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FOREWORD 

I wish to express my deep gratitude to Dr. Robert Glaeser, 

'i friend and advisor to me during the many months of work that have 

gone into this thesis, whose patient and skillful assistance has 
1,~ 

been indispcns;Jble to me in this and other emif:'avors in the 

Medical Physics Department of U.C. Berkeley. I thank, also, all 

those \vho, each in his own way, have contributed to the completirn 

of this thesis: secretaries, computer programmers, personal 

friends, and others. Their help has been deeply appreciated. 

This thesis is dedicated to all those who make science a 

living, creative endeavor; and especially to the beloved memory 

of the late Professor Aharon Katzir-Katchalsky, a true giant in 

this right. May the boundless energy and depth of his remarkable 

personality continue to inspire those who were fortunate enough 

to have known him, to keep science a creative expression of life 

itself, and not a bland extraction thereof . 

.• 
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ABSTRACT 

Much interest has been expressed, of late, in the possible 

involvement of the Fourier trnnsform in the primate visual 

process. Such involvement is investigated here, via Fourier 

transformation of well known optical illusions, which are used 

as inputs to a Fourier model of the visual process because they 

constitute known failures of the real visual system. Through 

study of such failures, knowledge of the working system may be 

gained) as is the case in the field of genetics, where m~tations 

have been valuable tools of research. The essential features of 

the visual pathway are outlin~d, and an extensive introduction 

to the Fourier transform and its applications presented. A 

current model involving Fourivr tr.::lnS forms is discussed, and 

arguments for the significance of optical illusions in testing 

that, and other models, are presented. A common geometrical 

illusion, the Mllller-Lyer illusion, is mathematically desfribed 

and its Fourier transform calculated analytically. Final~y, the 

effects of spatial filtering of a Fourier representation of the 

MUller-Lyer illusion are investigated, using computer methods. 

Num.erous different filter functions are tested, to acconunodate 

different neurophysiological schemes, and it is shown that any 

centrosymmetric filter applied to the Hllller-Lyer Fourier array 

will give rise to the known illusory effect. It is concluded 

that as far as geometrical illusions and ordinary geometric 

figures are concerned, the hypothesis that Fourier transformation 

is involved in the primate visual process is confirmed, provided 
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that some biologically realistic method of spatial filtering is 

included in the hypothesis. 

' . 
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INTRODUCTION 

For many years, a precise understanding of the n~ture of 

human visual information processing has evaded the efforts of 

researchers, largely due to the enormous complexity of the neural 

networks involved. The lack of detailed information on the 

morphology and electrophysiology of the visual pathway continues 

to prevent any conclusive model for the system as a whole, 

though much progress has been made towards elucidation of 

numerous elements thereof. The externally verifiable properties 

of the human visual system, such as invariance of object recog­

nition with wide variance in object position, orientation, or 

visual context, have played a dual role in the efforts to form 

a model: they constitute a major challenge to any prospective 

model of human pattern recognition, but also provide useful 

guidelines for engineers and information scientists attempting 

to apply the general principles of pattern recognition to the 

visual pathway. 

One of the most controversial and interesting models under 

current investigation is that in which a Fourier transformation 

takes place within the visual pathway. That is, according to the 

model, the light information striking the surface of the retina 

is transformed into a different kind of data by the time signals 

reach the cortex of the brain. As the visual pathway is so 

complicated, there is no direct method of verifying the model on 

the basis of the neurophysiology involved--no "poll" of cells in 

the visual pathway can be realistically taken which would indica~ 
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whether the cells contain Fourier components or not--therefore, 

researchers are forced to resort to more indirect methods of 

verification. 
• ! 

One such means is to give the model an ~nput 

stimulus which is known in.the actual human visual system to 

give rise to an illusory effect, and see if the model detects 

the illusion. This approach is the one taken here, for reasons 

given at a later point, and it is suggested that it has proven 

fruitful in this case. 

The experim~ntal approach chosen for this thesis is based 

on several important concepts, which in turn are based on·a 

somewhat extensive mathematical and biological framework. In 

order that these concepts cari be made clear, an outline of the 

essential f~atures of the primate visual pathway is presented, 

as well as a fairly thorough introduction to the Fourier trans-

form and its applications. In the description of the visual 

pathway, it is presumed that the reader has some familiarity 

with the vocabulary of neurophysiology, while the mathematical 

introduction to the Fourier transform is written with the 

assumption that the reader has some familiarity with calculus, 

complex numbers and linear algebra (vectors and matrices). It 

is in tended that after. reading the rna thematic a! introduction, 

the reader will feel comfortable with the basic properties of 

Fourier transforms and their applications, and will be equipped 

to understand the various manipulations of transforms that are 

involved in the experimental approach. 

The reader should note that all illustrations are arranged by 

section, and are located at the end of each section (unless otherwise 

indicated). 
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0UTLINE OF THE VISUAL PATHWAY 

The principle features of the enormously complex network 

that constitutes the visual pathway should be understood. before 

any models bf the system are proposed or studied, if the models 

are to have any basis in physiological reality. A schematic and 

simplified summary of this network is outlined below for 

monocular vision. The author recognizes that the brevity of this dis­

cussion requires that it be incomplete, but believes that the most im­

portant elements are covered sufficiently for the reader to under­

stand the material in this thesis. 

Light waves passing through the pupil and the .lens are 

focused on the retina through a liquid intermedijry medium 

called the vitreous humor (Fig. 1). The photoreceptive layer 

consists of ~126 million photosensitive cells, of which -120 

million jre rod-shaped and are thus called rods, and -6 million 

are called cones, for their conical shape. These cells convert 

light energy into electrochemical energy, excite the neural 

cells attached to them, known as the bipolar cells, and stimulate 

surrounding rods and cones via the horizontal cells. 

The bipolar cells, of which there are many types, link the 

rods and cones to the ganglion cells, usually directly, but often 

via amacrine cells, whose numerous extensions spread the signal 

to many ganglion cells. The complex network of interconnections 

between the photoreceptors and the optic nerve is ·illustrated 

schematically in Fig. 2. As can be seen in Fig. 2, the flow of 

information is by no means unidirectional from retina to optic· 

nerve, and even involves transmission of information from the 

higher centers of the brain to the rods and cones, via so-called 

"centrifugal"-type bipolar cells. 



-4-

In the mammalian retina, which is a multilayered structure, 

the photoreceptive layer of rods and cones lies farthest away 

' 
from the object ip spac~, and thus it is not ~urprising that all 

the other neural layers which precede it are highly transparent ' 
(1). The bipolar, horizontal and amacrine cells respond to 

excitation not by generating an action potenlial or impulse, but 

by continuously varying1 the degree of polarization of their cell 

membranes (1). The first cells in the visual pathway.to trans-

late the light intensity information at the levei of rods and 

cones into neural impulse frequency, or firing rate, are the 

ganglion cells, whose long cell bodies (axons) merge to form the 

optic nerve. 

The retinal surface is non-homogeneous in many respects- -one 

of particular importance is that the cells in the portion lying on the 

visual axis (Fig. 1 ), which constitute the fovea., are much smaller 

and more densely packed than in the extremities of the retina. In 

this region, each cone is connected to a single, corresponding bi-

polar cell, whereas in other retinal areas, many photoreceptors 

feed into a bipolar cell. As a result, the foveal region is the area 

of highest visual acuity on the retina, and this accounts for the fact 

that the best visual detail is seen when the object of interest is 

centered in the field of view. 
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As shown in Fig. 2, each ganglion cell is linked to many 

pbotoreceptors via the network of bipolar, hori~ontal and amacrine 

cells; the portion of the retina to which a given ganglion cell re-

sponds is called its receptive field. The receptive field of a ganglion 

cell is usually composed of two parts: an excitatory portion, in 

which illumination will cause an increase in the rate of electrical 

impulse generation by the ganglial cells (increased firing rate), 

and an inhibitory portion, which has the opposite effect when 

illuminated. Illumination of a randomly selected point iri the re-

cepti~e field many either increase or decrease the firing rate of a 

given ganglion cell, so that a single ganglion may simultaneously 

receive several excitatory and several inhibitory impulses from a 

complicated image on the retina. The response of the ganglion to 

such stimulus is an averaged or net response to the multiplicity 

of inputs ( 10). 

When tl1e excitatory part of the receptive field of a 

ganglion cell is illuminated with light intensity I, the 

ganglion responds by firing impulses of equal amplitude at a 

frequency dependent upon I; in general, the higher is I, the 

greater the frequency {but not the amplitude) of the ganglion 

I 
impulses (1, 10 ). The precise rna thema tical relationship be tween 

the intensity distribution (the focused image) on the retina and 

the response of the corresponding ganglion cells has yet to be 

elucidated, but it is clear that ganglion ct.'ll behavior is not 

a simple function of the intensity distribution. For example, 
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it has been shown that the information at the ganglion level 

corresponds to a modified version of the focused image, in 

which borders and boundaries of objecti have been greatlY 

enhanced, and the sensitivity to movement in the visual scene 

has been increased ~0). The axons of the ganglion cells merge 

to form the optic nerve, and carry the retinal information to 

the lateral geniculate body via the chiasm, a junction region 

wherein half the optic nerve fibers from each eye cross over to 

the opposite side of the brain (Fig. 3). 

In the lateral geniculate body, a multila1ninar structure, 

the retinal ganglion cells synapse with the so-called geniculo­

calcarine neurons, which connect the lateral geniculate to the 

visual cortex. Recent evidence indicates that neurons carrying 

informat-ion from other senses than vision also synapse with the 

ganglion and geniculo-calcarine neurons in t. he lateral geniculate 

body (14), supporting the theory that there is direct interaction 

between the senses prior to processing in the brain. In trans­

ferring the information from ganglion to geniculo-calcarine 

cells, the lateral geniculate further modifies the infor-

mation, although the mathematical nature of the modification is 

not precisely known. However, the information passed by the 

geniculo-calcarine neurons to the striate cortex is thought to 

be still, essentially, a cine-to-one mapping of the retinal 

information (4, 1), and thus the cortex receives as its visual 

input a modified but more or less direct trans fer of the focused 

image on the retina. One should not undere,stimate the importance 
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of the modifications, though, as they are surely essential to 

the visual process and are enormously complicated. For example, 

there is considerable evidence that many axons of the optic 

nerve carry signals from the brain to the retina~ suggesting a 

feedback system (1, p. 109). 

Before discussing the striate or visual cortex, some 

important additions should be made to the above comments on 

the subcortical part of the visual pathway. First, as has 

been p6inted out by Westheimer (17), the input to the visual 

~ystem is resolution-limited fromfue start by the diameter of 

the pupil, which acts as a variable aperture on the lens, and by 

the constant, random movement of the eye. These factors combine 

to produce an effect known as line spread, whereby a thin line 

placed in the field of view is degraded to appear spread out 

(thicker) in a gaussian or other distribution on the retina. 

For a pupil of diameter 3 mm, one expe.rimentally determined 

best-fit line spread function is f(x) = e-(.llxl) (17), which 

means that a vertical line is distorted as follows: 

Intensity 

Cross section of 

vertical line before 

-entering eye 

Line spread 

-..;.....~'-----X 

0 

Intensity 

Cross section of 

vertical line on retina, 

after line spread 

Minutes of arc on retina 

Fig. 4 

DBL 728 5425 
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Other experiments have shown that the minimum angular separation 

between parallel lines (angle measured on' the surface of the 

curved retina): that the retina can detect is 0.6 mim1tes of arc, 

under the most favorable conditions for high resolution viewing 

(17). This is then an upper limit one could expect for the 

resolution of the entire visual system. 

Another important point is the nature of the receptive 

fields of the ganglion and geniculate cells. Th~ ganglion cell 

responds to a more or less circular region of the retina, the 

region having a smaller concentric subset (Fig. 5). If illumi-

nation of the central portion gives rise to increased ganglial 

firing rate, illumination of the concentric surround inhibits 

the rate, and this type of receptive field is called an "on"-

center field. Similarly, an "off"-center receptive field has 

an inhibitory center and an excitatory surrotind. For a given 

cell and intensity of illumination, the response to illumination 

of the retina varies widely according to the portion of the 

receptive field illuminated. Two beams of light striking 

different portions of the "on" central region produce a greater 

increase in: firing rate than either beam alone, whereas ti-e two 

I 

beams have little combined effect if one strikes, the center and 

the other strikes the surround (10) at the same time. Diffuse 

illumination of the entire retina has far less effect on a 

given ganglion cell than a single spot of light that strikes 

only the excitatory center of its receptive field. Geniculate 

cells have very similar receptive fields to those of ganglion 

' ., 

' 

• ..J 
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cells, the basic shape being circular with concentric excitatory 

and inhibitory regions. A significant difference between the 

two, however, is the greatly enhanced capacity of a geniculate 

cell's periphery to cancel the effects of its center (10). This 

implies that geniculate cells are even more sensitive to the 

precise distribution of intensity in the focused image than the 

ganglion cells, and thus the lateral geniculate body effectively 

increases the disparity, already present in ganglion cells, 

between response to small spots of light or sharp edges, and 

diffuse light. 

The visual cortex is a vastly more complicated structure 

than the lateral geniculate body, consisting of a multilayered 

sheet of billions of cells, folded and convoluted on itself to 

form a compact structure. The.geniculo-calc?rine neurons attach 

to the cortex in the layer of cells that is fourth from the top 
) 

of the cortex, the layer known as area 17 (4). From here the 

information is eventually disseminated to all the many layers 

of the cortex by .rich interconnections between them. The cells 

of the visual cortex respond to illumination of definite areas 

of the retina, but their receptive fields are not concentric--a 

distinct difference from the ganglion and geniculate cells (10). 

Rubel and Wiesel (10) found two types of cortical cell, termed 

"simple" and "complex", for their respective responses to 

optical stimuli at the retinal level. A simple cell responds 

to line stimuli--such shapes as slits (bright lines on dark 

background), dark bars (dark lines on a light background) and 
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edges (straight boundaries between a light and a dark area), when 

located in a specific region of its receptive field, and respond 

maximally when' the line is in a specific orientation. S~ch 

cells respond to movement of a stimulus on the retina only as 

the stimulus crosses. a very narrow boundary between "on" and 

"off" regions, and it is thus said that simple cells have long, 

narrow r_ecepti ve fields ("on" centers). Complex cells also 

respond to line stimuli, but are far more sensitive to angular 

orientation than simple cells, while being far less specific as 

to position of the stimulus on the retina. Complex cells respond 

to stimuli of a particular orientation, respond maximally to those 

of a particular width, and show virtually no variation in their excited 

firing rate as line stimuli of the proper orientation are moved across 

large segments (around 20 o/o each) of the totp.l retinal area. 

Thus, their receptive fields cannot be understood in terms of clearly 

demarked uon" and "off" regions. Rather, such behavior strongly 

implies superposition of similarly-oriented receptive fields, 

which would be the case if each complex cell received its input 

from many simple cells whose receptj ve fields all had the same 

orientation (10, p. 63). Such a scheme would call for inter­
' 

connections between simjlar simple cells and their complex 

counterparts, and Hubel (10) has found strong physiological 

evidence for such interconnections: "Functionally, the cortex 

is subdivided like a beehive into tiny columns or segments, each 

of which extends from the surface [of the cortex] to the white 

matter lower in the brain. A column is defined not by any 

r 

.· 
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anatomically obvious wall--no columns are visible under the 

microscope--but by the fact that the thousands of cells it con­

tai1ns all have the same receptive-field orientation". (10, p.· 62) 

(Fig. 6). The electrophysiological data on which these state-

ments are based can be summarized as follows: as a microelectrode 

is pushed into the cortex and the receptive fields of the cells 

' 
through which it passes recorded in sequence, all cells show the 

same field orientation when the penetration is made in a direc-

tion perpendicular to the surface of the cortical segment. When 

the microelectrode is inserted and samples taken at an oblique 

angle, the data show first a few cells with the same receptive 

field orientation, then several cells with a common, new 

orientation, and so on, as though the electrode were passing 

from column to column. Receptive field orientation appears to 

be the only common denominator of the cells of a given column, 

however, as they may be simple or complex cells, respond to 

slits only, or respond preferentially to dark bars or edges. 

Anatomically, the columns are irregular in cross sectional shape 

2 
but average about 0.5 mm in cross-sectional area. Also, it is 

well known that the preponderance of interconnections among 

cortical ~ells is in a direction perpenilicular to the cortical 

surface, and this fits well with the long, narrow, more or less 

cylindrical shape of the columns. The relative lack of 

connections between cells of different columns implies that a 

column may be considered an independent functional unit of the 

cortex, in which simple cells receive connections from lateral 
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geniculate cells and send projections to complex cells. The 

result of this is that a line stimulus with a giveri orientation 

will most strongly stimulate the cells of the column whose 

receptive fields correspond to that orientation. As the areas 

of the retina represented in each column overlap with one another 

to a great extent, each small region of visual field is represented 

"over and over again, in column after column [of the cortex], first 

for one receptive-field orientation and then for another." (10, 

p. 63 ). This extensive redundancy will be mentioned again, as a key 

ingredient to the Fourier model for visual information processing 

and storage. 

This completes the brief sketch of the visual pathway 

intended for this thesis. At least one 'major point remains to 

be emphasized, though, and it should be borne carefully in mind. 

The foregoing description is of the machinery of vision and 

pattern recognition, and some of the phenomenology thereof. The 

precise mechanisms by which the phenomenology is linked to the 

machinery have, in most cases, yet to be elucidated, and many 

models are presently attempting to make the connection. However, 

there is ~ clear concensus of scientific opinion on the visual 

process as a whole, that there is a distinction between the 

process of visual information processing and that of interpreting 

.!E!:. processed information. Anatomically, the former is believed 

to take place between the retina and striate cortex (the sub-

cortical part of the pathway) and the latter in centers deeper 

within the brain, though feedback networks between the two. are 
\ 

a virt~al certainty. The mutual interdependence of the two 

systems is clearly indicated by the fact that a change in the 
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information being processed visually causes a change in the 

interpretation thereof, and conversely, that prior knowledge 

about an input to the system may affect the way it is processed. 

An example of the latter is the phenomenon of figure-ground 

reversal,. wherein an ambiguous picture is viewed, in which it 

is difficult to distinguish between object and surroundings. 

After one has been informed which is which, the same input 

elicits a different interpretation from that when uninformed. 
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FIGURE 2 (EXPLANATION) 

The structure of the primate retina reduced to its 

essentials, including the synopsis of the propagation of the 

retinal impulses from the photoreceptors to other parts of the 

retina, to the brain, and from the brain back to the retina 

(direction indicated by arrows). 

Labling of the cells: a, b, rods and cones, or the 

photoreceptors; c, horizontal cells by means of which the 

impulses are transmitted to the surrounding rods and cones; 

d, e, f, h, centripetal bipolar cells of the mop, brush, flat, 

and midget varieties, which "transmit" the impulses from the 

photoreceptors to the ganglion cells, the bipolars serving as 

"analyzers"; i, centrifugal bipolar cell, a variety of the 

"amacrine cells," which probably recei. ves the impulses from the 

centripetal bipolars, from the ganglion cells, and also from 

the brain by way of the centrifugal or efferent fibers (t) 

and transmits them back upon the photoreceptors (a, b); 

1, an "amacrine cell" which possibly intercepts a part of the 

bipolar impulses and spreads them over the surrounding territory; 

m, n, o, p, s, ganglion cells which receive impulses from the 

centripetal bipolars and transmit them to the brain along their 

axons called "optic nerve fibers." (Polyak, _:I'he Retina, 

University of Chicago Press, 1941.) 
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''ON'' CENTER FIELD . . 

"OFF" CENTER 
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E /ectrolytic lesion 

Redrawn- from: SCIENTIFIC AMERICAN 

DBL 728 5421 

Fig. 6 
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FIGURE '6 (EXPLANATION) 

Functional arrangement of cells in the visual cortex 

resembled columns, although columnar structure is not apparent 

under a microscope. Lines A and B show paths of two micro­

electrode penetrations: colored lines show receptive-field 

orientations encountered. Cells in a single colunm had same 

orientation; change of orientation showed new column. 

(From Hubel, Reference 10, P- 62) 

·-
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MATHEMATICAL BACKGROUND 

One of the basic concepts of linear algebra is that of a vector 

space. A two-dimensional vector space, for example, consists of the 

plane in which two nonparallel vectors A and B lie. That is, the set of 

all points (vectors) which can be located by linear combinations 

c
1
.A + c

2
B constitutes a two dimensional vector space, and that space 

is a plane. The two vectors, A and Bare said to constitute a basis set 

for the space in which they lie, and if they are perpendicular to one 

another, form an orthogonal basis set for the plane. In either case, 

A and B are said to span the plane, meaning that they linearly com-

bine to completely determine all points on the plane. It should be 

noted that there are infinitely many pairs of orthonormal basis vectors 

in a given plane. In general, a space which is spanned by n inde-

pendent vectors (i.e., no one vector can be generated by linear com-

binations of the others), is said to have dimension n, and the set of 
. . 

n such vectors constitutes a basis set for vector n-space. 

The extent to which one vector "overlaps" with another is ex-

pressed by the projection of the one onto the other, as seen in the 

illustration below: 

A measure of the amount of projection is 

the inner product between A and B, also 

~--'----;-.-8 
'== I .... . 

II All cos 8 
known as the dot product because of the 

'Fig. 1 symbolic form in which it is usually written, 

A.B'. If A is (a
1 

,a
2

) and B is (b
1 

,b
2
), A•B - a

1 
b

1 
+ a

2
b

2 
= 

I lA II I ~ II cos e, where IIAII means the length of A and is given 

by IIA II = Ja 1
2
+ a~ , and e is the angle between A and B 

(see figure above). If A and Bare orthogonal, then e = I 
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and IIA II • II B If cos 8 = 0. Thus, two orthogoh.aJ vectors have an inner 

product of 0. The inner product can be applied to vectors inn-space 

by extending the definition to be: 

If A = (a
1 

~ a
2

, ···,an) and B = (b
1

, b
2

, · · ·, bn)' then 

n 

A..J3 = a
1

b
1

+ a 2b 2 + ···+ anbn = ~ 
i =1 

a.b .. 
1 1 

If 

n 

2_ 
i =1 

a.b. = 0, 
1 1 

the two vectors are orthogonal, as in the two dimensional case. If 

-+ -+ 
e

1
, e

2
, ···,en are an orthogonal basis set for vector n-space and each 

have length 1, they constitute an orthonormal basis set for vector n­

space. Any vector A= (a1' a2, ... ' an) = a1i1 + a2i2 + ... +an in, where 

the vectors 1~, 1; .... 'rn are one basis set for the space, must also be 

expressable as a linear combination of the basis vectors (;
1

, ~ 2 • · · ·, (;n. 

That is, A= c1;1 + c2;2+ ... + cn;n' where the c1' cz, ... ' en are 

constants. What are the constants? The sun1 of n vectors is another 

vector, so it is appropriate to speak of a dot product (inner product) of 

the right side of the above equation, with another vector. Let's take 

..... 
the inner product of both sides of the equation with the vector e., one 

J 

of the basis vectors. Since the inner product is distributive over addi-

tion, we have: 

-+ ...... 

A·e. = 
J 

+ C.e. + 
J J 

..... 
+ C e ) · e. 

n n J 

By their mutual orthogonality, the dot product between one basis vee-

tor and another Inust be 0, ans since each vector has length 1, 

-+ ... 
e.· e. = 1, so the sum of the right side becmnes 

J J 
C.e.-1. =C .• 

] J J J 
Thus, 

we have A· e. = <A, e.> =C., where <, > is another cotnn<on nota-
J J J 

tion for the inner product of two vectors, in this case A and (;_. 
J 

So, each constant, C., is determined by the inner product of 
J 

~. 

i 
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- -A with the basis vector e., and therefore, 
J 

A=! <.;t,ej> ej = (C1,C2,···, Cn)e 

j = 1 

.... ( 1) 

Such a change of basis sets within a space, with its corresponding change 

in then-tuple representation of a vector, is called a linear transforma-

tion, and will be seen to have direct analogies in the discussion to fol-

low. 

The concepts of a vector space can be extended to other domains 

than the set of real numbers, to that of a function spa_ce. To understand 

the connection, one must first know what constitutes a space. A space 

is a set Or collection of elements that have certain properties in COin-. . . 

mon. A vector n- space is a collection of elements, each of which is an 

ordered set of n numbers; the number of numbers, n, in each element 

is the dimension of the space. For example, each point in a plane is de-

fined by an ordered pair of numbers where each "slot" can have any 

real number x cR 
1 

(the real line). To say that the dimension of this vee-

tor space is "two" is to say that the combination (x
1

, x
2

), where both x
1 

and x
2 

are free to take on any real value, yields a. collection of all pas­

sible points that are elements of R 
2

, the real plane. The method of com­

bination is called the Cartes ian product and is written R 
1 

XR 
1 = R 

2
. Now 

R
1

, being the set of all real numbers, can be generated and regenerated 

in many ways; e. g., a real-valued, monotone function f(x) takes a num­

ber in R 
1 

and manipulates it to give another number in R 
1

, so that R 
1 

is both the set of all values of x and the set of all values of f(x). For 

any particular value of x, say x = 1, one can conceive of a set of func-

tiona {£(1)} such that the values of these functions "fill up" the whole 

real line. Thus, an equivalent way of expressing R 
1 

is the set {£(1)} of 

all real-valued functions of the number 1. So, upon looking at the 

concept of a vector space from this standpoint, one can write 
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an equivalent form of a pair of numbers (x
1

, x 
2

) as a pair of 

sets ( {f(~ , {f(2)}), where f(l) is the set of 'all real 

valued functions of 1, and {f(2~ 
I 

is the set of all real-valued 
I 

functions of 2. The advantage of this more general formulation 

is that vector n-space can be understood as the set of all 

functions on the o'rdered integers 1,2,3, ... ,n = <{f(l)},{f(2~, 

{f(3~, •• {f( n~), and an important conceptual extension can 

schematically be grasped. A vector n-space could then be represented 

as follows: 

Fig. 2 l ORDERED INTEGERS~~ All FUNCTIONS !1--..-• .. l VECTOR n-SPACE I 
This is extendable to indefinitely large dimension by letting 

n increase without bound. A question arises, though: what happens 

if instead of using the in~egers as a start, we use the set of all 

real numbers, R 
1

? The result is called a FUNCTION SPACE over the 

real line and has analogies to all the properties of vector n-space. 

However, the set of all functions of a real variable is certainly 

an enormous set, and we need not deal with so vast and varied a 

collection. The set that will be dealt with is the set of all 

functions that obey the following condition: 

+oo 

j lf(x) 1
2

dx < 00 • 

- 00 

This set constitutes a space, called an L
2 

space, which is a 

particular version of a more general notion called a Hilbert space. 

i 
We will allow f(x) to be complex-valued, meaning that the funct1on 

f takes a real number x and converts it to a number a+ib, where 

a and b are real numbers a~d i=-..t:T . The set of. all complex 

numbers, {~+ib} constitutes the complex plane C 
1

, whose horizontal 



~) 
~ •. .J ·) 

+) 
"' c;~ .. ... rJJ 

-25-

axis is the real line,R
1

,and whose vertical axis is the set of 

all real numbers multiplied by i. The latter set is referred 

to as the set of imaginary numbers; the figure below depicts the 

complex plane and some important features thereof: 
iy 

Fig. 3 
c 1 

(a,bi) = a + bi 

l r = ~ a2 
+ b

2 

I 

I a 
I 
I 

! (a,-bi) = a - bi! 

The point a-bi, the reflection of atbi through the real axis, is called 

-·-
the complex conjugate of atbi, and is written a-bi = (atbi)'''. Since 

each member of the range of a complex-valued function is composed 

of one real and one imaginary term, a small a complex-valued 

function can be considered as the sum of a purely real-valued func-

tion and a purely imaginary-valued function, f(x) = y(x) t iZ (x). The 

inner product of two functions is analogous to that of two vectors, i.e., if 

where 

f
1 

(x) = Y
1 

(x) + i~l (x) and f
2 

= Y
2

(x) + ie
2

(x) 

Y
1

(x), z
1

(x), Y
2

(x) and ~ 2 (x) are real, then the 

inner product of 
too . * < £

1 
(x) , f

2
(x) > ::: J £

1 
(x)· £

2 
(x) dx, 

-00 

where * £
1 

(x) = ,Y
1

(x) - i~ 1 (x). 
too 

Also, < £
2

(x) , £
1 

(x) > ::: 1!
2
* (x) £

1
(x)dx 

* = ( < £
1

(x), f
2

(x) >) . 

too * 
If f

1
(x) and f

2
(x) are orthogonal, 1 £

1 
(x). £

2
(x) dx = 0, and 

too * -oo . 
conversely, if 1!

1 
(x). £

2
(x) dx ::: 0, £

1 
(x) and f

2 
(x) are orthogonal. 

A set of functions hn (x) forms a basis set for the space of functions 

defined on a finite :i,nterval of the real line, a.~ x ~ b, if any 



-26-

function f(x) on that interval can be expressed as f(~) .., 
+ao 

~ C h (x) • If the set h (x) is such that 
6 nn n 

n=-ao 

= 0 for ifj, then h (x) is an 
n 

orthogonai basis set, and if< h
1

(x) 1 hi(x) > = 1, then the set 

h (x) is an 6rthonormal basis set, and the values of C in the 
n n 

above summation can be determined in precisely ana:lgous manner1 

to the situation in vector n-space. 
ao 

and f(x) =\I <f(x),h (x) > h (x) 
i.J n n 

n=-oo 

Thus, C. = 
J 

(2) 

< f(x),h.(x) > 
J 

There are infinitely many sets of orthogonal basis sets 

( hn (x)) 1 among them being the Taylor,, Laguerre, Hermite and other 

polynomials, of great importance in quantum mechanics. Each set 

may be used to expand f(x) into an infinite series, with 

appropriate coefficients of the basis functions being summed. 

The large nu1nbcr of functional basis sets is analogous to the situation in a 

two-dimensionalvector space, where any two perpendicular vectors form 

an orthogonal basis set for the space. 

It can be shown that the set of complex-valued functions 

{• 2n-!.nx} n"±!, ±2, ±3, · · · , forms an orthogonal bas is set for alllz functions of 

{ 
27rin~ . 

the interval 0 < x < 1. The proof that e }'forms a bas~s set 1 

for the space is beyond the scope of this paper but can be found 

r 2rinx'1 
in (13). The proof that ~e J are orthogonal is straighL-

forward, as will be shown: First, note that e 

+ l sin (2Trnx) by Euler's identity. 

Then * = (cos ('27rnx) +is in ( 21r0x)) 

2rinx 
;:; cos ( 21rnx) 

= cos (2TTnx) -i sin(2TTnx)= cos ( -27T"Ox)+isin( -21r0x) =e -
2
rinx • 
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Then: 

The inner product of two functions f
1

(x) and f
2

(x) over 

the interval a _< x <_ b, is defined as < f (x) f (x) > 
1· '2- [a,b] 

=J: tt (x) -f
2

(x) dx, and will be 0 if and only if r
1 

and t
2 

are 

orthogonal on the 

together, we have 

interval a $ x s_ b. So, putting these notes 

that {eZvinx} will be_ orthogonal on the interval 

. f f - . 27rlmX 2mix (i- & [0,1] if and only 1 or every pa1r- e , e m integers 

< n), the inner product is 0 . 

Thus: 

2rimx 27Ti.Rx 
< e e > [ O, 1] 

- nmx -n-rxd !
1 2' ?'I! 

= e e x 

0 

= J
1

e2ri(}-~x 
0 

and if 1-m*O (l*m), we have 

s: 2rri(£-m)x 
e dx 

= :l,ri~L-m) [cos(2JT(f-m)x) + isin(2JT{t-m)x)J: Now 

<-l.-m) is an integer, so sin (2rr(f-m) = sin(o-(.C-m))= 0, and 

- 2rimx 2Tr(£ -m)x , 
cos(2rr(€-m))- cos(o.(£-m)= O, so < e , e ~ >[0, 1] "' 

!
1 2 ,, 2 . J 1 ~ t - 7r1mx nmx - < 0 -

0 if ~=tm. If .-(;;::m, we have e - e dx = / e dx = 1. 

0 ~ 

Another way of writing this is 

<e 
2rimx 2rilx 

where f,tm "{~ iff:;;; 

' 
e > [ o, 1] = [~ 

' 
m 

t.m 
if f:t m 

With this background, the Fourier Transform becomes a simple 

application of ,the principles stated above. 
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THE FOURIER TRANSFORM 

Suppose f(x) is,a function which satisfies the following 

restriction: 
1 

J I f (x) I 2 
dx < ao 

0 

Then the set of all such functions comprises a function space, 

and that space is spanned by many different sets of eigen-

27rinx 
functions, among them being the set (e ) . By the previously 

mentioned property of function spaces, any function defined on a 

finite interval of the space can be expre~sed as a linear 

( e 2rinx., , combination of the functions j 

-t-oo 

so f(x) L C e
2
rin.x · · · · (2), where the C are 

n;:- «~ n n 

complex constants. The C
0 

term, also known as the "DC term", 

is of particular interest, as shall be shown: let the length of 

the interval on which the function is defined be 1, for some 

appropriate unit of length. Integrating over this period, we 

have: 

J 1 

f (x) dx = . J ~;:J: C n e ZrinxcLx ;: n;:-~ en J 1 

e Z;rinx dx. 

0 0 0 

For any k I 0, the integr~l is 

J 
1 

2rikxd _ ~1 2rikx] 

1 

1 [cos27TKx Jl e x-
1
.k e .:;; 

ik +isin2iii0 
0 0 0 

1 
= 0. When k;:Q, the integral is J e

0
dx = 1 {length of interval), so, 

0 

S
f . 

. 
f(x)dx = C . (interval), and C = 

0 0 

1 ~ (interval) 
(" t l) f (x) dx = F(x), 1n erva 

the 

0. 0 

average value of the function. 
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Now, to determine the general constant Cm' rwe multiply both sides 

-2nmx . 
of equ. (2) by e and mtegrate from x = 0 to x = 1. Thus, 

• J 1 ~Zrrimx f(y) dx = J YJ:: 
o o \r 

C e2rinx) ~2rimx dx 

n ) 

1 

= [ C J ~ 2rrinx0 -27rimx dx But J 2riflx -2rirnx d . 
. e e x 1s 

n=-oo o 0 

just 
27TimX 2 ~ 

< e e ~ and from previous arg·Jments, 
7 (p,iJ 

< 2rrimX 2rinx > e , e = Jmn. So, all terms in the series will 

be zero except where n = m, so 

J 1 
f (x) e -27riwxdx e -Zrimxdx (3) 

0 

The set of constants DISCRETE FOURIER 

TRANSFORM of f(x), 

Rewriting equ. (2) using the new values for C , we have 
rn 

f(x) = < f, e -2rin~ e 2rrinx 

[ 0,1] 
(4) 

This is precisely ~nalgous to expansion of a vector, seen 

earlier. [equ. (1)]. The discrete Fourier transform was defined 

for the set of all L
2 

functions which map the interval [0,1] of 

the real line into the complex plane. What if functions are to 

be considered that map (i.e., are defined on) the whole real 

line into the complex plane? The discrete surr~tion then becomes 

an integral and the disciete constants C become functions g(u) 
rn 

of a continuous variable u instead of the integer-valued K, 

as follows: 



so, 
' Co 

J +27Ti.u.x · 
f(x) = g(u)e du, 

-oo • 
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co 

J -27Ti.ux 
where g(u) = f(x)e 

1 
dx 

-CO ! . 

1
00 . 

-2 ·ux 
and g(u) = -~(x)e 7r1 dx 

g(u) = F ~(x)} ·~ "the Integral Fourier transform of f(x)" 

fb:::) ;::; F-l {g(u)} "" "the inverse Fourier trans forin of g(u)" 

All of the foregoing argumen~s can be extended to functions 

of more than one variable, x. A two-dimensional L
2 

space 

is the set of functions defined on the real plane, that 

obey the condition~ 

00 

JJ lf(x. Y) 1

2 
dxdy < A 00

• 11 the arguments for 

-co -co 

inner products, basis sets and expansions follow in an 

analgous manner to those for the one-dimensional case, and 

the set {e Zni (kx+ny)} forms a basis set for the Lz space 

on the region 0 < x < 1, 0 < y < 1 of the real plane. Thus, 

the ~xpansion of a· function f (x,y) on that region is given 

by f (x,y) = ~ \ar ck e2'1Ti (kxtny) h c i•lr~( ) ~2Tfi{kx+ny) L L n • were kn= x,ye dxdy 
k= -co n= -co 

~en the interval of the real plane becomes the whole plane, this 

becomes an integral transform, with Fourier variables u, v 

instead of integers k,n, and we have 

f (x,y) = j j~ g (u, v) e zm: (~~d: vy), = 

-co '"00 

-1 
F (g(u,v,)}.. (5) 

...,,. 
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where 
00 00 

g(u,v)=~ ~g (x,y) 
-27ri (ux + vy) 

e 
dxdy = F (f (x,y)} ••.• (6) 

-oo -oo 

F (£ (x,y)} means, "the Fourier transform ,of f (x,y)" and 
' 

-1 . . . 
F (g (u,v)} means "the inverse Fourier transform of g (u,v)". 

Several important properties of Fourier transforms emerge from 

the definitions: 

1. INVERTIBILITY OF THE FOURIER TRANSFORM: 

and 

F-1 {F { f(x, y)}} ::: f(x, y) 
F { F-

1 
{g(u, v~} ::: g(u, v) 

The detailed proofs of these two identities are too lengthy 

to be of use in this paper, but it is hoped that these properties 

seem at least to be reasonable results of the definitions. 

2. LINEARITY OF THE FOURIER TRANSFORH: 

F {f(x,y)+· g(x,y)} = F {r(x,y~ + F {g(x,y)} and 

F {cf(x, y~ =. cF { f(x, y}, c being a constant. 

This property follows directly from the linearity of the 

integrals involved in the definitions. 

3. THE SHIFT THEOREM: 

The Fourier transform of a function that has been shifted 

· with respect to the origin is the same as that of the non-
1 

shifted function, multiplied 

F {f(x-a,y-b)} = F {r 
by a phase factor: 

(. ) } - 27ti ( ua + vb) x,y e ••••• (7) 

This is shown as follows for the one dimensional case, which is 

simpler but precisely analgous to the two dimensional case: 
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C». 

-2rlux 
(x-a) e dx 

let y = x~a;then dx = dy and x = y+a 
co 

F {f (y)} = J f (y) e -
2
7Ti.u 

r . . . -ol 

I: 

( ) . 
- 27Ti ( u y ) - 27Ti ( ua ) 

y e e dy 
co 

= ·. e .;2rriua J£ 

(y+a) co 

dy = J f 
-2riuy { :1_ -27Tiua 

(y) e ay ~ F f (Y)f e 
.. ·{ } -2rlua = F f (x) e 

-«». 

(y ~nd x are arbitrary names for all points on the real 

line and are thus "dununy variables" that are interchangable) 

An interesting and important consequence of the shift theore~ 

is the positional invariance of the Fourier transform, except 

-27Ti (au + bv) 
for a phase term e , where a and b represent 

the x and y ·displacements of the function f(x, y) from the 

origin of the x-y plane. This is a crucial property for any 

proposed mathematical model of the visual system, as it is 

well-known that recognition of objects is invariant to their 

linear translation in the field of view. However, the phase 

term does indicate a func d.on' s position relative to the origin. 

A good physical insight into the action of the Fourier 

transform on a function can be had from an examination of the 

complex exponential factor, known as the PHASE FACTOR in the 

integral. Note that when ux + vy = n, any integer, the phase 
y 

term is 

Fig. 4 
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e -iZ1rn = cos (-21Tn) + i sin( -21Tn) = cos 21rn = 1 = e 0 . 

Such a situation is referred to as zero phase, and for any u, v 

we have 

n u 
ux + vy = n and y = - - { - )x, n = 0, ± 1, ± 2, · · · . v v 

The angle 8, the 11 direction" of these zero phase lines, is given 

by 

e -1{-v) =tan 
u 

and d, the 11 SPATIAL PERIOD" ,, is given by 

d = 1 
(See Figure 4, previous page) 

\ 
Also, between these lines of zero phase, the phase factor varies 

sinusoidally, yielding a sinusoidal grating in two dimensions for 

each (u, v). As u and v vary, 8 and d vary, so that sets of 

parallel lines at all possible angles and at all possible spacings 

cover the entire plane. It is thus often said that a Fourier 

Transform DECOMPOSES a function of two variables in:to such 

sine w~ve gratings, each grating appropriately weighted by 

f(x, y), the function being transformed. 

Another important insight is gained from further examina-
/ 

tion 'of the phase term: the argument of the exponential must be ,. 

dimensionless, as sines and cosines are only defined to operate 

on real numbers and not on seconds, meters, etc. This means 

that ux + vy is dimensionless, and since x and y are usually 

measured in units of distance, u and v must be in units· of 

INVERSE DISTANCE or SPATIAL FREQUENCY. Similarly, a 

Fourier transform of a function of time would yield a function 
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of frequency, measured in Hertz. It is because of these rela-

tionships that Fourier space is often called Reciprocal Space, 

as the units of measure are the inverse of the corresponding: 
. . . i 

units in Euclidean space. A particularly significa.r:tt implication 

of this is that minute features of a function on the x-y plane, 

that occur within a small interval of the plane,. will be spread 

into the extremities (i.e. , the high spatial frequencies) of the 

Fourier u-v plane. On the other hand, gross or overall features 

of the same function will be represented in the lower spatial 

frequencies in Fourier Space. As an example, consider a 

.step function in one dimension, f(x) ::: {
1

/
21 

if - .
1 

< x < l 
0 otherWise 

l 

simple 

l. 

f( ·) -2rriux d _ 1 1 xe x-n 
-2rriuxd _ -1 -2rriux] 

e x - 4rriul e -l 

-l 

-1 e -e 
= 4TTiul 

le -2;riul .- e2rriul] = 1 
[ --:2=-TT-u-t=- [ 

2rriul -2rriul] 

but 

Both the 

ix -ix 
e - e 

2i 
- sin x, so we have: 

sin (2rrul) 
· 2rrul 

1 
2TTUl envelope and the frequency of the sine function 

vary with 1, so that large 1 will imply a steeply decreasing en-

velope and a large number of oscillations within a small interval 

of u centered around u = 0. Thus, most of the area under the 

curve will be in the low spatial frequencies of the Fourier vari-

able u. A small 1 will bring about the opposite effect, with a 
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slowly decreasing envelope and oscillations of significant amplitude 

spread out to high spatial frequencies. The above arguments are 

illustrated in Figure 5 .. Thus, a particular region of the Fourier u-v 

plane does not correspond to a particular region in the x-y plane, but 

I 
rather to a particular set of frequency characteristics of the function 

f(x, y). This can be understood by the fact that at each point (u, v) on 

the Fourier plane, the precise height of the Fourier representation 

g(u, v) is a result of adding contributions from all points in the x-y 

plane. This situation involves extensiv.e multiplicity, as f(x, y) is 

represented at each point (u, v). Likewise, each point on the x-y plane 

exerts its influence over the entire u-v plane. This kind of multiplicity, 

then, is a key ingredient to the Fourier transform. 

Fig .• 5 
f(x) 

1 

/21 

_____.l---+--,-----1...___ 
l + l 

g(u) 

1 

2 rru l 

DBL- 7 28-5428 

X 

u 
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FURTHER INTERPRETATION AND APPLICATIONS 
OF FOURIER TRANSFORMS 

The process of Fourier Transforming a function is analpgous 

to translating a story from English to Spanish, assuming that a 

translation could be done so that the story in each language is 

exactly identical. This assumption is further based on the 

premise that there exists a universal set of concepts that are 

precisely equivalent, regardless of the language in which they 

are expressed. A few important notions can be grasped via this 

analogy: The equality of the length or total content ·of the story 

in each language is analogous to the integrated area under 
00 

I f(x) j 2 
being equal to 1. ... 1 F(u) l~u. which can be thought of as 

the conservation of "total energy" of the function (story); 

the fact that the stories in each language are equivalent raises 

the question of which is the "real" story, corresponding to the 

fact that Euclidean and Fourier space representations of a given 

functio~ ar~ completely equivalent; the fact that there are many 

other langufLges into which the story can be translated corresponds 

I 
to the existence of many different orthogonal basis sets for the 

space of all square integrable (L
2

) functions, of which e
2

1Tinx 

is only one; two stories which are very similar in one language 

are very similar in another language, corresponding to the fact 

that if f(x) and g(x) are very 11 similar" (i.e. , their shapes .and 

scale are very similar), their Fourier transforms will also be 

very similar; the fact that the words of the story in English 

may bear little resemblance to the corresponding words in 
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Spanish parallels the fact that functions and their Fourier· repre-

sentations rarely show any resemblance to one another when viewed 

graphically. 

An important and useful mathematical concept that fits in well 

with these others is the convolution of one function with another, some-

times referred to as the cross -correlation between two functions. A 

precise definition of" convolution" will be given shortly, but first 

some brief background. Let f(x) and g (x) be L
2 

functions such that 

l
ao 2 ·jao 2 
-co lf(x) I dx = c -co I g(x) I dx, where c is a constant. That is, both 

f and g c.over a finite amount of area, but not necessarily the same. 

00 

It is stipulated that j 
. -ao 

2 
00 

. 2 
1 f<x> 1 dx = c j 1 g ex> 1 dx. 

-co 

We shall 

show that this relation implies a precise analogy in Fourier space, 

namely 

= c I I 2 G(u) 
1 

du, 

where the same c applies, due to ParsevaFs theorem. That 

theorem states that 

I F(u) I 2 
du, · · · · (8) 

and expresses the conservation of energy (area bounded by f on 

the x axis or F on the u axis) spoken of earlier. Now 

2 
00 

2 
<f(x), f(x) > = I I f(x) I I = J I f(x) I dx, and similarly 

-co 

for g(x), F(u) and G(u), so Parsevars theorem says 

i 

I I f (x) I I = I I F ( u) I I and I I g (x) I I = I i G ( u) ! I ; therefore , m 

substituting for the original stipulation, 
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00 2 00 . 2 joo I f<x> I dx = c jao I g<x> I dx, 
we now have 

I I f ex> I I = c I I g <x> I I . 

and thus, II f(x) II =II F(u) II = c llg(x) II = c II G(u) II· 

Therefore, II F(u) I I = c I I G(u) I I· 

I 

II 

The convolution of f(x) with g (x), denoted h(x) = f(x),~g (x) is 

defined as 

00 

h(x) =J f(u) g(x-u)du (u here is a (9) 
-oo 

dummy variable, not a Fourier variable). 

The significance of h(x) is that it is a quantitative measure of 

how similar f(x) and g (x) are. This will be shown a's follows: 

It was argued earlier that due to the equivalence of Euclidean 

and Fourier representations, similarity between functions in 

one space implies similarity between their representations in 

the other space. If it can be shown that the Fourier representation 

of h(x) is a measure of the similarity between F {r(x)} and 

F {g(x)}, then it would follow that h(x) is a measure of similarity 

between f(x) and g (x). First, we need some important relations: 

The magnitude of a function f(x)is given by II f(x) I I= (< f(x), f(x)>) i/Z, 
I 

and expresses the amount of area bounded by f(x). If f(x) and 

g(x) are two functions, we have the Schwartz Inequality, 

<f(x),g(x)> < llf(x)/l·llg(x)jl. (13, Chapter 1) 

The equality holds when f(x) = g(x), in which case 

<f(x), f(x)> = 1/Hx>ll·l !fCx>ll = <f(x),f(x)>
1

/
2

. <f(x),f(x)>i/
2

, 

from the definition of I I f(x) I I above. Now, let's look at the 
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Fourier transform of h(x): 

~ ~ . . 

[ · -2~isx 
' } . 

F \h(x)} = L {1~ f(u) g(x-u)du e dx = F(s) 

let v =x-u, so dv = dx and· x = u + v; Here, s is the Fourier variable, 

and u and v are merely dummy variables. Then, interchanging the 

order of integration yields: 

( 
I ~ ~ 

F h( ).\ j 1 f(u)g(v) e- 2 ~is(u+v)du.dv 
.l X)/ : -~ -~ 

~ ~ 

= 1 f(u) e -Z~isudu 

-~ 

j g(v)e -2~isvdv 

-~ 

= F[f(x)] · F[ g(x)] = H(s) = F·(s) · G(s) · · · (10) 

So the Fourier transform of the convolution of f with g is the 

product of the separate transforms of f and g. Thus, the 

Fourier representation of h(x) will have a large magnitude, 

i. e. , 

I I H ( s ) I I = < H ( s ) , H ( s )> 
1 I 2 

willbelargewhen <F(s)·G(s),F(s)·G(s)->
1

/
2 = IIF(s)G(s)l 

is large. 

But by the Schwartz inequality (13), 

I I F(s )G(s) I I < I i F(s) 1.1 I J G(s) I I • 

we see that I I F(s)G(s) I I .is maximized when F(s) = G(s) 
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(since we only stipulated that I I F(s) I I = c I I G(s) I ! , when 

F(s) = c G(s), maximum will be reached). Short of maximum, 

we see that the greater the similarity between F(s) and G(s), the 

greater Will.be I I H(s) I I, so it can be said t?at I I H(s) I I is a 

measure of t.he similarity of F(s) and G(s). Since H(s), F(s), 

and G(s) are equivalent representations of h(x), f(x) and g(x) 

respectively, relationships among each set of three must be 

equivalent Therefore, the fact that II H(s)ll is large, when 

F(s) and G(s) are very similar,corresponds to the fact that 

I I h(x) I I is large when f(x) and g (x) are similar. Thus, the 

convolution is a convenient device for comparing one ~unction 

with another. The mechanics of the convolution can be viewed 

as follows: Graphically the convolution can be seen as holding 

f(u) in a fixed position relative to the origin on the u axis, and 

sliding g(-u) along the u axis; at each g(-u) position a new function 

is formed by the product of g ( -u) and f(u), and the integrated area 

bounded by the new function is calculated. That is, for each x, 
00 

1~ !(u) g(x-u) du is calculated, and the magnitude o£ the convolution, 

f I h(x), I 1-. is the total area accumulated as g(x-u) is shifted over 

the entire u axis by varying x from -oo to+ oo. 
I 

(x,-u) u = 0 
Fixed_ 

Fig. 6 
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Convolution is particularly useful in the pattern recognition 

process. By pattern recognition, it is meant that a system 

trying to identify a given "input function" or "message"r does 

so by comparing it with a library of previously identified functions 
1 

to find that function to which the input is most similar. One way 

' 
of making a systematic comparison of this kind is by convoluting 

the input function with library functions, and identifying the input 

as most like the library function with which I I h(x) I I is maxi-

mized. However, such a process in Euclidean space requires 
00 

computation of a difficult integral, 1
00 

f(u)g (x-u)du, while in 

Fourier space the convolution process consists of a simple 

multiplication of two functions. An intrinsic advantage of Fourier 

representation over Euclidean representation of functions is thus 
I 

seeri, and this has constituted one of the prime reasons why 

students of the human visual system have sbught evidence of a 

Fourier transform of optical information as it passes from the 

retina to the brain-were the retinal information coded in the 

brain as a Fourier representation of the retinal image, a method 

of pattern recognition involving convolutions would be vastly 

simplified. 

Let us return, for a moment, to the discrete Fourier 

Transform. It was shown earlier that high spatial frequencies 

correspond to minute details of a function, while low spatial 

frequencies represent general features of the function as a whole. 

In a Fourier expansion of a function, it is necessary to add up the 

contributions of all terms to represent the given function in all 
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its detail. However, the elimination of the highest frequency 

terms may be advantageous in certain instances where precise 

details '~re not needed, as an infinite. swn is simply not calcrlable. 

It would be expected in such a curtailment that the overall fea-

tures and a lot of detail of the given function would still be repre-

sented, and one could design the exte.nt of curtailment around the 

desired amount of detail, using the appropriate equations. The 

point is that a pattern recognition system may not need all of the 

details of a given input function to distinguish it from all other 

functions, and thus in Fourier .space it would need only a certain 

number of terms (called 11 harmonics 11 
). A question which arises 

is, what is the method of curtailment? Multiplication of the array 

of Fourier terms by different kinds of step functions is ohe possible 

method where the terms are multiplied by 1 if they are within a certain 

region of the array, and by zero if they lie outside the region. 

In general, curtailing or modifying functions are known as filters, and 

they need not be orily step functions. To see what happens to 

the Fourier representation of a function as a filter is applied, it 

is most convenient to use the continuous transform. If 

F[ g(x)] = G(u) is the Fourier transform of g(x}, and P(u) is ~ 
I 

filter function by which G(u) is multiplied, we see the following 

interesting relationships: P(u) must be the Fourier transform of 

some function of x, say p(x), (because there is a one-to-one cor-

respondence between functions in Fourier space and functions in 

Euclidel,an space), so the product G(u) P(u) is a product of the 

Fourier transforms of g(x) and p(x) respectively. From pre.vious 



u 'ii 
.• J u -~ 

'·' 

-43-

arguments, this is the same as the Four,ier transform of the con­

volution of g(x) and p(x), F { g(x) * p(x)} , where p(x) is the inverse 

transform of the filter function P(u). If one were now to inverse 

transforn1 the filtered Fourier representation (i.e., to attempt to 

reconstruct g(x)), the result would be 

F-
1

[ F { g(x) * p(x)}] = g(x) * p(x)· · · , (11) 

a convolution of g(x) with the Euclidean equivalent of P(u). Thus, 

in two dimensions, the imposition of a square filter on a Fourier 

oscillations in g(x, y), whose amplitude will depend on l, the 

length of a side of the square filter. 
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The Projection Theorem and Strip Integration 

Let f(x, y) be a function of two variables, x andy. The portion 

of f(x, y) which lies above a line x = k 1 (constant) is a function of y 
. I 

' . I 

and the constant, k
1

, f(k
1

, y). The integral of f(k
1

, y) over all y is 

called a "line integral" on the li~e x = k
1

, and results in the area 

under f(k
1

, y) (a number) being stored in the location (k
1

, 0). 

If such integrals are computed at all values of x, and a cor-

~esponding number recorded at each x, the result would be a function 

of x, 
00 

f (x) =j f(x, y)dy · · · 
L -oo 

and assuming order of integration can be reversed, 

co 00 00 00 

-2rriuxd 
e x 

i L f(x. y). -2~~% =LL -2rri(ux+oy) . 
f(x, y) e dxdy = G(u, 0), 

the portion of the two dimensional Fourier transform of f(x, y) 

which lies above the line v=O in Fourier space. Were we to choose 

another line [See illustration in fig. 7, next page]. 
I 

:. 
1. 

( 12) 
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through the x-y origin, say y:; ax, on which to project f(x, y), 

the one:..dimensional transform of that projection would yield': that 

portion of the Fourier representation of f(x, y) which lies above 

the line v = au in Fourier space, where 11 a" is the same con­

stant in each case. One can see that the full two-dimensional 

F-::>urier representation of f(x, y) could be assembled by super­

imposing the one -dimensional transforms of projections in the 

x-y plane, provided the projections are onto all possible lines 

through the x-y origin. This is a special case of the Fourier 

Projection Theorem, which asserts that the full Fourier trans­

form of a function of n dimensions can be completely deter­

mined by appropriate combination of (n.., 1) dimensional trans­

forms of projections of the original function. Such a technique 

is of great in>portance in the fields of radio astronomy and 

crystallography, and in information processing in general. How­

ever, in all physically realizable applications of the theorem, an 

important approximation must be used: the line samples, f(k, y) 

from which the projections are constructed, are not physically 

realizable, due to their infinitesimal width, and must be approxi­

mated by thin" strip" samples of f(x, y). Such projections are 

called 11 strip integrals." The use of finite samples introduces 

error into the mathen1atically precise technique outlined above, 

but offers computational compensation (aside from the fact that 

it is physically unavoidable): the two-dimensional transform of 

f(x, y) can be approximated to any desired degree of resolution, 
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provided the function f(x, y) is identically zero outside a finite cirlce of 

radius X. If this condition is met, then F { f(x, y)} can be de-
I , 

. I 

termined to within resolution i3 by one-dimensional transforms 

21T 
of strip integrals taken at equal angles, .­

n 

origin, where n ?: X/213 . 

through the x-y 

(Reference 3) 
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COMPUTER FOURIER TRANSFORMS 

The analytical or integral Fourier tranSform is directly 

calculable for only a very restricted set of functions-those for 

which tee· diffic'lllt integrals involved are solvable in closed form. 

However, a complicated function can be approximated by an array 

of sampled points from the function, and there are computer 

algorithms to calculate the discrete Fourier transform of such 

an array. One such algorithm, known as the Fast Fourier 

Transform Algorith~, makes use of the shift theorem and the 

linearity of the transform to significantly reduce the computational 

time necessary to perform a given transform. That is, using 

the definition of the discrete Fourier transform, an array of N 

data points requires N
2 

computational operations, employing 

the formula: 

c = 
n 

. . . . . . . . . . (12) 

However, the sampled points can be divided into two parts, as 

follows: let f
1

, f
2

, · · ·, f
64 

be 64 sampled points from the desired 

function f(x), at equal intervals of x, and divide the set of points 
I 

into two subsets, { \· f
3

, · · ·, f
63

} and { f
2

, f
4

. · · ·, r
64

}. Now by 

the linearity of the Fourier transform, 

and by the shift theorem, each f
2

, f
4

, f
6

, · · · etc. can be shifted 

to the left on the x axis so that it corresponds to the same x value 

as f
1

, £
3

, f
5

, etc., respectively. The transform of such a shifted 
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array would be the same as the unshifted array, multiplied by 

. . +2rrin 
the. phase factor e , as the shift for each element is one 

unit in the negative x direction, so 

· . } 1 3 63} 2rrin 
F{f1,f2,···,f64 = F{f1,f3,···,f63} + F{f2,f4,···,f64 e ' 

k-1 th ' 
where fk means," the sampled value at the k- location on the 

x axis, shifted to the (k-1)th position on the x axis." Now, were 

the algorithm simply to use the formula (12) at this time, the 

time necessary to compute the transform would be about half 

the original required time, as each of the transforms ·on the right 

side would take 32
2 

operations to perform. Thus; 64
2

=2(32
2

+32
2

), 

and not counting the relatively few steps needed to calculate the 
I 

exponential shift term, speed of calculation has been roughly 

doubled. Further binary divisions can be made, each time re-

ducing the previously needed computation time by a factor of two, 

until the transforms of single points are left. The final com-

putation of these single point transforms and the corresponding 

phase terms requires a total of Nlog
2

N computational operations, 

as opposed to N
2 

for the straightforward method of formula (12), I . 

which for N = 64 is 3S4 as opposed to 4,'096, operations. It 

I 
should be noted that since binary divisions are the basis for the 

., 

reduction in CO!Ilputation time, it is necessary that the input 

array of sampled points have a total of 2M points, where 

M = 0, 1, 2, 3, · · ·. Other fast Fourier algorithms could be based 
. I 

on ternary, quaternary or other divisioi?-s of the original data set, 

requiring the input to have 3M, 4M or nM, points, respectively. 
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MODEL OF PROPOSED FOURIER TRANSFORM 

One mathematical appeal of the Fourier transform as an 

element in the vjisual process was shown to be in the shift theorem, 

which.a:hows for invariahce of functional shape with linear trans-

lation in Euclidean space. 
·. -21Ti(au+bv) 

The phase factor, e , 

represents the relative position of the input function, and thus 

between the structural representation (g(u, v)) and the phase 

term, the Fourier transform of f(x+a, y+b) con1pletely describes 

both what and where f(x, y) is. In addition to the attractive 

property of positional invariance, the Fourier transform was 

shown to greatly simplify the process of convolution or correla-

tion between functions. Impressive evidence has been accumulated 

to suggest that cross-correlations.dooccur in the visual process. (S) 

From an anatomical-physiological approach, certain ele-

ments of the visual pathway are highly suggestive of an informa-

tion processing method that incorporates a vast amount of infor-

mational redundancy. For example, Hubel and Wiesel have shown 

that the striate cortex of Inonkeys pri1narily contains columns of 
I 

cells whose receptive fields overlap to the extent that, within any 

column, a large section of the total visual field is represented 

many times over. (iO) As was stated earlier, this kind of multi-

plicity is essential to the Fourier Transform. Psychophysical 

experiments on visual detection of various types of gratings 

(square wave, sine wave, etc. ) show that over a wide range of 

spacial frequencies, detection is determined only by the amplitude 

of the fundamental Fourier componen~ of their wave forms. (b) 
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These findings and others have contributed to the promotion of the 

hypothesis that somewhere in the visual pathway, a Fourier 

transform of the information takes place. In lieu of a dir:ect 

anatomical method for determining the nature of visual informa-

tion processing,· which is presently 'beyond reach due to the 

phenomenal com.plexity of neural networks in the visual pathway, 

indirect clues such as these are often combined with what may be 

termed, "seductive reasoning, 11 to reach conclusions that may 

be premature. Given the seemingly hopeless complexity of the 

overall problem of visual information processing, and the rather 

attractive nature of the above-cited data, i.t is understandable 

that a great deal of enthusiasm has been generated by a fairly 

comprehensive n1odel, involving the Fourier transform, that 

.· . (11) 
has recently been proposed by Pollen and Lee. · As one of the 

major goals of this thesis has been to test the validity of their 

model, it is appropriate that the essential elements of their 

proposal be outlined here. 

Pollen and Lee assert that the output from the lateral geniculate 

into the striate cortex is essentially a topographical (i.e., one-to-

one) representation of the retinal image, (which is a two-dimen-

I 

sional intensity distribution,, f(x, y)), and that transformation of 

visual information takes place primarily in the cortex and higher 

centers of the brain. They propose that the information coded 

in the ' 1 com.plex cells, 11 noted by Hubcl and Wiesel, is a partial, 

if not complete, Fourier transform of the information coded on the 

retina by the focused image. (They assert that the transform is 
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completed by the time the information reaches the higher centers 

of the brain). This, they claim, is achieved via Fourier trans­

formation of strip integra]s of the focused image information, 

which are gotten, in turn, by combinations of signals from simi­

larly-oriented 11 simple" cells. It will be recalled that "simple" 

cells have long, narrow receptive fields -Pollen and Lee cite 

data to show that the firing rate of such cells is a monotonically 

increasing function of the total intensity illuminating their receptive 

fields. They assert that as such, each cell's output is equivalent 

to an element of the projection of f(x, y) onto a line-perpendicular 

to the receptive field. Combinations of outputs from many 

similarly-oriented cells would thus constitute the projection or 

strip integral of f(x, y) onto a line perpendicular to the receptive 

fields. According to Pollen and Lee, such strip integration 

takes place, along with at least the start of a Fourier transform 

of the strip integrals, between the simple and complex cell stages 

of the cortex. 

The precise r:nethod by which the Fourier transform of a 

given strip integral is performed is not elaborated by Pollen and 

Lee, but they do offer some suggestions regarding the important 

"ingredients" of the transform. Phase information, which is a 

method of coding position of a function relative to an origin, could 

be coded by delay of the response of a given complex cell to 

stimuli, depending upon the position of the stimulus in the 

receptive field of the cell. Indeed, Pollen and Lee cite data 

to support such a coding of phase information,· provided that the 



-53-

visual process SCANS the incoming information at discrete in-

tervals; as opposed to continuously processing the information. 
'· ' 

They proceed to show that a given complex cell demonstrates 

superposition of responses and interference, when presented 

with multiple stimuli within its receptive field, supporting their 

claim that response latency could map phase (positional) informa-

tion. Spatial frequency information, ~hey claim, is coded in the 

individual complex cells, as each complex cell has been found to 

respond maximally to a slit of a specific width (and orientation). 

It should be noted that their model seeks only to account for 

stationary visual phenomena, not those associated with motion 

(i.e., time-varying stimuli), and they argue convincingly that 

a firm understanding q_f such time-independent processes is a 

necessary prerequisite to dealing with moving-or otherwise 

time -dependent.:. stimuli. 
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OPTICAL ILLUSIONS AND MODELS 

In addition to their intellectually fascinating and aesthetically 

enjoyable qualities, optical illusions can be valuable scientific 

tools, for thley can be approached as true shortcomings of the 

visual syste·m. That is, their varied origins notwithstanding, all 

illusions constitute contradictions between what is perceived and 

what is known through experience to be the case, and thus repre-

sent improper recognition by the optical system. In order to 

learn how a complex system operates, it is sometimes advan-

tageous to examine how it fails- such _was the case in the study of 

genetics, which has been done essentially entirely via mutations, 

which constitute failures of the reproductive system. It is hoped 

by many students of the visual process that a similar approach 

will prove fruitful in elucidating the methods of optical informa-

tion processing, using illusions. 

One important class of illusions pertains to the geometrical 

I I 

illusions of size and shape. They can be generally characterized 

as a distortion in shape or size of an otherwise non-distorted 

figure, brought about by placing; it in a peculiar backgroun~. 

Apparently, there is some interaction between figure and back-

ground during the processing of optical information, which gives 

rise to misinterpretation of the visual scene. Several examples 

of well known geometrical illusions are illustrated on the following 

2 pages. (ii) They are divided into two basic groups: illusions of 

shape and illusions of size. The two are certainly related, as 

each involves apparent distortion of the relative_ positions of 
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DISTORTIONS OF SIZE 

Some examples that might be considered are: 

The Muller- Lyer illusion 

>>--• _B ~<C-8~> 

<·A)> 

The B's are of equal length, 

as are the A's 

Angles affect the apparent length of lines 

I 
I 

X 

X 

X 

An illusion of contrast 

\ll 
lm 

X has the same .'ength in all three cases 

Two equal diagonals 
which a.ppear unequal 

A 

/The A's are of equal length/ 

I 

Contrasting angles 

A 

8 8 is the same in both cases 

DBL 728-542l 

Fig. 1-



DISTORTION OF SHAPE 

Parallel lines which do not appear so -:c::;;~ 
~~ 

Wundt's illusion of direction 
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Distortion of a circle 

due to superposed lines 

Distortion of a square 

due to superposed lines 

"Twisted cord" illusions 

See following two sheets. 

These are concentric circles These are straight cords 

Fig. 2 



r~ ' ' rr ~: 
~f :.~} ~G f . ...,.,.l ~-) 0 

'"' ""' ~.JI v 
,. 

(j 

-57-

DBL 728·5429 
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constituent parts of the illusory figure. The basic distinction 

between them, however, is that a size illusion pre serves the 

overall shape of the illusory figure, whereas a shape illusion 
; I 

preserves the overall size thereof. Both types,· however, are 

sufficiently '<::ammon among humans that they cannot be dismissed 

as mere statistical deviation from the normal visual process. 

This is not to say, however, that such illusions must be ascrib-

able to only the visual pathway:. as it is certainly conceivable 

that memory, other sensory inform.ation, learned responses or 

inhibitions, or other factors could influence the illusory effect 

in any given individual. 

Indeed, wide variation in response to illusory figures has been 

noted among people of widely differing cultural backgrounds. Such 

findings, however, do not preclude the possibility of a fundamentally 

physiological origin of the geometrical illusions, if illusions are 

understood as "causes" or "stimuli", rather than as specific effects. 

That is, illusory figures constitute unusual stimuli which may be 

interpreted' and responded to by the viewer in more ways than orie. 

Their unusual quality is that they have a high probability of eliciting 

responses that do not correspond to commonly accepted reality; but 

such responses are not absolutely certain consequences of viewing 

an illusory figure. 

One way of testing the validity of a proposed model of the 

visual system is to use common illusory figures as inputs, and 
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see if the output of the model shows a resp,onse to the illusory 

. effect. In the case of the Muller-Lyer illusion, for example, 

the model should interpret the open-ended figure as having a 

longer cente.r line than that of the corresponding closed-ended 

figure. An affirmative result of such a test constitutes one im­

portant piece of evidence in a long list of anatomical, physio-

logical and behavioral qualifications for a fitting model, the con­

ditions under which the logical property of SUFF~CIENCY is 

established. That is, a model which manifests all the known 

characteristics of the visual system may be regarded as satisfying 

the requirements for 11 candidacy" , though its uniqueness has yet 

to be established through the logical exclusion of all other models. 

However, it is very doubtful whether, in a complex and empiri~al 

study such as that of the visual process, all conceivable alternatives 

to a proposed model could even be listed, let alone logically dis­

proved, so the ~uestion. of logical uniqueness is somewhat restricted. 

In most empirical science, 11 unique" refers to that single 

model which has withstood, and continues to withstand, the 

passage of time and further experimentation. Exclusion of rival 

models happens by virtue of new evidence that such rivals fail .. 

to predict, and it is in this sense that the passage of time selects 

out the "unique 11 model. In the case of models of the visual 

system, however, the field is so relatively young and the number 

of proposed models so vast that it is doubtful that even the re­

stricted sense of uniqueness just described will be established in 

the near future (as of 1972). Most of the present efforts are 
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toward the goal of establishing sufficiency, and even this is 

' formidable in view of the lack of precise knowledge on much of 

the physiology and anatomy of the visual pathway. 

The hypothesis that Fourier transforms are involved in the. 

visual process, discussed in the previous section, is an example 

of a proposed model (or set of models) for whiCh sufficiency has 

yet to be fully demonstrated. As a test of this hypothesis, one 

could use geometrical illusions as inputs and check to see if 

their Fourier representations, or some physiologically reasonaqle 

modification thereof, demonstrate the illusory effects. By 

"physiologically reasonable" is meant a modification that could 

be effected with the accepted machinery of the visual pathway, 

· , and that would be a functionally useful part of a model of the 

visual pattern recognition process. For example, in the interpre ~ 

tation .of visual information a process of selective attention inay 

be employed, in which only certain portions of the information are 

examined at any one time. If the information were coded as a 

Fourier transform of the retinal information, this would mean 

examining only part of the transform at a particular instant, and 

this would constitute a modification of the transform data reaching 

the brain. 
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XBB 738-4851 

Fig. 3 - "Twisted Cord" Illusion #1 

These are concentric circles: 
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Fig. 3a -"Twisted Cord" Illusion #2 

These are straight, parallel lines: 

•'"".; 

XBB 738-4852 
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THE MULLER-LYER ILLUSION: ANALYTICAL 
FOURIER TRANSFORM 

In accordance with the reasoning outlined in the previous 

section, the MULLER-L YER illusion was selected as a convenient 

illusory input by which to test the sensitivity of the Fourier 

Transform to geometrical illusory effects. Two approaches were 

taken: (1) a purely analytical approach in which the illusory 

figure is expressed in terms of a mathematically canonical function 

of two variables, Fourier transformed, and comparisons made 

between the transforms of the two Muller-Lyer figures; (2) dig-

itized versions of the figures are computer transformed, the 

transforms modified by various filters, and the resulting arrays 

inverse transformed to produce modified versions of the original 

figure. The first approach is discussed here. 

As seen in Fig. 1, @J represents a "primitive" form of the 

Miiller-Lyer figures, from which they can be derived, as in ( AJ 

and ~ . Now, the notation @ (a, 0) refers to line @ shifted 

in the positive x direction by an amount "a" , and not shifted in 

the y direction. Using the shift theorem and other properties 

o.f the Fourier transform, we now proceed to calculate 

I ., F ( I A I } I I 2 
, I I F ( @] ) I I 2 

, and their difference . As 

we are interested in the effect on line @ , particular attention 

will be paid to terms involving @ . 
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F{ .@J} =F{ 0 } e-2tri(au) + F{ @} e-2tri(~au) + F{ Q)} 

+ F{ G) } e -2tri(au) + F { ® } e -2tri(-au) 

Let F 1 (s) denote F { G) } , where s represents u and v. 

Note that F:(s) = F 1 (-s). Do similarly for @ , ®, @ and 

@ . Then, 

= [F 
1 

(s )F 
1 

(- s )+ F 
4 

(s )F 
4 

(- s )+ F 
1 

(s )F 
4 

(- s )+ F 
4 

(s )F 
1 

(- s >] 

[ · .1 2triau} { [ 11 2triau + F 2 (-s)+F
5

(-s)j e +F
3

(-s) F 1 (s)+F 4 (s~ e ·· 

Only the terrris on this page involve line Q) , so let us con­

cern ourselves only with them. 

r, ~ 2triau + 1F 1 (-s)+F 
4

(-s)j e } + F 
3

(s)F 
3

(-s) 
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{ [ 
11 -2'TTiau [ 1 2'TTaiu + F 

3 
(- s ) . " F 

1 
( s ) + F 

4 
( s ~ e + . F 

2 
( s ) + F 

5 
( s )j e · } 

+ other terms not. involving {l) 

because F 
3 

(s) = F 
3 

( -s) ( @ is centrosymrrietric ). 

Now F (s ), being a complex valued function of u and v, can be rep-

presented as the sum of a real-valued function, x(u, v), and an 

imaginary-valued function iy(u,v), where i = ,;::1 and y(u,v) 

is real-valued. 

So, 

LET 

* F(-s) = F (s) = x(u, v) - iy(u, v). 

F
1

(s) =x
1 

+y
1

i 

F
2

(s) =x
2 

+y
2

i 

F 
3 

(s) = x
3 

(y 
3 

= 0) 
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4

(s) =x
4 

+y
4

i 

F 5 < s > = x 5 + Ys i 
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I 
I· 

where x.(u,v) and y.(u,v), and s, once again, represents the 
1 1 

variables u, v. 

Therefore: 

= i2trsin(2nau) [ x
3 

(x
1 

-y 
1 
i-x

2
+y

2 
i+x

4 
-y 

4 
i-x

5
+y 

5
i+x

2
+y

2
i 

-x1-y1i+xs+ysi-x4-y4iU 

= 4trsin(2nau) [ x
3 

( y 
2

+y 
5 

-y 
1 

-y 4 ~ . . .. · .. · .... Eq. 1 

Now, if Q) and @ are considered as ~· function of (x, y) 

(see illustration below, showing finite 11 thickness") that function 

is centrosymmetric, which implies that its transform is real, 

or y
1 

=- y
5

. By analogous argumentation, Yz =- y
4

. Thus, 

Eq. 1 can be written as 4nsin(2rrau) [ x
3 

(2y
1 

+ 2y 
4
D 

= 8trsin(21Tau) [ x
3 

( y 
1 

+y 4 ~. 

Fig. 2 
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As can be seen from a comparison of figures III and VII 8 , 
the difference in the 1 intensities of the two figures that is pre-

dieted by the above analysis is essentially what is seen in the 

computer plot of the terms of Eq. 1, shown in Figure VII. The 

dominant feature is the pair of spikes at the first order Fourier 

terms (exact location of the spikes was gotten from print-out), 

indicating a very significant difference in the intensities of the 

two figures at the very low frequencies. 

It should be noted that subtraction of F{ ~} from 

F·{ >>----c::<} without squaring the transforms. eliminates the 

representation of the center line, indicating that in the complete 

Fourier transform of each figure, the center line is identically 

represented. This, however, does not imply that there are~ 

differences in the center line representation between the trans-

forms of the two figures, as corresponding areas of the two 

Fourier representation may not contain identical information 

about the center line. This is investigated in the section on com-

puter transforms of the Muller-Lyer illusory figures and the 

effects of spatial filtering them. What has been demonstrated 

here, however, is that from a purely mathematical
1 
standpoint, 

there is a difference in the Fourier intensities of t~e two figures, 

despite there seeming similarity in composition. 

The results of the preceding calculations, and their corn-

paris on to those gained by computer techniques, are shown in the 

following 7 figures. :The first is a graph of 4 sin(2nau), the first 
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factor (divided by 1r for illustrative convenience) in Eq. 1. Second is 

a graph of x
3

, the real part of the transform of the center line of the 

illustoryfigure (i.e., the complete transform of the line, since its 

transform contains no imaginary terms); this term is the second 

factor in Eq. 1. The third figure is a graph of Eq. 1 (divided by rr); 

note the prominant spikes at small values of u symmetric about the 
i . 

origin, and their signs. Fourth is a computer-generated perspective 

i 

plot of the four arms of the canonical formulation of the illusory 

figure (Figure 2, this section), prior to transformation. Fifth is a 

perspective plot of the real terms in the transform of the central 

line (now a function of~ dimensions, whereas it was only single-

dimensioned in the previous graphs). Sixth is a perspective plot of 

the terms y 
1 

+ y 
4 

- Yz - y 
5

, from Eq. 1 '. calculated via straight~orward 

computer transformation of the arms of the canonical figure. Last 

is a perspective plot of the difference in Fourier "intensities between 

the two Muller -Lyer figures, calculated by computer transform. 

Note the prominant spikes at low frequencies, and their signs, and 

note their fundamental similarity to those of the second graph. 
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y 

4(-a,o)/ 

® 
y 

.,_ 1(a,O)~ 

"--- 5(-a,O) 

DBL 728 5430 

Fig. 1 
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4 sin (211'au) 

(',. 4 t-,.. 

3 

2 
1 

1 2a 

----o-L-----' ' ' 1 2 3 

-1 a a a 

-2 

-3 
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\J 
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s1n (27rau) 
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Fig. 4 
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4., s i n ( 21r au ) • s i n ( 21r au ) -
1r'U 

Sa 

6a 

4a 

2a 

1 

2a 

Fig. 5 

1 3 2 

a 2a a 

4 sin2 (2?rau) 

1r'U 

u 

2a 

DBL 728 5431 
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The Four Arms of the Mi.iller-Lyer Illusion, 
in the x~y plane 

2 

iXBL 735-587 

,;~Pig. 6 

. j 
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XBL 734-507 

Fig. 7 
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U-V PLAN~ 

XBL 734-505 

Fig. 9 
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COMPUTER TRANSFORM OF THE 
Mt:TLLER-LYER ILLUSION 

In this section, the second approach is discussed, wherein 

computer transforms of the illusory figures are performed. 

In order to use the library subroutine for the fast Fourier 

Transform available, the illusory figures were digitized in 

64 X 64 square arrays (see figure 1 ). The justification for 

this approximation to the straight line drawing shown earlier is 

the fact that the illusory effect is still evident in the digital version 

(examine figure ia, b). Digitation was achieved by drawing the 

illusory figures, using 45° angles between branches and center 

line, on a 64X64 grid, and assigning to each square a value of 1 

if a line traversed it and 0 otherwise. The digitized figure was 

then 11 thickened" to a line -width of three squares, to avoid the 

noise problems associated with Fourier Transforms/ of lines that 

are one element thick (such lines have the properties of o functions, 
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which yield a constant amplitude, i. e. , backg~ound noise, in 

Fourier space). An algorithm for generating a duplicate of the 
' 

array was devised, and this was used as, the input array to the 

transform subroutine. An output display package was assembled 

using a three -dimensional perspective plot subroutine called 

PLOT3D and numerous print subroutines. 

The display system and transform routine were tested 

using a simple two-dimensional step function input. As the input 

function was centrosymmetric (i. e. , symmetric about the origin 

* so that f(x, y) = f(-x, -y)), no imaginary term was anticipated, 

and to the limit of the resolution of the 64 X 64 array, none was 

obtained (see Figure 2). 

co co 

* F { f(x, y)} 1~ j~ f(x, y)e -Zni(ux+vy)dx dy 

co 00 

= l .. J~ f(x, y)cos 2n(ux+vy)dxdy 

co co 

- i l~ 1~ f(x,y)sin2n(ux+vy)dxdy. 

Sin(x, y) is an odd function, f(x, y) is an even function, so their 

product is odd. 

So, we have 

, a a 

(odd function) dx dy = lim '1 j_ (odd function)dx dy = 0. 
a- co 

-a -a 
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/ 

The real part of the transform of the step function was expected 

to look like 

sin(2TT'£ xu)sin(21T£ y v) , 

'lflxu • Trlyv 

where lx and £yare the lengths 
of the step function in the x and 
y directions, respectively, 

and the fact that the plot showed this (see Fig. 2), established 

the dependability of the whole package. The digital versions of 

the illusory figures were transformed (see Figures 3-6), and 

the transform. arrays compared. As can be seen in illustrations 

3 through 6, there is little obviously discernable difference be-

tween the transforms of the two figures. It should be noted that, 

relative to the real part, the imaginary part of the Fourier array 

has very small amplitude, a fact that is obscured by the nor-

malization of amplitudes within each array, but is evident in the 

intensity plots (Fig. 6), where real and imaginary parts are added, 

and which are virtually identical to the real plots. To further in-

vestigate the transforms, it was decided to truncate the high 

frequencies of each transform array and examine the effect on the 

original figure. This was done by inverse transforming each 

truncated array, calculating the values of the intensities from the 

resulting array, and plotting the array of intensities. 
, I 

The calculated intensities were plotted instead of the complex 
I , 

amplitudes, because the amplitudes of the modified output array, 

unlike the input, cdntained imaginary terms. As the purpose of 

the reconstruction procedure was to view the modified, but still 

real-valued, input figure now represented by the truncated Fourier 
I 

array, no)maginary tern1s could app~ar in the final output array. 
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Calculating the intensity was a good compromise, as contributions 

from both real and imaginary parts were taken into account, 1 as 
! 

' ~. '~ 

f.ollows: the amplitude array was arranged so that the odd rows 

of elements were real-valued, the even rows imaginary. A com-

i 
plex point in tl?-e amplitude array consisted of a pair of elements: 

a real-valued term in an odd row and the corresponding imaginary-

valued term directly below it in the next row. The complex ampli-

tude array consisted of 32 complex rows and 64 vertical columns, 

and was converted to a 32 by 64 real-valued intensity array by 

converting each complex point to a real point. This was done by 

adding the squares of the real and the imaginary elements of each 

complex point (i, j), to obtain a new real value, and storing it in 

the corresponding location (i, j) in the intensity array. The plots 

shown in figs. 2-46 are perspective plots of the intensity arrays 

calculated from the various truncations. It is in no way claimed 

that such a reconstruction actually occurs in the visual process, 

as there would be no need for translation of the Fourier informa-

tion back into Euclidean terms; the brain need operate only in the 

Fourier domain, and learn to associate Fourier representations 

with particular stimuli in Euclidean space. These plots are 
' 

strictly a visual aid to the researcher in interpreting modifications 

in Fourier space. Truncation was achieved by imposing a square -shaped 

filter (step-function of height 1 and variable side length) on the transform 

array, which set all array elements equal to zero that lay outside 

a square centereci on the zero-order Fourier element (the point 
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(33, 33) ). As was discussed in the section on Mathematical 

Background, the inverse transform of such a filtered transform 

array yields a coiwolution of the original figure wi~h the Fourier 

transform of the square step-function used as the filter, i.e., 

{ ~ } * F { 0} . The length of the square side was varied 

from 12 elements (Fourier terms) to 32, which is about half 

maximum resolution, and some of the results are shown in 

illustrations 7 thru 10. What is clearly demonstrated is that the 

illusory effect has been brought about by clipping high frequency 

terms in the transform array with a square filter-the center 

line in figure 10A is only 29 elements long, while that of figure 10B 

is either 33 or 35 long, depending on where the ends of the center 

line are defined to be. The center lines in the original figures 

were identical in every way, so the process- of truncation, using 

a square filter, has been shown to give rise to the illusory effect. 

The question of distortion in the reconstruction due to the specific 

filter shape, rather than the general process of filtering the trans-

form array, remains,· because of the oscillatory properties of 

the particular convolution involved. However, the inverse Fourier 

I 
transform of a square step-function in Fourier Space is a sinusoi-

dally oscillating furict ion in Euclidean space, 

sin (2rr J. x) s in (2rr J. y) 

2 2 
11' J. xy 

where J. is the length of the square's side. Now, if.£ is small (such 

as when l. = 12, (Fig. 7A) ''the frequency of oscillation is low, 
1 

and the 1/£
2
xy envelopedropsoff slowly, so si:O.usoidal 
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distortion extends over the whole transform array; large I. 

yields a much higher frequency oscillation, but concentrated 

within a small region of the x-y plane. Thus, when I. is large, 

the oscillatory effects on the convolution are vastly reduced com-

pared to the case when I. is small. It was thus postulated that 

the effects noted at a square size of 32 elements Were due virtually 

only to loss of high frequency terms. 

To test the above postulate an algorithm was written to 

generate a variable Gaussian filter (Fig. 34A) to impose on the 

transform array, centered arround the zero order Fourier tern1. 

_ (x2+y2 )/ CT 2 . 
The Gaussian function, e , 1s particularly desirable, 

because its Fourier transform is another Gaussian function in 

the Fourier variables u and v. As no distorting oscillatory 

phenomena are involved in the convolution of reconstruction, the 

theoretical difficulties of the square filter are avoided by using the 

Gaussian filter. The algorithm included a variable "standard 

deviation", a, for the Gaussian function, which was varied 

from 2 tern1s to 64 terms. On the circle whose radius is a, 

that is, ~ x
2

+y
2 

= CT, the value of the Gaussian .function is 1/e 

times the value at x, y = 0. By varying a, the width of the filter 

is varied, and thus the amount of high frequency information used 

in the reconstruction is varied. To see how quickly the function 

( 2+ 2)/ 2 J 2 2 
e-x Y . CT approaches zero as the radius,. x +y , is increased, 

consider the following table: 
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2 2 I 2 - (x +y ) a 
e 

t/3
1 

t/55 

t/8000 

Multiplication of the elements of a transform array by this func-

I 

tion, centered about the zero order term, smoothly eliminates 

Fourier information beyond a radius of about 2a (measured in 

number of elements, or terms from center). Thus, reconstruc-

tion from a Gaussian filtered transf~rm array with a = 2 uses 

essentially only the Fourier information within a radius of 2 

terms around the zero order term and strongly diminished terms 

out to a radius of 4 elements. With a = 64, the Gaussian func-

tion imposed on the transform array leaves the Fourier informa-

tion essentially urunodified. Some results of this experiment are 

shown in Figs. 11 thru 17: at any given a up to a = 28, the 

center line in the second Muller-Lyer figure is longer than that 

i 

of the first, as measured in number of array elements. It is of 

particular note that at any given a up to a = 28, it is far easier 

to distinguish a bracket vertex from its adjacent cehter-line 

endpoint in the open-ended figure than in the closed-ended figure. 

I 
This can be explained by the fact that the closed figure contains 

elements of higher spatial frequency than the open figure, ~the 

bracket vertices. The intersection of three lines lthin a 45° 

angle, as in the closed figure, involves very high spatial fre-

quencies at the vertex, and this situation is lacking in the open-
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ended figure, where three lines intersect within a 360° angle. 

When high spatial frequency terms are truncated in the Fourier 

domain, the closed figure is thus more affected by a given amount 

of:truncation than the open figure. This would seem, in part, to 

account for the illusory effect. 

One might ask what biologically realizable form such 

truncations could take, and how they would be brought about. 

I 

I 

I 
It 

was mentioned in the section on optical illusions that the processes 

of information manipulation and of pattern interpretation interact 

with another, and it was suggested that one such interaction 

would be a selective attention mechanism. With such a mechanism, 

the brain would evaluate only certain portions of the input at any 

given time, and this could take the form of a filter. Were the 

interpretation process of the brain to proceed from low resolution 

to high, processing more input information as it is needed, this 

could be accomplished in the Fourier domain by imposing a centro-

symmetric filter of variable diameter on the array of Fourier com-

ponents. In the Pollen and Lee model, this would correspond to 

selective "read out" of the information in the complex cells of the 

cortex, which could be effected by selective inhibition of the firing 

rates of those cells connected to adjacent cells leading further into 

the brain. The precise nature of the inhibition would determine 

the mathematical shape of the imposed filter,. and several filter 

shapes have been used in this experi1nent to accommodate various 

inhibitory schemes. The square filter corresponds to a precise 

•, 
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inhibitory mechanism in which individual neurons are separately 

and binarily controlled, a model of somewhat dubious biological 

relevance because of the sharpness of the cutoff b~tween "on" 

and 11 off" cells. The Gaussian filter corresponds I to a situation 

in which readout of cortical information is inhibited most of the 

time and occurs only when a specific "excitatory signal" is sent to 

the desired region of the cortical array. The Gaussian shape 

would arise if the excitatory signal had non-local .effects which 

stimulate readout of surrounding neurons in a manner which de-

creases as a Gaussian function of distance from the signal center. 

Other inhibitory schemes involving Gaussian-:like filters are 

also possible, but the above example should suffice to illustrate 

the biological relevance of a Gaussian filter. 

Another filter to be tested was a truncated Gaussian filter, 

in which the "flat top" had a height of 1 and a variable radius 

equal to the 11
(1

11 of the Gaussian function which was truncated 

(Fig. 34B ). Beyond a radius of C1, the function steeply falls off 
2 2/ 2 . 

as e- (x +y C1 ) • This filter corresponds to a biological model 

similar to that of the Gaussian filter, in which the 11 readout" 

neurons have a maximum output threshold, which i~ reached when 

an excitatory signal equals 1/e times the strength Jf the signal 
I 

at its center. This would occur ·within a radius of C1 of the signal 

center, and sub-threshold neural firing rates would continue be­

( 2+ 2)/ 2 
yond C1 , falling off as e- x Y C1 • The sharp trransition be-

tween the circular step function for distances < C1, land the steep 
! 
I 
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Gaussian drop-off thereafter, predictably gave rise to oscillations 

in the reconstructed figure, somewhat similar to the square filter 

I 

oscillations. However, as can be seen in figures 18-22, this 

like the o~her filters, produced the illusory effect out to high 

resolutions. indicating that virtually any sort of syrn.metric selec-

tive inhibitory mechanism in a Fourier transform neural array 

would give rise to the MU.ller-Lyer illusory effects. Indeed, I 

I 
Ginsberg has shown that the use of either square, rectangular, 

or circular filters in the Fourier domain gives rise to the known 

illusory effects of all major geometrical illusions, for filter · 

sizes of about four to eight Fourier terms.(?) 

The last filter to be tested was a combination of a 

Gaussian function with a cubic function of .Jx
2

+y
2

, f(.Jx
2

+y
2

) 

3 2 = f(r) =7 ar + br + cr+d, so that the two-dimensional filter looked 

like a "smooth volcano" (see Fig. 34C and D). The odd shape was 

suggested, qualitatively, in a recent article on contrast illusions 

(Scientific American, June, 1972), in which the author proposed a model 

for visual information processing involving an extensive amount of lateral 

inhibition in the retina and other neural networks. The result of such in-

hibition, the author claimed, would be supression of low spatial 

frequency amplitudes, relative to intermediate frequency amplitudes, 

and other factors would cause high spatial .frequency filtering, the 

the net combi~ation leading to emphasis of intermediate spatial 

I 

frequenci~s over all. As the proposed filter was only qualitatively 

described, a certain amount cf liberty was taken in mathematically 

designing. a function which effectively emphasizes the intermediate 
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frequency range. Two approaches were taken: The low frequency 

terms were actually reduced in amplitude', while intermediate 

terms were essentially unchanged and high frequehcy terms 
I 

filtered by a Gaussian function. The actual function used was: 

. .{ 2(:31) (.Jx2+/ y + 3(!;d) ( .Jx2+/ )\d, o:o,.Jx2+/<a 
f (x, Y) = t_ 2 2 2 J 2 2) 2] J 2 2 · 

exp- [ (: +y +a - 20' x +y /a , (] ::=::: . x +y 

where "d" is the adjustable height of the z-intercept, f(O, 0), 

and 11 0'" is the adjustable width parameter for the Gaussian 

function. Thus, as can be seen in Fig. 3iC, for the interval 

0 ~ r < CJ along any radius from tlH~ origin in the x-y plane, the filter 

is a cubic function of distance along the radius, with z -intercept· 

at the adjustable value II d 11 
, and height 1 at. a distance Of (] Units 

from the origin. At both ends of its domain, 0 < r <a, the func­

(] 
tion has derivatives equal to zero, and at r = · 2 , the second 

derivative is zero. For r > 0', the function is "Gaussian-like" , 

meaning that its height is i at r = 0' and decreases as 

2/ 2 1 - (r -a ) a 
e thereafter, for increasing r. Thus, 11 d" varies 

the number of both low and high frequency terms tJat are sup-

pressed. 

I 
The second approach was to leave the low frequency terms 

essentially unchanged, while boosting intermediate! frequency 

amplitudes and, again, filtering high frequency tertns with a 

Gaussian function. This took a mathematical form! nearly identical 

to the first approach: 
I 



f(x, y) -

2(1-d) 
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[ 
2 2 2 J 2 2 2J 

(x +y +u -20' x +y >Ia 

Here, however, the z -intercept is fixed at 1, while the peak 

of the Gaussian has height 11 d 11 
, which is adjustable. Once l 

again, 0' varies both the peak and the width of the Gaussian f 
1 

c­

tion (see Fig. 34D). 

For both approaches, it should be noted that terms out to a 

radius of about 2a around the zero-order term are taken into 

account in reconstruction, using this filter, as opposed to a 

radius of 0' in the previous case using a pure Gaussian filter. 

Some illustrative results of the first approach are shown in 

Figs. 23-30. These figures are representative of the results 

obtained when 11 d 11 assumed the values 0.25, 0.50 and 0. 75, 

while 11 0' " was varied from 2 to 22. As can be seen in all those 

marked 11 A 11
, the center line is clearly separated from the 

vertices of the closed brackets, giving the line a shortened 

length of 29 or 30 elements, as compared with the 11 B" figures, 

whose lengths are all 33 to 34, depending on where the endpoints 

are defined to be. It is of particular interest that when 

0' > 10 and d = 0.25, (Figs. 26 and 28) the center line and vertices 

of both Milller-Lyer figures are significantly reduced in height, 

an effect which is most striking at the intersections of center 

and bracket lines in the 11 closed" figure (those labeled 11 A" ). It 

will be recalled .that when the pure Gaussian filter was used, at 

any but the highest reconstruction resolution, these points of 

, - I 
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intersection were greatly magnified in heigh with respect to the 

rest of the figure, and for the closed figure, itwas difficult to 

distinguish center line from brackets at such points. This is 

more or less the case with the new filter for a :::: 10, even when 

d is a small as 0.25 (Figs. 23, 24 and 27 ). However, when 

a> 10 and' d = 0.,25, the effect is reversed dramatically. Some 

insight into this effect can be seen in Fig. 3 SA. In the figure, 

plots of the !cross -section of the filter function along the positive 

x-axis are seen for d = 0.25 and a= 6, 10, 14 and 18. The number 

of Fourier terms which each function diminishes by 50o/o or more 

is indicated by the vertical arrow, and the number of terms 

diminished by 25% is indicated for a = 10 and a = 14. When 

a = 10, the Fourier terms inside a radius of 4 from the zero-

order term are reduced by 50% or more, while when (j = 14, 

terms within a radius of 6 terms are 50% diminished in amplitude. 

Terms are diminished by 25% or more within a radius of 6 for 

a = 10, and within a radius of 8 when a = 14. So, if "significant 

reduction in amplitude 11 is defined as between 2 5% and 50% re-

duction, then a critical region of difference in the low frequencies 

I 
appears to be the 11 ringed area 11 bounded by radii ~f 4 Fourier 

! 
terms and 8 Fourier terms around the zero:..order term (see 

Fig. 35B). Somewhere in this region, it would seem, is crucial 

information about the center line and intersection,! which is not 

eliminated when a :'S 10, but is missing when a =114. Upon 

examining the Fourier representations of the two ~iille r -Lye r 

figures (Figs. 4 and 5, in partic:ular), one notes that in the plots 
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of the imaginary terms (Fig. 5), the terms within a radius of 

about three elements around the center (zero-order term) of the 

array have zelio amplitude. After the third term, significa~t 

amplitudes are seen, and at a radius of five terms, the peaks 

I 
start to diverge from one another. Perhaps the 1

·
1 critical region" 

I 

spoken of is this area where the low frequency imaginary terr;ns 

begin .to branch apart. Branching of a much more subtle sort is 

visible in the real-valued plots (Fig. 4), though divergence 

begins at CJ = 2 in 4B (the open-ended figure) and at (J = 4 in 

4A. Since branching occurs at terms that appear to be outside 

(prior to) the 11 critical region" of the real array, and no clearly 

significant changes in peak features for terms within the region 

are evident, it appears that if there is a critical region for the 

center line and intersections of the Muller-Lyer figures, it has 

much to do with the imaginary terms and little to do with the real 

terms. These conclusions, however, are only tentative, and 

call for further investigation. In any event, the Muller-Lyer 

illusion is clearly demonstrated by use of this filter, giving 

further support to the general argument that high frequency 

spatial filtering in the Fourier domain will give rise to the 

Miiller-Lyer illusory effect. 

With the second approach, the height of the Gaussian peak, 

equal to 11 d", was set to the values 1.25, 1.50, 1. 75 and 2.0, 

while a was varied from 2 to 22 terms. Figures 31, 32, and 33 

are representative of the general results, which lacked the 

striking effects derived in the first approach when low frequency 
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terms were diminished. As the main purpose of the filter in this 

case was to boost intermediate frequency without reducing low 

frequency terms, it would not be predicted that the center line 

and intersections would undergo the same diminution as in the 

previous case, and the fact that such diminution is virtually 

absent lends support to the arguments given previously. However, 

the Miiller-Lyer illusory effect is clearly evident in this case as 

well, as the center line in the 11 A" figures is about 29 terms in 

length, while that of the "B" figures is 33 to 34 terms long. 

Thus, to the knowledge of thi~ author, all tests done to 

date on the hypothesis that Fourier transforms are involved in 

the visual process, insofar as optical illusions are concerned, 

are positive, provided that some method of spatial filtering is 

postulated as part of the model. It should be pointed out that this 

scheme also allows for the phenomenon of "learning not to re­

spond'' to an illusory ~figure. In the case of the Miiller-:-Lyer 

illusion, for example, one can greatly reduce or eliminate com-

pletely the illusory effect by sketching and staring repeatedly, and 

for long intervals, at the figures involved. Such concentration 

would be represented in the model by increase in ;filter diameter, 

allowing terms of higher and higher spatial frequ~ncy to be 
. . . I 

11 read-out" , eventually eliminating the illusory effect (see 

Figs. 17, 22). 

The question arises, can spatial filtering inl the Fourier 

domain cause illusory effects in figures that are rlormally non­

illusory? Clearly, the answer must be affirrriatije, as any figure 
I 
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reconstructed from its Fourier representation will be distored 

if the transform array has been suitably filtered. What, then, is 

to distinguish illusory figures from non.-iUusory? There must, 

apparently, be a "spectrum of illusory quality, it with figures as 

non-illusory as simple geometric figures at one end, and well­

known illusions such as the Muller-Lyer at the other. The 

criterion for measuring the illusory extent of a fig.ure, by the 

above model, would be the number of Fourier terms needed to 

eliminate the discrepancies noted at low resolution. Thus, figures 

whose partial Fourier representations (Fourier arrays truncated 

with symmetric filters) non-isotropically de scribe the figure, 

so that some portions of the figure are exaggerated over others, 

woUld require high frequency terms to give an accurate representa­

tion of even the gross features of the figure·. Such a figure would 

be highly sensitive to Fourier truncation and would tend to be 

illusory. It was stated in. the section on optical illusions that 

size and shape illusions can be regarded as distortions brought 

about in otherwise normal figures by placing those figures in a 

peculiar background. In light of the foregoing arguments, there. 

would appear to be an important distinction in types of keometrical 

illusions: those where the figure and the background interact 

directly by intersection of lines of one with the other, etc., and 

those where there is no contact between figure and background. 

Clearly, it is not the latter type that is of major concern to the 

Fourier hypothesis, as such illusions most certainly depend on 

other visual clues, such as perspective, (Ref. 5) which are not considered 
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here. Illusions of the former type may be understood, in light of 

the previous arguments, as resulting when figure and background 

interact so that new low frequency terms are g~nerated which 

render the low-resolution Fourier representation nonisotropic, 

and therefore require higher frequency terms to accurately pre-

resent the overall features of the figure-background combination. 

As a test of!this hypothesis, two non-illusoryfigures were 

treated in exactly the same manner as the Mi.iller-Lyer illusion: 

a square, and a "plus sign." Figures 36 and 37 show the results 

of a Gaussian filter of increasing radius .on the representation of 

a square, while Fig. 38 shows the effects of the truncated 

Gaussian filter on the same square. The pure Gaussian is seen 

to effect the square isotropically, with no portion of the figure 

exaggerated over any other. The truncated Gaussian gives rise 

to large oscillations in the figure, but does not emphasize one 

part of it over any other. This is clearly seen iri 3 8B, which is 

at (] = 1. 0, in which the oscillations are of smaller amplitude 

and average out evenly over the surface of the square. Figures 

39 and 40 show the effect of a Gaussian filter on a" plus sign". 

The effect is seen to be completely uniform, with no part of the 

figure misrepresented relative to other parts. F~gures 41 and 

. I 

42 illustrate the uniform effect of a truncated Gaussian on the 

same 11 plus sign, 11 with the associated induced OSfillations 

averaging out at higher resolution, as in the case 'of the square 

(Fig. 38). 
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One Jurthe r test of the hypothesis that spatial filtering 

accounts for the Miiller-Lyer illusory effect was carried out, in 

which the branches in each figure were initially separated from 

the c,en!:cr line by three units (elements), before the arrays were 

transformed. The modified input (Fig. 43) no longer gives rise 

to any illusory effect when viewed, and if the previous data are 

to be useful, the spatial filtering should not give rise to an illusory 

effect. As seen in Figs. 44 and 45, which have been filtered by a 

square -and Gaussian-function, respectively, the center lines all 

have identical lengths, so there is no illusory effect. Only when 

the Fourier arrays are filtered with very small radii (two or four 

terms) is there any merging of the center line and branches, and 

it is highly doubtful that such an effect can be regarded as illusory. 

Finally, the importance of a filter being symmetric was 

tested and the results shown in Fig. 46, where the open-figure 

of the Muller-Lyer illusion has been reconstructed from a modified 

version of its transform array. The array was filtered by a 

Gaussian filter centered at the rear left corner of the array 

(the point (0, 0) ), which eliminated terms that were not in the 

region of that corner of the array. The original figure was the 

same as Fig. 3B, with four symmetric branches. and a center 

I 

line, and there remain now only remnants of two opposing branches. 

Thus, imposition of a non- symmetric filter has completely altered 

the figure; this cannot, however, be fairly termed an 11 illusion" , 

\ 
as the filter used was highly\biased from the start. 
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CONCLUSION AND CLOSING REMARKS . 

Through the use of many different spatial filters,, it has been 

shown that spatial filtering of Fourier representations of the 

Miiller-Lycr figures gives rise toithe known illusory effect. 

More significantly. the effect has been generated by symmetric 

spatial filtering, which has as little biase as possible regarding 

which frequencies are to be eliminated. Asymmetric filtering 

has been shown to cause effects that have no parallel in nature, 

and while such effects may be dramatic, they are artifically 

produced and do not represent fundamental illusory properties 

of the figure thus modified. What has emerged is an understanding 

of what constitutes an illusory figure, in terms of a rnodel of the 

visual systc1n which involves Fourier transforms. A figure whose 

Fourier representation is so asymmetric that filtering with a centro-

symmetric function leads to a distorted reconstruction, where some 

portions of the figure are exaggerated over others, in understood 

to be illusory. By this criterion, n1any figures that are not con<-

monly regarded as illusory would be deemeJ illusions -exan<ples 

, 
of this are Moire patterns and sirnilar figures involving intersecting 

sets of closely spaced, parallel lines. Several biologically reasonable 

models for spatial filtering have been outlined,· to give some credibility 

to the hypothesis that such filtering could take place in the visual 
! 

pathway, but there clearly remains a great deal of work to be done 

in this area. Finally, analysis of the Fourier transform arrays 
I 

for the Muller-Lyer figures has led to the implicition of the 

II 

I 
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imaginary parts of 4th through 8th order Fourier terms as crucial 

in the representation of the center line and points of intersection 

of the figures. This analysis, however, is far from complete, and 

there is good reason to believe that further work in this direction 

would lead toa clearer understanding of how geometrical illusory 

effects are generated in a Fourier model of the visual system. 

It has been the goal of this thesis to discuss the mathematical 

and biological background of, the m.otivation for, and some im­

plications of an important contemporary model of the human visual 

pathway - a m.odel involving the Fourier transformation of visual 

information. The author hopes that, at the very least, this work 

will help the reader to dissipate any existing "clouds of rnystery" 

surrounding the Fouier transform and its numerous uses, especial­

ly insofar as its possible involvement in neural information pro­

cessing is concerned. It is further hoped that this work will aid 

future researchers in their efforts to elucidate the phenomenal 

complexities of the human mind, and finally, that such research 

will lead to a significant contribution to the improvement of the 

quality of life itself. 
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PLOT LABELING AND NOTATION 

I 

two-dimensional Fourier transform·. I 

of the figure in brackets. 

the real part of the transform 

of the figure in brackets. 

the square of the imaginary part of 

the transform of the bracketed figure. 

the square of the transform (Fourier intensity) 

of the bracketed figure. 

inverse transform of the transforn1 of 

the bracketed figure (reconstruction) 

same as 5, but the transform array of the 

figure in brackets has first been truncated 
I . 

by a square (step-function) filter, centered 
I 

at the origin of the u- v plane, with a !side 

length of 20 Fourier terms (r = "radiJs" = 

10 terms). This is equivalent to the con­

volution between the figure in brackets 

and the transform of the square filter, func.:. 

tion (see section on the Convolution of Two 

Functions, in Mathematical Background). 
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= the convolution of the figure in the 

brackets to the left with the trans­

form of the bracketed figure on 

the right. 

8. {~ l *] J ~ = a= 1 = convolution of the bracketed 

, J t figure on the left with transform of 

a two-dimensional Gaussian function 

(Fig. 34 A), whose width parameter, 

a, has a value of 4 Fourier terms. 

9. {~} * J{~ a= 4} = convolution of the bracketed 

figure on the left with the transform 

of a "flat-top" Gaussian function, 

illustrated in figure 34 B, where the 

"top" has a radius of a= 4 Fourier 

terms. 

10. {•--_) * J{~· d = o.os, a= ts} = 
'j convolution of the bracketed figure ' 

on the left with the transform of the 

"volcano function" (Fig. 34 C, illus­

tration; explanation of ori~in on p. 10 

of tht! section on the CO!'vlPUTER 
.. 

TRANSFORM OF THE MULLER-
I 

LYER ILLUSION), in which the <;:entral 

minimum has height d = 0; 05, and the 

"ridge maximum" occurs at a radius 

of a= 18 Fourier term.s fron1 the cen­

ter of the transform array. Beyond 
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the radius of a, the function drops 

off as a Gaussian exponential. 

11. { ~-J * 1 {~ . d = 2:0, (] = 18} = 

J the same as #10, but the "volcano 

function" has a central minimum of 

height 1, and a "ridge maximum of 

height d = 2. 0 (Fig~ 34 D). 
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