Fourier Transforms in NMR, Optical, and Mass Spectrometry

A User's Handbook

Alan G. Marshall and Francis R. Verdun

Departments of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210-1173, U.S.A.

ELSEVIER Amsterdam — Oxford — New York — Tokyo 1990

CONTENTS

DEDICATION	
PREFACE	xv
ACKNOWLEDGMENTS	xvi
CHAPTER 1 Spectral line shape derived from the motion of a damped mass on a spring	
1.1 Terminology	1
1.2 Transient response to a sudden impulse: relaxation	4
1.3 Steady-state response to a sinusoidal driving force	7
1.3.1 Absorption and dispersion spectra	7
1.3.2 Magnitude and power spectra	11
1.3.3 Hilbert transform and DISPA	11
1.3.4 Physical meaning of mathematically complex quantities	13
1.4 Transient vs. steady-state experiments	14
1.4.1 Fourier transform relation between the two experiments	14
1.4.2 Zero-friction limit: Thomson and Rayleigh scattering	17
1.4.3 Zero-mass limit: dielectric or ultrasonic relaxation	18
Further Reading	21
Problems	21
Solutions to Problems	25
CHAPTER 2 Fourier transforms for analog (continuous) waveforms	
2.1 Cosine, sine, and complex Fourier transforms: library of FT pairs	27
2.1.1 Sinusoid/δ-function: even, odd, signum, and causal functions	27
2.1.2 Rectangle/sinc: effect of off-resonance excitation	30
2.1.3 Exponential/Lorentz	32
2.1.4 Gaussian/Gaussian	33
2.1.5 Comb/Comb	33

2.1.6 Chirp/Frequency-Sweep2.1.7 Random Noise/White Spectrum

2.2 Convolution

2.2.1 Ideal vs. observed response	38
2.2.2 Convolution and Fourier transforms: the convolution theorem	40
2.2.2.1 Expansion of the library of FT pairs	
2.2.2.2 Compensation for an imperfect experiment	44
2.2.3 Cross-correlation and auto-correlation	46

35

37

38

2.3 Apo	dization (windowing): tailoring of spectral peak shape	47
2.3.1	Dirichlet (rectangle, boxcar)	47
2.3.2	Others: triangle, trapezoid, Hamming, Blackman-Harris, Bessel, etc.	47
2.3.3	Line shape transformations (Fourier self-deconvolution)	48
2.4 Tim	e delay and phase shift	51
2.4.1	Shift Theorem: Relation between time delay and spectral phase	51
2.4.2	Frequency-domain phase correction	53
Further R	ceading	56
Problems		57
Solutions	to Problems	64
CHAPTE	R 3 Fourier transforms of digital (discrete) waveforms	
3.1 Nui	nerical algorithms	69
3.1.1	Fourier series and fast Fourier transform	69
3.1.2	Discrete convolution and fast algorithm	72
3.2 Nyc	uist criterion	74
3.2.1	Foldover (aliasing)	75
3.2.2	Digital spectral resolution	76
3.3 Ver	tical dynamic range	77
3.3.1	Fixed-point versus floating-point arithmetic	77
3.3.2	Clipped data sets	78
3.4 Use	es for zero	80
3.4.1	Zero-filling	80
3.4.2	Digital filters	82
3.5 Pha	se correction and its artifacts	83
3.5.1	Zero- and first-order phase correction	83
3.5.2	Artifacts	86
3.6 Sca	ling of discrete FT energy and power spectra	86
Further F	Reading	88
Problems		89
Solutions	to Problems	91
CHAPTE	R 4 Fourier Transform Spectrometry: Common Features	
4.1 Mu	ltichannel spectrometry	95
4.1.1	Single-channel spectrometry	95
4.1.2	Multidetectors	95
4.1.3	Multiplex methods (Fellgett advantage)	98
4.1	3.1 Hadamard code	100
4.1	3.2 Fourier code	101

4.2 Absorption, dispersion, magnitude, and power spectra	102
4.2.1 Digital vs. analog resolution	105
4.2.2 Time-domain and frequency-domain excitation magnitude	106
4.2.3 Inverse FT: tailored (stored waveform) excitation	107
4.3 Linear versus circular polarization	109
4.3.1 Negative-frequency components	110
4.3.2 Quadrature excitation and detection	113
4.3.2.1 Baseline offset between quadrature channels: the center glitch	114
4.3.2.2 Gain difference between quadrature channels: image peaks	114
4.3.2.3 Time delay between quadrature channels: alternate vs. simultaneous sampling	116
4.3.2.4 Phase cycling	119
4.4 Non-linear effects	120
4.4.1 Origin of harmonic and intermodulation frequencies	120
4.4.2 Mixers and doublers: heterodyne detection	122
4.4.3 Amplitude modulation	125
4.4.4 Frequency and phase modulation	127
Further Reading	131
Problems	131
Solutions to Problems	137

CHAPTER 5 Noise

5.1 Noise in the detected spectrum	141
5.1.1 Source-limited vs. detector-limited noise	142
5.1.2 Noise, data word length, signal-averaging, and dynamic range	144
5.1.3 Quantization noise and oversampling	147
5.1.4 Precision in determination of peak position, width, and height as a function of peak shape, signal-to-noise ratio, and digital resolution	150
5.1.5 Effect of apodization on spectral signal-to-noise ratio and resolution	155
5.2 Noise as a spectral source: Fourier analysis of random motions	157
5.2.1 Random noise: autocorrelation function and power spectrum	157
5.2.2 Pseudorandom noise: shift register and Hadamard S-matrix	
sequences	165
Further Reading	167
Problems	168
Solutions to Problems	174

vii

CHAPTER 6 Non-FT methods for proceeding from time- to frequency-domain

6.1 What's wrong with Fourier transforms?	179
6.2 New ways to represent an analog spectrum: the (continuous) transfer function and the (continuous) Laplace transform for a mass-on-a-spring	; 180
6.3 Difference equation, discrete transfer function and discrete z-transform for the mass-on-a-spring	186
6.3.1 Linear prediction: the autoregression (AR) model	193
6.3.1.1 Least squares criterion	193
6.3.1.2 Autocorrelation method	194
6.3.2 Moving average (MA), autoregression/moving average (ARMA) methods	204
6.4 Maximum entropy methods	206
6.4.1 Agreement between trial and actual time-domain data sets	206
6.4.2 Probability peaking: most probable result	208
6.4.3 Entropy, probability, and spectral "smoothness"	211
6.4.4 Relation between MEM and autoregression methods	215
Further Reading	216
Problems	217
Solutions to Problems	221

CHAPTER 7 Fourier transform ion cyclotron resonance mass spectrometry

7.1 Nat	ural motions of an ion in a static electromagnetic trap	225
7.1.1	Cyclotron motion: ICR orbital frequency, radius, velocity, and energy	y225
7.1.2	Trapping oscillation	229
7.1.3	Magnetron motion	230
7.2 Sta	tic electromagnetic ion traps	232
7.2.1	Excitation of a coherent time-domain ICR signal	232
7.2.2	Detection of an ICR signal	233
7.2.3	ICR ion traps (cubic, cylindrical, hyperbolic, orthorhombic, screened), and their effect on mass resolution and upper mass limit	234
7.2.4	Ion formation at high pressure with detection at low pressure: dual-trap; external injection of ions	239
7.3 Dar	nping of the time-domain ICR signal	239
7.3.1	Types of damping: homogeneous vs. inhomogeneous	239
7.3.2	Damping ("relaxation") mechanisms	240
7.3.3	Coulomb (space-charge) ion-ion repulsions: ICR frequency shift and mass spectral peak broadening	243

viii

7.4 FT aspects of ICR	243
7.4.1 Mass resolution, mass accuracy, and mass calibration	243
7.4.2 Pulsed single-frequency, frequency-sweep, and stored waveform inverse FT (SWIFT) excitation	246
7.4.3 Direct-mode vs. heterodyne-mode experiments; multiple foldover	246
7.4.4 Phasing of broadband phase-wrapped FT/ICR spectra	249
7.4.5 Harmonics	250
7.4.6. Quadrature ICR excitation and detection	253
7.5 FT/ICR features, experiments, and applications	254
7.5.1 FT/ICR experimental events [ion formation, ion excitation or ejection, ion de-excitation, ion fragmentation or chemical reaction, ion detection, ion removal (quench)]	254
7.5.2 FT/ICR experimental event sequences: the gas-phase chemical laboratory	260
7.5.2.1 Normal broad-band or heterodyne detection	260
7.5.2.2 Ion-molecule reaction pathways, rate constants, equilibrium constants, and energetics	261
7.5.2.3 Fourier and Hadamard multiplex detection of ion-molecule collision or reaction products: two-dimensional MS/MS	267
Further Reading	272
Problems	273
Solutions to Problems	275

CHAPTER 8 Fourier transform nuclear magnetic resonance spectroscopy

8.1 Nat pre	cural motion of a magnetic moment in a magnetic field: Larmor cession	279
8.1.1	Classical mechanical motion and energy of a magnetic moment in a static magnetic field: laboratory and rotating-frame representations	279
8.1.2	Quantum mechanical magnetic nuclei	281
8.2 NM	IR parameters	283
8.2.1	Chemical shift: identification of chemical bonds	283
8.2.2	Scalar (J-) coupling through chemical bonds: dihedral angles	285
8.2.3	Dipolar coupling through space: intra- and intermolecular distances	287
8.3 Spi	n manipulations	288
8.3.1	90° pulse: FT/NMR excitation, T_2 relaxation, and detection	288
8.3.2	180° pulse: spin-lattice (T_1) relaxation; relation between T_1 and T_2	291
8.3.3	Spin-echo: elimination of chemical shift differences; double-sided FT	295
8.3.4	Multiple-pulse excitation and non-linear phenomena: solvent suppression	295

ix

8.4 NMR time scales	300
8.4.1 Chemical exchange	300
8.4.2 Decoupling: elimination of <i>J</i> -coupling	302
8.4.3 Molecular motion: solids vs. liquids	303
8.5 Two-dimensional NMR	306
8.5.1 Spin-echo plus decoupling: J-modulation; DEPT	306
8.5.2 Other 2D-FT/NMR experiments	312
8.5.2.1 COSY	312
8.5.2.2 NOESY	312
8.5.2.3 Coherences: double-quantum NMR (INADEQUATE)	314
8.6 NMR Imaging	315
8.6.1 Spatial encoding methods: slice selection, phase- and frequency-encoding	317
8.6.2 Image contrast: T_1 -, T_2 -, and ρ -weighting	319
8.6.3 Flow imaging	320
8.6.4 Chemical shift imaging	321
Further Reading	324
Problems	325
Solutions to Problems	327

CHAPTER 9 FT/interferometry

x

9.1 Natu	ural motions of vibrating molecules	331
9.1.1	Normal modes: infrared spectra	331
9.1.2	Coupling of nuclear and electronic motions: Raman spectra	337
9.1.3	Infrared-active vs. Raman-active vibrations: selection rules	340
9.2 The	Michelson interferometer	341
9.2.1	Generation of an interferogram: reflective vs. refractive optics	341
9.2.2	Sampling calibration by counting laser fringes	347
9.2.3	Transmittance and absorbance FT spectra from single-beam measurements	347
9.2.4	Phasing	348
9.2.5	Dynamic range: gain-ranging, chirping	350
9.2.6	Opening the exit and entrance slits: Fellgett (multichannel) and Jacquinot (throughput, étendue) advantages	351
9.3 App	lications of FT/interferometry	352
9.3.1	FT/Infrared spectrometry	352
9.3.	1.1 Molecular structure from vibrational group frequencies	352
9.3.	1.2 GC/FT/IR analysis of mixtures	354

9.3.2 Ultr	aviolet/visible interferometry	354
9.3.2.1	Resolution, bandwidth, and foldover	355
9.3.2.2	Source-limited vs. detector-limited noise: multiplex disadvantage for sparse spectra	357
9.3.3 Ran	an spectroscopy: the centerband dynamic range problem	357
9.3.3.1	FT/Raman spectroscopy	358
9.3.3.2	Hadamard transform Raman spectroscopy	360
9.3.3.3	Hadamard encodement for spatial imaging	363
Further Reading	ng	365
Problems		365
Solutions to P	roblems	366
CHAPTER 10	D Epilog: Fourier transforms in other types of spectroscopy	369
APPENDIX A	Integrals and theorems for FT applications	373
APPENDIX F	3 The Dirac δ-functional	385
APPENDIX C	C The FFT algorithm: conceptual basis and program listings	389
Further Reading	ng	406
APPENDIX I	Fourier transform properties and pictorial atlas of Fourier transform pairs	407
APPENDIX E	Physical constants and units	431
INDEX		433

xi