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FOURIER TRANSFORMS WITH ONLY REAL ZEROS1

CHARLES M. NEWMAN2

Abstract. The class of even, nonnegative, finite measures p on the real line

such that for any b > 0 the Fourier transform of exp(- bt2) dp(t) has only

real zeros is completely determined. This result is then applied to the

Riemann hypothesis.

1. Main results. The problem of determining whether a Fourier transform

has only real zeros arises in two rather disparate areas of mathematics:

number theory and mathematical physics. In number theory, the problem is

intimately associated with the Riemann hypothesis [T, Chapter 10], while in

mathematical physics it is closely connected with the Lee-Yang theorem of

statistical mechanics and quantum field theory [SG], [NI], [N3]; see Kac's

remarks in [P, pp. A2A-A26] for a discussion of the historical connection

between these two topics. The results of this paper developed out of the study

of certain quantum field theoretic problems, but for pedagogical reasons, we

present them in the context of the Riemann hypothesis.

Following standard practice, we define the Riemann xi function as

(1.1) S(z) = s(s - l)w-*/2T(s/2)$(s)/2;       s = iz + ±,

where f (s) is the Riemann zeta function. H is the Fourier transform of the

strictly positive, even function,

00

(1.2) F(t) = 2 (4«Ve9'/2 - 6«277e5'/2)exp(-rtW),
n=\

which satisfies

(1.3) F(t) = 0(exp(9|/|/2 - to21'1))    as |r|-> oo,

and the Riemann hypothesis is identical to the conjecture that the zeros of E

are all real. For a discussion of these and other facts related to the Riemann

hypothesis, see [T, Chapters 1, 2, 10].

We generalize the xi function by defining for arbitrary real b,

/°°
exp(izt - bt2)F(t) dt,

- 00
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so that a and z.Q are identical. The following theorem, which is due to de

Bruijn [B, Theorem 13] and is an extension of various results of Polya,

indicates that definition (1.4) is a natural one in that whenever the zeros of

Eb, are all real, then so are the zeros of Zb for b < b'. This theorem of de

Bruijn, when combined with the fact that all the zeros of Z0 lie in the critical

strip |Im z\ < \, also implies that (at least) for b < — -, the zeros of z.b are

all real. The main number theoretic conclusion of this paper (Theorem 3

below) is the complementary fact that for some bx, the zeros of Zb are not all

real for b > bx.

Theorem 1. Suppose f is a real, even, integrable function on R with \f(t)\ =

0(exp(-|/|r)) as |t|-> +00 for some y > 2, such that all the zeros of the

Fourier transform of f lie in the strip |Im z| < A; then for 8 > 0, all the zeros of

the Fourier transform ofexp(8t2)f(t) lie in the strip

|Imz|<[max(A2 - 26\0)]'/2.

Motivated by Theorem 1 and the discussion preceding it, we define 6J to

be the class of even, nonnegative, finite measures p on the real line such that

for any b > 0, the Fourier transform of e\p(-bt2) dp(t) has only real zeros.

One group of measures belonging to <?, which was discovered by Polya (see

[B, p. 197]), consists of absolutely continuous ones with density

(1.5) dp/dt = A/2mexp(-a/4 - Bt2)Vl{l + t2/aj)

j

where K > 0, m = 0, 1, 2, . . . , a} > 0, 2(1/a/) < oo, a > 0 and B is real (or

else a = 0 and B > 0); here and elsewhere in this paper, t2m with m = 0

means the function identically equal to 1. While working on the Riemann

hypothesis, de Bruijn discovered [B, Theorem 28] that the product of two

densities of measures in ^P is again the density of a measure in 9 but could

not find any measures in <$ essentially different from those of (1.5). The class

9 is also a natural one in quantum field theory where one is particularly

interested in functions V(t) such that exp(-XV(t)) dt G 9 for all X > 0, and

the example V(t) = at4 + Bt2 of (1.5) was in fact rediscovered by statistical

mechanical methods in [SG]; Theorem 2 below shows that no other V(t) is

possible, thus disproving a conjecture of [N3] that V(t) = cosh t is allowed.

The next theorem gives a complete classification of 9 and shows that (1.5)

yields essentially the whole class; we change from Fourier to Laplace trans-

forms in the statement of the theorem for purposes of the proof, which is

presented in §2 of the paper.

Theorem 2. Suppose p is an even, nonnegative, finite measure on the real line

and Zb is defined (for b > 0) as

(1 -6) Zb (z) = C exp(zf - bt2) dp(t);
J - 00

then Zb has only pure imaginary zeros for every b > 0 if and only if either
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(1.7) p(t) = K(8(t- t0) + 8(t + t0))

for some K > 0 and t0 > 0 (where 8(t — t0) denotes the point measure of unit

mass concentrated at the point t0), or else p is absolutely continuous with density

(1.8) J = A72"exp( - at" - Bt2) E   11 + L jexp| I± \

where K > 0, m = 0, 1,2, ... ,a, > 0, 2(l/a,4) < oo, a > 0 a«*/ /? is real ior

else a = 0 a«<i /? + 2(1/a,-)2 > 0). Trte product in (1.8) w cuer a sec 0//5

which may be empty, finite, or infinite and the condition B + 2(1 /a)2 > 0 is

considered to be satisfied if 2(1/a,)2 = + 00.

Remark 1. If we weaken the assumptions on p to allow noneven real-val-

ued measures, the theorem remains true provided we also allow dp(t) in the

conclusion to be ± tndp0(t) (with n = 0 or 1) with p0 as given by (1.7) or (1.8)

or else proportional to a Gaussian measure of mean t0 and variance a2 with t0

real and a2 > 0. We do not include this result in Theorem 2 simply because

the extra complications needed for the proof do not seem justified by the

extra generality obtained.

Theorem 3. There exists a real number b0 with — | < b0 < 00 such that

~b(z) has only real zeros when b < b0 but has nonreal zeros when b > b0.

Proof. This result follows immediately from Theorems 1 and 2 (see the

discussion preceding Theorem 1) once we show that F(t), as given by (1.2), is

not of the form of (1.8). To see this, we note that one consequence of (1.8) is

that

(1.9) dp/dt > Kt2m exp(- [o + 2 (1/ (2a,4)) l*4 - Bt2\

while F satisfies (1.3); (1.9) follows from (1.8) after application of the

inequality

(1.10) (1 + x2)exp{-x2) > exp(-x4/2);        x E R,

which itself may be obtained by exponentiating the elementary inequality,

ln(l + y) > y - y2/2 fory > 0.

Remark 2. The Riemann hypothesis is the statement that b0 > 0; we make

the complementary conjecture that b0 < 0. This new conjecture is a quantita-

tive version of the dictum that the Riemann hypothesis, if true, is only barely

so.

2. Proof of Theorem 2.

Proof of sufficiency. The measure of (1.7) clearly belongs to V? while the

measures of (1.8) can be seen to belong to C!P since they are limits of Polya's

measures of (1.5) (via truncation of the product in (1.8)). For the sake of

completeness, we note that the measures of (1.5) can themselves be obtained

as limits of measures with density dp/dt = Q(t)exp(— ct2), where Q is anLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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even polynomial with only pure imaginary zeros and c > 0, since

(l + (2a/«)1/2/2)"exp(-(2a«)'/2?2)-*exp(-a/4);

and that measures with such densities belong to lT? since their Laplace

transforms may be expressed as a limit of polynomials of the form

Q(d/'dz)P(z) (where P is an even polynomial with only pure imaginary

zeros) which have only pure imaginary zeros by standard results for poly-

nomials (e.g. [M, pp. 62-63]).

Proof of necessity. We now assume that Zb has only pure imaginary

zeros; it is also even, strictly positive for real z, and 0(exp(\z\2/Ab)) for

complex z so that it is entire of at most order two and finite type. It follows

by standard entire function techniques (see [N2, Proposition 2] for a more

complete discussion) that

(2.1) Zb(z) = Kb exp(J6z2)II(l + z2/^)2)
j

with Kb > 0, db real, dj(b) > 0, and 2(l/dj(b)2) < oo; here ±idj(b) are the

zeros of Zb.

The key idea of the proof is to express p as the weak limit of measures pb as

b —> oo (i.e. jf(t) dpb(t) —> //(/) dp(t) for all bounded continuous/) where pb

is the convolution of p with the Gaussian probability measure of mean zero

and variance l/b:

dpb/dt = f °° (b/2^/2exp{-b(t - s)2/2) dpis)
J — OO

(2.2) = (6/20'/2exp( - bt2/2)Zb/2 (bt)

= Kbexp(-dbt2)Yl(l + t2/ajib)2)
j

with Kb > 0, db > 0 (since pb is finite), a/b) > 0, and 2(l/a,(Z>))2 < oo. It

only remains to show that any finite measure p, which is the weak limit of

measures such as those given by (2.2), must be either as in (1.7) or as in (1.8).

We first make several definitions and then complete the proof after a series

of lemmas. We define

(2.3) Ab = 2,1 + 22(l/a,(6))4;    Bb = db - 22(l/«/-(6))2,

where 2i (resp. 22) denotes the sum over all j such that aj(b) < 1 (resp.

aj(b) > I); we further define fb(t) = dpb/dt and Vb = -ln(fb) so that

(2.4) Vi(t) = 2t\db-^{l/(t2 + aj(b)2))  ,
j

(2.5) (Vb'/2t)' = 2t^{l/(t2 + aJ(b)2f].

Lemma 1. If Ab and \Bb\ are uniformly bounded as b —» oo, then p(t) is

absolutely continuous with density as in (1.8).
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Proof. We define Pb(t) = Ufa/b)2 + t2) and

(2.6) Qb(t) = n2(l + t2/aj(b)2)exp(- t2/aj(b)2),

where Iii and n2 are defined analogously to 2! and 22, so that fb(t) =

Kb exp(- Bbt2)Pb(t)Qb(t). In order to bound fb(t) below for real t and above

for complex t, we use the following inequalities:

(2.7) Pb(t)> Uxt2> t2\       tE[-l, 1];

(2.8) \Pb(z)\ < n,(l +\z\2) < (1 +\z\2)Ab< exp(^4|z|2),        z E C,

(2.9) Qb(t) > exp(-2Z2t4/2aj(b)4) > exp(-Abt4/2),       t E R;

(2.10) \Qb(z)\ < exp(22|z|4/2a/.(6)4) < exp(Ab\z\4/2),       z E C.

(2.7) and (2.8) are elementary; (2.9) follows by applying (1.10) to (2.6); and

(2.10) may be obtained by applying the inequality

(2.11) |(1 + z2)exp(-z2)| < exp(|z|4/2),       z E C,

to (2.6). To derive (2.11), we set u = |z|4 and v = Re(z2) so that (2.11) is

equivalent to (1 + u + 2v)l^2exp(—v) < exp(u/2), which is itself equivalent

to the elementary inequality (1 + w) < exp(vv) with w = u + we. Combining

(2.7) through (2.10), we have

(2.12) fb(t) > Kbt2A>exp(-Bbt2 - Abt4/2),        (£[-1,1],

(2.13) \fb(z)\ < A>xp([ 1.6,1+,46]|z|2 + ^|z|4/2),        z E C.

Now, since fb(t) dt -» dp, a finite measure, it follows from (2.12) that Kb

must be bounded above uniformly in b; consequently we have from (2.13)

that fb(z) is uniformly bounded on compact subsets of C and thus, by

standard analytic function theory, some subsequence of the fbs converges

uniformly on compacts to an entire function f(z) and clearly dp(t) = f(t) dt.

Now by (2.13),/is entire of (at most) exponential order four and finite type,

and since each fb has only pure imaginary zeros, so does / by Hurwitz'

Theorem; moreover/ is even and nonnegative on the real axis (since p > 0)

so we may conclude by standard entire function theory (analogously to the

derivation of (2.1)) that/has the form given in (1.8). The conditions on a and

B are required simply because p is a finite measure.

Lemma 2. For each b > 0, there is a Tb > 0 with lim sup Tb < oo such that

Vb < 0 on [0, Tb] and V'b > 0 on (Tb, oo). If for some subsequence bj and some

0 < /) < t2 < oo, V'b —> + oo (resp. — oo) uniformly on [/,, t2], then

p((tx, oo))= 0 (resp. p((- t2, t2)) = 0).

Proof. The existence of Tb follows from the fact that Vb(0) = 0 while

Vb(t)/t is increasing on (0, oo) to 2db > 0 as t —» oo. To see that

lim sup Tb < oo,
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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we note that/A(i) is nondecreasing on [0, Tb], so that if Tb -» + oo it would

follow that for any sx, s2 > 0,

p([sx,sx + s2]) > lim sup p4ll([j„s, + s2])

(2'H) > lim inf PbkH-s2,s2))/2 > p((-s2, s2))/2
/c—>oo

which is impossible for a finite measure p.

We now consider the case when V'b —» + oo on [tx, t2] and define £». as the

minimum of V'b on [tx, t2] which by assumption tends to + oo asj—» oo. By

elementary calculus, we have for t, t + 8 G [tx, t2] and 8 > 0, that Vb(t + 5)

> Vb(t) + Z),S so that fb(t + 8) < exp(-Dj8)fb(t); after integrating this

last inequality, we have that for 0 < 8 < (t2 — tx),

(2.15) Pbj([tx + 8,t2}) < exp(-DJ8)Pb([tx,t2-8]).

Now clearly Tb < /, for sufficiently largey so that eventually/, is nonincreas-

ing on [tx, oo) and thus eventually pb([tx + 8 + t, t2 + t]) < pft([^ + 8, t2])

for any t > 0; combining this inequality with (2.15) and taking the limit gives

p((tx + 8 + t, r2 + t)) = 0 for any t > 0 so that letting 5^0, we have

p((tx + t, t2 + t)) = 0 for any t > 0 which clearly implies that p((tx, oo)) =

0. The case of V'b —> — oo is handled essentially identically with the assistance

of (2.14) for sx + s2 < t2.

Lemma 3. If lim sup Ab = + oo, then there is a t0 > 0 and a subsequence bj

such that V'b -^ + oo (resp. — oo) uniformly on compact subsets of (t0, oo) (resp.

(0, Q).

Proof. We choose the subsequence bj so that Ab —> + oo while Tb has a

limit t0 > 0; this can be done since lim sup Tb < oo by Lemma 2. The

conclusions then follow by elementary arguments from the inequality (easily

derivable from (2.5)) (Vb/2t)' > 2Abt/(l + t2)2, and the elementary calculus

fact that

(2.16) Vb(t2) = (t2/tx)Vb(tx) + ,2f'\Vb/s)'ds.
Jh

Lemma 4. If Ab is uniformly bounded as b —> oo, but lim sup Bb = + oo i/esp.

lim inf Bb = — oo), then there is a subsequence bj such that V'b —> + oo iresp.

-co) uniformly on compact subsets of (0, oo).

Proof. We choose by so that Bb —> + oo (resp. - oo) and then use the

estimate,

-Ab/t2< -21(l/(f2 + a,(fc)2))

(2.17) < 22(l/«,(*)2) - 2 (V ('2 + ^(*)2))

<22{/2/(ay(Z>)2(?2 + a/(/>)2))} <Abt2License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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together with (2.4) to obtain

(2.18) - Ab/t2 <  V'b(t)/2t - Bb < Abt2,

which clearly implies the desired result.

Completion of proof of Theorem 2. The theorem is a straightforward

consequence of the above four lemmas. We only point out that by combining

Lemmas 4 and 2, it follows that we cannot have Ab uniformly bounded while

lim inf Bb = - oo (or else p would be identically zero); on the other hand,

when Ab is bounded and lim sup Bb = + oo, then p(t) = K8(t).

Acknowledgement. The author has benefited from discussions with many

people during the course of this research including, in particular, J. Klauder,

J. Lebowitz and D. Ruelle.

References

[B] N. G. de Bruijn, The roots of trigonometric integrals, Duke Math. J. 17 (1950), 197-226. MR

12, 250.

[M] M. Marden, The geometry of the zeros of a polynomial in a complex variable, Math.

Surveys, no. 3, Amer. Math. Soc, Providence, R. I., 1949. MR 11, 101.

[NI] C M. Newman, Zeros of the partition function for generalized Ising systems, Comm. Pure

Appl. Math. 27 (1974), 143-159.

[N2]   _ , Inequalities for Ising models and field theories which obey the Lee-Yang theorem,

Comm. Math. Phys. 41 (1975), 1-9.

[N3]   - , Classifying general Ising models,   Les Methodes Mathematiques de la Theorie

Quantique des Champs, C.N.R.S., Paris, 1976, pp. 273-288.
[P] G. Polya, Collected papers, Vol, II (R. P. Boas, editor), M.I.T. Press, Cambridge, 1974.

[SG] B. Simon and R. B. Griffiths, The (<J>4)2 field theory as a classical Ising model, Comm.

Math. Phys. 33 (1973), 145-164.

[T] E. C Titchmarsh, The theory of the Riemann Zeta-function, Oxford Univ. Press, Oxford,

1951. MR 13, 741.

Departments of Mathematics and Physics, Technion-Israel Institute of Technology,

Haifa, Israel

Current address: Department of Mathematics, Indiana University, Bloomington, Indiana 47401

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


