reduced by 50% or more, whi,iev when 0o = 14,
termsiwithin a radius of 6 terms are 50% dimini'vshevd in amplitude.
Terms are diminished by 25% or more withi,ﬂ a radius of 6 for

o =10, aﬁd within a radius of 8 whend = 14. SQ‘, if " significant
reduc:tion in amplitude'" is defined as between 25% and 50% re- |

duction, ‘then a critical region of difference in t_he low fr'equencics
o

appears to be the '"ringed area' bounded by radii of 4 Fourier

terms and 8 Fourier terms around the zero-order term (sece
Fig. 35B). Somewhere in this region, it would seem, is ¢rucial
“information about the center line and intersecfion,]‘ which is not

eliminated when ¢ = 10, but is missing when ¢ .=|14. Upon

-examining the Fourier representations of the two I\t/[iiller—Lyer

figures (Figs. 4 and 5, in particular), one notes that in the plots
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of the imaginary terms (Fig. 5), the terms within a radius of
~ about three elements around the center (ze'ro;order term) of the
array have zero amplitude.  After the third term, si-gnificaxjxt

amplitudes are seen, and at a radius of five terms, the peaks

start tov'diverge from one another. Perhaps the " critical region'

spoken of is this area where the low fréquency imaginéry terr:ns ’
begin to b;'anch apart. Branching of a much .mo_l;e subtle sort is
visible in the real-valued plots (Fig. 4), though'divéfgence
Begins at 6’ = 2 in 4B (the open-ended figure) and at ¢ = 4 in
4A. Since branching occurs at termé that appear to be outside
(prior to) ’ciqe ""critical region' of the‘ real array, and no clearly
significant changes in peak features for terms '.»vi_thin‘the region
are evident, it appears that if there is a cribtica'.l region for the
center l.ine and intersections of the Miller-Lyer figures, it has
much to do with the imaginary terms and little vtv:o do with the real
terms. These conclusions, however, are oniy tentativé, and
call for further investigation. In any évent, ‘the Miiller—Lyer
illusion is clearly demonstrated by use of this'fillter, giving
further support to the general argument that high frequency
épatial filtering in the Fourier domain will give rise to the
Miiller-Lyer illusory effect.

With the second approach, the height of th'e Gaussian peak,
equal to '"d'', was set to the values 1.25, 1.50,  1.75 and 2.0,
while ¢ was varied frorin 2 to 22 tefms. Figures 31, 32, ana 33

are representative of the general results, which lacked the

striking effects derived in the first approach when low frequency
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terms v's(e..re' diminishéd. As the main purpoSg_of the filter in this
case was fo boost int‘ermedi‘ate frequency without reducing low
frequency terms, it would not be prgdiéted that»t_h[e center line
and intersections would undergo the same diminutiqn as in the
previous.case, and the fé.ct that such diminution is virtually
absent lends support to the arguments given p_rev.ic')usly. However, »
the Muller-Lyer illuséry effect is clearly evident in this case as
well; as the center line in the '"A'' figures is about 29 terms in
| length, whiie that of the ""B" figures is 33'Ato'34‘1 férms‘long'.
Thus, 'to‘the knowledge of this au&or; all tests done to
date oﬁ .Ith'e hypothesis that Fourier transforms‘ are involved in
tine visﬁ.al i:rocess,. inéofar as optical iliusions é.re concerned,
are positi‘v‘e, ‘provided that some method of sp'étial filtering is
po’_stulated:‘ as part of the model. It should bevp.ointed out that this |
scherne also allows for the phenomenon of " Ie:varn‘ing not to re-
spond' to a.r_i illusory figure. In the case of tlfvl_e.vMiillerTLyVer
illusion, for example, one can greatly reducek'vcl)‘r éliminate com-
pletely the illuspry effect bf sketching and sta‘r.in_g repeatedly, and
for long intervals,-.at the figures involved. Such concentration
. would be.r:epresented in the model by increa'sé "in:;filter diameter,
allowing terms Qf higher and higher spatial tl'r‘e:quéncy to be
" rea;d;gsgt" s _eventually eliminating the illuso_ry effect (see
Figs. .17, 22). o l ‘-
The .questioh ariseé, can spatial filtering 1n the Fourier
-domain_ cause illusory effects in figures _that are ﬁqrmally non-
illusory? Clearly, the answer must bé affirrﬁétiﬁr;e, as any figdre

o

1
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recons.tjr_uctéd from .i__f_:sv'F“ourier representation _ﬁll be distored

- if the transform array has béen"suivtably filtered. -What, ‘then, is
‘to distinguish illusory figures from non-illusc’;ry? ’fhé_re mus"t._
-#i;;é:e'ntly, be a " spe_ctrum of illusory quality, ' with figures a.s.
n;i;illusory‘as simple geometric figﬁres at ‘vo.ne end, and well-
known illusions such as the Muller-Lyef at the other. The |
criteriQn-.for measuring the illusory extent of a figure, by the
abov'e. model, would be the nunﬁber of Fourier tefms needed to
“eliminate the discrei)ancies noted af low resolution. Thus, figures

whose partial Fourier representations (Fourier arrays truncated

with symmetric filters) non-isotfopically des_éribe the figure,

so that some portions of the figure are exaggerated overv othe»rs,
w‘ou’ld.»'reqtiire high frequency terms to givé an accur'até representa-
tion of even the gross features of the figure. Such a fiéure Would 4 |
be‘highly sensitive to Fourier truncation and wouid tend to be
ilvlus"ory. It was stated in the section on optical illusions‘ that |

size and shape ‘illusién's can be regarded as~di»stqrtions brought
about in otherwise normal figures by plaéing thos.e figures in a
pecﬁliar background. In light of the foregoing argumeﬁts, there
would éppéér to be an importaht distinction in types of ggeometri'cvzilr
illusioné: those wheré the figure and the ba.c'kg:ou.nd..inf:eract
directly by infersecti_on of linesv of one vﬁth the other, etc. ) .and
those where there is no contact between"_ﬁgure and background.
Clearly, it is not the latter typevthat is of major Eoncern to the
Fourier hypothesis, as such illusions most certainly depend on

other visué.l clues, such as pe rsPectivé,(Ref. 5)which are not considered
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he._re. Illusions of the former type may be und'e_rs:tovod, in light of
the prex./ieus arguments, as resulting when ﬁg’ﬁ;‘e and backgreund
interact so that new low frequency term's.arbe'ge'nerated which
render the low-resolution Fourier repres.e-ntat‘ioxvlf nonisotropic,
and therefore require higher frequency terms ';ﬂo a.c’cura.t_:ely pre-
resent th‘e overall features of the figure-backgroend combination.
As a test ofgthis hypothesis, two non—ilieso'ry_ figures were
treated in exactly the vsame manner as the Mii_l‘le_xl'v'-vl_..yer illusion:
a.square.’ and a ''plus sign.'" Figures 36 and 37 ehdw the results.
of a Gaussian filter of increasing radiu.s on t.h‘e representation of
a squax.'e,v while Fig. 38 shows the effects of the truncated
Gaussian filter on ghe safne square. The pure Gaussian is seen
to effect tfxe square ieotrOpically, with no pofti.o.n of the figure
exaggefa_ted over any other. " The truncated Gaussian gives rise
to large oscillations.in the figure, but does not emp.hesize one
part of it ovef any other. This is clearly seer_i'v‘ir'i»381‘3, which is
at 0 =10, in which the oscillatiens are of smaller amplitude
and average out evenly over the vsurface of the square. Figures
39 and 40 show the effect of a Gaussian filter on a "plus sign''.
The effeef»is seen to be completely uhiform, with no part of the
figure misrepresented relative to other parts. f‘i‘gureé-’i_i and
42 illustfate the gniform’effect of a trurievétec.liGa\iEssian on the
same f' plus sign, " with the assoc}:}iated induced'_osﬂcillations
averaging out at higher resolvvution," abs' in the ease of the square

(Fig. 38).
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One‘..further test of the hypothesis that spatial filtering
accounts for the Mﬁller-Lyer illusory effect wa..s-‘éarried out, in
which the brahches in each figuré were initiaily separated from
the -;_:;enté:r line by thrée' uﬁits {elements), befofe. the arrays were
trarié‘fbrmed. The modified input (Fig. 43) no longer gives rise
to any illusrory effect when viewed, and_ if the pre\}ious data are
to be useful, the .spa'tial filtering should not give rise to an illusory
effect. As seen in Figs. 44 and 45, which have been filtered by a
square4ah'd Gaussian-function, respectively, _‘the center lines all
have ideﬁtica.l lengths, so there is no illusory vf_;ff.ect. Only when’
the Fourier arréys are filtered with very small radii (twoor four |
terms) is there any merging of the center line and branches, and
it is highly doubtful that such an effect can be 'régarded as illusory.

Finally, the importance of a filter being symmetric was
tested .and the results shown in Fig. 46, where the open-figure
of the Mﬁller-Lyer illusion has been reconstructed from a modified
version of its transform array.. The array was {filtered by a

Gaussian filter centered at the rear left corner of the array

(the point (0, 0) ), which eliminated terms that were not in the
region of that corner of the array. The original figure was the

same as Fig. 3B, with four symmetric branches and a center

line, and there remain now only remnants of two opposing branches.

Thus, imposition of a2 non-symmetric filter has completely altered
the figure; this cannot, however, be fairly termed an " illusion',

. : | : o
as the filter used was highly\-,_b_iased from the start.




CONCLUSION AND CLOSING REMARKS

- Through the use of rr;any differen.t spatial filters, ithas been
shown that spatial filteriﬁg of Fourier repre.sentations 6f.the
Miille.r'-Lyor figp.res gives risé tojthe known illuéory effect.
More significantly, 'thé effect has 'Been gen.erated‘ by symmetric
spatial filtéring, which has as little biase as. boésible_régarding
\_ﬁzl_l'_]i_c_}l frequencies are to be eliminated. Asymmetric filtering
has becn shown to cause cffects that have no parallel in n‘ature,
and while such effects may be dramatic, they. ére_ artificaily
produced and do not represent fundamental illuséry proberties

of the figure thus modified. What has emerged is an understanding -

of what constitutes an illusory figure, in te rmé ‘of a model of the
visual system which ix_lvoives Fourier transiorms.. A f'ivgur‘e ‘x;vhosé
Fourier vr.epresentation is so aéymrnetric tha£ vfi.»lt‘e ring with.a centro-
symmetric function leads to a distorted recon.st._x.'»u'cbtion, where some
portions of the figure are exaggerated over others, in understood

to be illusory. By this criterion, many figurefs‘fhat a‘rje ﬁot com-
monly' regarded as illusory would be deemed i’llusions—exannples

of this are Moiré patterns and sirniiar fi'gureS'_iﬁvolving intersecting
sets of closely spaced, parallel lin.es. 'Se.veral_‘b‘iologically reasvo‘nable
models for spatial filtering have been outiline‘d,-,toggive some credibility
to the hypothesis that sufzh filtering could t_aker pla;ce in the visﬁal
pathway, _bﬁt there clearly remains a great dcal o:f work to be done

in this area. Fin'ally, analysis of the Fourici‘_trar‘xsform arrays

for the Miiller-Lyer figures has led to the ixnpl_vi,ca"ltion of the

|
.
|
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imaginary parts of 4th through 8th order Fou-r_i_erutgrrris as crucial
in the rep-r’ese.ntation of the center line and poin;s of intgrsection

| of the figﬁres. This analysis, however, is far. from complete, and
there is gov.0d reason to believe that furither work in this direction
would l‘ea'd to.a clearer understanding of how géometrical illusory
effects are generated in a Fourier model of the visual system.

It has been the goal of fhis thesis to discuss the matﬁematical

~and biological background of, the rr.l‘otivatioﬁ fof, '.a'nd some im -
plications ofanimportant contem_pora.fy model of the human visual
pathway - a model involving the Fourier transfo;mation of visual
information. - The author hopes that, at the vc‘ry' ieast, this work
will help the rcader to dissipate any existing ''clouds of mystery'" " '
surrouhding the Fouier transform and its num‘evxjous uses, especial-
ly insofar as its possible involvement in neural information pro—
cessing‘i‘_s c;)ncerned. It is further hoped that :thlis work will aid
future fe-éearéhefs in their éfforts to 'elucidaté the phenomenal
complexities of the hﬁinan mind, and finally, that such resear.ch
will lead_:to é significant contribution to the improvement of the

quality of life itself.

SIS .
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PLOT LABELING AND NOTATION

| b

;’ ' " two-dimensional Fourier transform |
1_' {E } ~  of the figure in brackets. R

o the real part of the transform
Z'RC 5{ }} of the figure in brackets.

the square of the i'maginafy part of
3&5{: }} ' ~ the transform_ of the bracketed figure.

i

1l

2 the square of the transform (Fourier intensity)
4'3 — of the bracketed figure. P

.1[ ' inverse transform of the transform of
> I}‘ ? the bracketed figure (reconstruction) ‘

FH-N

fl

same as 5, but the transform array of the

figure in brackets has first been truncated

. . ! ‘
by a square (step-function) filter, centered
o

at the origin of the u -v plane, with a fside
length of 20 Fourier terms (r = "radiLx!Js" =
10 terms). This is equivalént to the con-
volution between the figure in brackets

and the transform of the square filtériunci
tion (see section on the Cohvoluti}on .of Two

Functions, in Mathematical Background).
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the convolution of the figure in the
. brackets to the left with the trans-
. form of the bracketed figure on

the right. ‘

8. {F——?} * ; {/\= 0'—‘4} = convolution of the bracketed

figure on the left with transform of

a two-dimensional Gaussian function

(Fig. 34 A), whose width parameter,

0, has a value of 4 Fourier terms.

9. —> ) * } {/——'—\ 0= 4} = convolution of the bracketed

figure on the left with the transform

of a "'flat-top'" Gaussian function,
‘illustrated in figure 34 B, where the
1"

"top' has a radius of 0=4 Fourier

~terms.

1- .
M\, d=0.05 0= 18} =
convolution of the bracketed figure

on the left with the transform of the

"volcano function' (Fig. 34 C, illus-

tration; explanation of origin on p. 10

- of the scction on the COMPUTER
TRANSFORM OF THE MULLER -
LYER ILLUSION), in which the central
minimum has height d= 0';05, and the .

"ridge maximum'' occurs at a radius

of 0=18 Fourier terms from the cen-

fer of the transform array. Beyond
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the radius of 0, the function drops -

"off as a Gaussian exponential.

11, e—-;l 7 M, d=20, o- 18};

the same as #10, but the "volcano

function' has a central minimum of

height 1, and a "ridge maximum of

height d= 2.0 (Fig. 34 D).
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