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Abstract This paper presents a novel method to generate

realistic packings for discrete modelling of granular materi-

als. To generate a packing of 2D dense sample in a container

of arbitrary shape, a number of key particle properties are

identified as the targeted ones to reproduce, including the

grain size distribution, density, particles orientations as well

as specific shape characteristics of the particles. Four descrip-

tors, including elongation, circularity, roundness, regularity,

are chosen to characterize the particle shape. The considered

container is discretized by a Voronoi tessellation with pre-

scribed cell size and orientation distributions. Each Voronoi

cell is then filled with a particle with prescribed shape charac-

teristics. Several algorithms are proposed and are compared

in terms of their computational efficiency and accuracy to

define the particle contours, to constrain the Voronoi tessel-

lation and to fill the Voronoi cells with particles. Two exam-

ples are further employed to demonstrate the accuracy and

the potential usefulness of the proposed method for a wide

range of applications where discrete modelling of granular

media is important.

Keywords Granular media · Particle packing ·

Particle shape · Voronoi tessellation · DEM

1 Introduction

The micromechanical behaviour of granular materials has

drawn growing attention across a wide range of scientific and

engineering fields, such as sedimentology, geomechanics,
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mining, chemical engineering, pharmaceutical and powder

industries. While advanced experimental techniques enable

us to observe the grain-scale behaviour of granular mate-

rials [1–3], modern computing power has led to unprece-

dented progresses towards numerical modelling of granular

materials as discrete system, which provides us with much

richer information and deeper insight into the microscopic

behaviour of granular media that are not otherwise obtain-

able by experiments. The discrete elements method (DEM),

pioneered by Cundall and Strack [4] and further developed

by many others, is one of the prominent numerical tools of

this kind.

One of the major challenges for DEM modellers today

is how to accurately account for the complex shapes of real

particles in the modelling. Natural sands, for example, may

vary in shape, roundness, angularity, roughness and many

other intrinsic properties, depending on their geological his-

tory and mineralogical composition [5,6]. These properties

affect considerably the overall mechanical behaviour of these

materials and need to be carefully considered in any dis-

crete modelling of them in order for the simulation results

to be reliable. While DEM has traditionally been based on

idealized circular (2D) or spherical (3D) particles due obvi-

ously to their simplicity and computational efficiency, there

have been studies to consider the shape effect of particles

by using clusters (clumps) of discs/spheres [8–14], super-

ellipsoids [15–17], pentagons [18], rounded-cap rectangles

[19], polyarcs [20], cylinders [21], polyhedrons [22–29], or

the so-called “potential particles” [30]. Using rolling resis-

tance in conjunction with spherical particles has also been

considered in some DEM studies as an equivalent way to

account for irregular particle shape [7]. Limited success has

been achieved by some of these studies to reproduce/pre-

dict the inherent phenomena relevant to granular materials

(e.g. the fabric evolution and critical state of a sheared sand

123



622 G. Mollon, J. Zhao

[20] or energy dissipation in a rock avalanche [25,26]). These

methods, however, remain to be too simplified to offer accu-

rate description of the real shape of particles and hence serve

at best as qualitative or phenomenological characterization

of the influence of non-spherical particle shape. A system-

atic and comprehensive way to describe particle shape for

discrete modelling is highly desirable but unavailable.

In addition to particle shape, how to properly pack par-

ticles with different size (and shape) to generate a realistic

sample remains another unsolved issue. A packing method

to generate particles in a container with a desired shape is

generally subjected to a number of constraints, including the

number of particles and their size distribution, the desired

density (or void ratio) and the required orientation distribu-

tion. A conceptually straightforward way would be based

on gravitational deposition, which attempts to reproduce the

natural deposition process of granular materials. This method

has the advantage to deal with complex particle shape, but

in most cases can be extremely time-consuming. Moreover,

it cannot be applied to arbitrary container shapes and is not

able to reproduce certain desired properties, such as the target

fabric anisotropy important to geomechanics study. Alterna-

tive to this deposition method are some geometric packing

methods [31–33]. These methods appear to be very power-

ful for the packing of spherical particles, but may encounter

great difficulties in dealing with particles of complex shapes.

An interesting alternative approach was proposed in the pio-

neering work by Tilemans and Herrmann [27], in which a

very dense packing is generated by discretizing a container

domain into Voronoi cells [46] and then using each of these

cells as a polygon-shaped particle. This method was then

adapted and improved in [28,29], and each sharp polygon

was replaced by sphero-polygons for more rigorous neigh-

bourhood and contact detections.

This paper aims to develop a methodology to produce

realistic packings of particles with complex particle shape

for discrete modelling. Novel to the method are the con-

straints imposed to ensure that the generated particles and

packings match quantitatively important statistical proper-

ties of the targeted real material, despite its seeming similar-

ity in concept for the particle packing as in [27–29,46]. The

formulation and description of the method will be presented

for the two-dimensional case, and further discussion will be

made on the generalization of the method to more realistic

three-dimensional modelling. The method has been based on

considerable improvements over some existing approaches

[34–38] and features the following innovations:

(a) Based on the spectral method proposed in [34–36], the

main features of particle shape of a granular material

will be characterized by the mean of a discrete spectrum

which defines the irregularities of the shape. The spe-

cific spectrum for a granular material is chosen based on

statistical data observed on real particles of the material

[39].

(b) A constrained Voronoi diagram will be defined to parti-

tion the container of the granular material into a number

of “cells” (i.e. sub-domains of this container, defined

by polygons). The number of cells should be equal to

the number of particles composing the desired sam-

ple, and a method called Inverse Monte-Carlo (IMC,

proposed in [37,38]) is used to constrain the Voronoi

tessellation to match some targeted size and orientation

distributions. This approach is analogous to the one of

[27] and of [28,29], but with a better control over the

cells statistics.

(c) Each Voronoi cell will be filled with a particle with

specified spectrum defined at Step 1 as well as a

prescribed solid fraction. After the filling, a simple

algorithm [40,41] will be used to replace each com-

plex particle shape by an equivalent collection of over-

lapping discs [also called overlapping discrete element

clusters (ODECs)] for future discrete modelling.

Upon finishing all three steps, the method is expected to pro-

duce a collection of particles with the correct shape properties

(due to Step 1), the correct size and orientation distributions

(due to the Voronoi diagram obtained by IMC in Step 2), and

the desired void ratio/solid fraction (due to the filling process

of Step 3). The three steps will be described in more detailed

in Sects. 2, 3 and 4 of this article, followed by several demon-

strative examples of the method as well as discussion on its

accuracy and relevant issues to 3D generalization.

2 Generation of realistic particles

2.1 Shape descriptors

Describing the shape of a granular particle such as sand

proves to be challenging. A variety of shape descriptors have

been proposed in the literature (see a relatively complete

review in [5]). The present study only focuses on 4 descrip-

tors of shape, namely the elongation, the roundness, the cir-

cularity and the regularity (see Fig. 1). The elongation of a

2D particle (Fig. 1a) is defined by following the definition in

[5]:

Elongation = S/L (1)

where S is the smallest possible dimension of a grain

(obtained by minimization with respect to an angle of rota-

tion θ , see Fig. 1a), and L is the dimension of the particle in

the direction of θ (which may be slightly different from the

longest dimension of the particle). The corresponding angle

θ is a good descriptor of the orientation of the particle. The

particle roundness employs the definition provided in [42]:
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Fourier–Voronoi-based generation of realistic samples 623

Fig. 1 Global shape descriptors of an illustrative particle: a elon-

gation=0.663 and θ = −29.7◦; b roundness=0.370; c circular-

ity=0.746; d regularity=1.431

Roundness =

∑

Rc

nc · Rinsc

(2)

In the original definition in [42], Rinsc is the radius of the

largest inscribed circle in the particle, and the Rc terms corre-

spond to the radii of the circles that approximate the corners

of the particle contour (it thus implies that the nc corners of

the particle are represented by nc circles of respective radii

Rc). It is therefore a measure of the average sharpness of

the angles of the particle. However, this definition is not per-

fectly objective since it is difficult to determine what curve

along the contour of a particle is sharp enough to be called

a “corner”. To facilitate easy reproducibility for this shape

descriptor, the original expression of Eq. (2) is slightly modi-

fied here. Specifically, the nc circles considered here include

all circles covering the entire contour of the particle, not

only the ones used to approximate the corners of the particle

(Fig. 1b). Note that the method used here to fill a 2D particle

with circles was originally proposed in [40], which will be

discussed in detail later. Besides the measure of the corners’

sharpness, the circularity of a particle follows the definition

in [43]:

Circularity =

√

Rinsc

Rcirc

(3)

where Rcirc is the circumscribed circle of the particle (see

Fig. 1c). Roundness and circularity are somehow related, but

circularity is believed to be a better description of the over-

all shape of a particle, irrespective of the sharpness of its

angles. Furthermore, to describe the roughness of the parti-

cle surface, a so-called irregularity index has been defined

in [5], but its implementation is difficult in practice. A new

descriptor called regularity is proposed here:

Regularity = log

(

P

P − Pconv

)

(4)

As shown in Fig. 1d, P is the perimeter and Pconv is the

convex perimeter of the particle. Note that the contour of

the particle has to be discretized by a number of points (for

example, 500 in the present study) to represent its perimeter

confidently. With the definition of Eq. (4), a perfectly convex

particle (such as a circle, for example) therefore has an infi-

nite regularity. However, due to round-off error in the float-

ing-point algorithm used to compute the convex envelope,

a regularity greater than 3 or 4 (corresponding to a relative

difference between the perimeter and the convex perimeter

smaller than 10−3 or 10−4, respectively) is virtually equiva-

lent to a perfect regularity. These four descriptors have been

chosen among a large number of existing ones because they

cover all the typical scales on the morphology of a particle.

Elongation deals only with the very general shape, circularity

concerns with the main irregularities of the contour, round-

ness addresses the sharpness of the angles, and regularity

characterizes the surface roughness of the particle (a fifth

scale would correspond to the contact friction introduced in

the DEM code).

2.2 Fourier descriptors

There is an alternative approach proposed in [44] based on the

discrete Fourier transform (DFT) of the contour of the grain

which has been used extensively [34,36]. In the 2D case, a

suitable centre O for the particle is chosen. The contour of the

grain is then discretized by NP points Pi separated by a con-

stant angle θP with respect to O (i.e. such that θp = 2π/Np).

Thus, each point Pi is defined by an angle θi and a radial dis-

tance ri = O Pi . Following the Fourier theory, the discrete

signal ri (θi ) can be represented by the following series:

ri (θi ) = r0 +

N
∑

n=1

[An cos (nθ) + Bn sin (nθ)] (5)

where n is the harmonic number and N is the total number

of harmonics. As stated in [35], this method is only suitable

for a certain class of particle shapes, namely the “star-like”

particles. More precisely, a particle may be described by this

method if there exists a suitable point O inside the particle

contour, such that all the half-lines arising from O cross the

particle contour exactly one time. This drawback has actually

a limited effect, since a majority of the natural particles fulfil

this condition ([35]). A DFT can be applied to the discrete

signal ri (θi ), and will provide the discrete Fourier spectrum

{An, Bn} of this signal, such that:
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An =
1

N

N
∑

i=1

[ri cos (i · θi )] (6)

Bn =
1

N

N
∑

i=1

[ri sin (i · θi )] (7)

The average radius of the particle r0 is given by:

r0 =
1

N

N
∑

i=1

[ri ] (8)

Thus, the number N of harmonics is equal to the number of

points used to discretize the particle contour. Practically, it is

convenient to use the classical fast Fourier transform (FFT)

algorithm, which is commonly available in most commercial

processing tools such as Matlab, to compute the DFT of the

signal. The FFT requires that the number of points (and thus

of harmonics) should be equal to a power of 2 in order for it

to be efficient. Following [36], only the modes of order run-

ning from 1 to N/2 are kept in the spectrum as the remaining

terms correspond to harmonics with a higher frequency than

the one used for the sampling. A total of 128 points have

been chosen in the present study, which leads to 64 effective

harmonics.

In practice, such operations as particle microscope-scan-

ning, image treatment, contour discretization and spectrum

computation can be automated, as explained in [36]. In 2D,

the images correspond to the orthogonal projections of the

actual particle shapes. A more complete study in 3D might

require some complex tools such as X-ray scanner or µ-CT.

It has been shown in [34] and [36] that the normalized ampli-

tude of the spectrum obtained by DFT is a relevant signature

for a given population of granular particles with common

shape properties. This normalized amplitude is given for each

harmonic n by:

Dn =

√

A2
n + B2

n

r0
(9)

The amplitudes {Dn} are called “Fourier descriptors”. A typi-

cal normalized amplitude spectrum is provided in Fig. 2. The

first Fourier descriptor D0 is equal to 1 due to the normaliza-

tion, since
√

A2
n + B2

n = r0. D1 corresponds to a “shift” of

the grain contour with respect to the position of point O, and

can be set to zero if this point O is chosen properly. It is thus

less relevant for the shape description. In contrast, D2 is an

extremely important descriptor, since it describes the elon-

gation of the particle. As suggested in [36], the descriptors

D3 to D8 can be regarded to define the main irregularities

of the particle contour, and the modes Dn for n > 8 are

good descriptors of the roughness of the particle surface. For

natural sands, for example, it has been shown in [45] that

these modes decrease linearly with the descriptor number

in a log-log scale. The surface roughness of given sand can

thus be described by only a slope and an intercept. In order to

simplify the analysis, simple spectra will be defined hereaf-

ter using only the values of D2, D3, and D8. The remaining

descriptors will be assumed to follow the following expres-

sions:

Dn = 2α·log2(n/3)+log2(D3) for 3 < n < 8 (10)

Dn = 2β·log2(n/8)+log2(D8) for n > 8 (11)

Equation (11) is consistent with the observations of [45],

i.e. the amplitudes of the modes larger than 8 decrease line-

arly with n in a log2 − log2 scale, with a slope β. Likewise,

Eq. (10) is proposed for the modes 4–7, except that the slope

is equal to α. In the present study, we adopt that:

α = β = −2 (12)

Such simple spectra are only chosen here for illustrative pur-

pose, to ease the parametric studies by controlling them with

Fig. 2 Illustrative normalized amplitude spectrum
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Fig. 3 Example of random generation of two grains with the illustrative spectrum of Fig. 2: random sampling of the phase angles, computation of

the random signals r(θ), plotting of the corresponding particles contours

only 3 parameters. Apparently, using more accurate spec-

tra according to Eqs. (5)–(9) may lead to high confidence in

reproducing the shape of a real material.

2.3 Grain generation method

As a method to characterize the shape of a particle or of a pop-

ulation of particles, the Fourier descriptors may also be used

to perform the reverse operation, i.e. to generate a particle

with prescribed features. A large number of particles with

different size can share the same amplitude spectrum and

meanwhile have different shapes, as long as the main fea-

tures of these shapes are similar. Thus, to generate a relevant

and realistic population of particles with different shapes but

with the same amplitude spectrum, some randomness needs

to be introduced in the process. This can be done by consid-

ering the phase angle δn of each mode of amplitude Dn . For

a given particle, these phase angles are defined by:

δn = tan−1

(

Bn

An

)

(13)

Thus, a random particle with a prescribed amplitude spec-

trum {Dn} can be generated by randomly assigning a phase

angle δn to each mode of order greater than zero. Each of

these random angles follows a uniform distribution on the

interval [−π;π ]. The discretized contour of the considered

particle is obtained using Eq. (5), with:

An = Dn · cos δn (14)

Bn = Dn · sin δn (15)

The present study adopts this method to generate particles.

Two examples of grain generations are presented in Fig. 3,

each of which follows the amplitude spectrum provided in

Fig. 2. It is clear from the figure that the random phase angles

lead to different ri (θi ) signals and different grain shapes, but

with common features which are easily identifiable (e.g. the

amplitude and the frequency of the irregularities and the par-

ticle aspect ratio).

The influence of the Fourier descriptors based on Eqs. (10)

and (11) is demonstrated in Figs. 4 and 5. Figure 4 presents

nine randomly generated particles at different D2 and D3

with D8 fixed at zero. Evidently, for D2 = D3 = 0, the par-

ticle is a perfect disk. An increase in D2 tends to enhance

the elongation of the particle, while an increase of D3 [and

subsequently increases of D4 to D7 which are linked to D3

through Eq. (10)] tends to add irregularity to the particle con-

tour. Presented in Fig. 5 are the particles generated by fixing

D2 = D3 = 0 and varying the value of D8. It clearly shows

that an increase of D8 [and of the modes greater than n = 8,

which are linked to D8 by Eq. (11)] does not affect signifi-

cantly the overall shape of the particle which remains roughly

circular. Nevertheless, it does increase the roughness of the

particle surface. It is evident from Figs. 4 and 5 that the three

parameters D2, D3 and D8 in conjunction with Eqs. (10) and
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Fig. 4 Influence of the Fourier descriptors D2 and D3 on the shape of

randomly generated grains

Fig. 5 Influence of the Fourier descriptor D8 on the shape of randomly

generated grains

(11) can provide a good control of the main features of the

shape of the generated particle.

3 Constrained voronoi tessellation

3.1 Packing principles

The tools presented in the previous section make it possi-

ble to generate random population of particles with differ-

ent shapes but with common normalized amplitude spectra.

Before they can be used in a DEM simulation, the gener-

ated particles have to be appropriately packed. Importantly,

it is desirable to generate the particles in a given domain,

by following some conditions of grain size and orientation

distributions as well as solid/void fraction.

The current study employs the Voronoi Tessellation [46]

to divide a domain into small cells. For a given number of

seeding points Pi generated in the domain (they can be either

randomly generated or specifically aligned), this Voronoi tes-

sellation provides a set of polygons, one for each point in the

domain. For a given polygon corresponding to the point Pi ,

the following condition is imposed: if and only if a point

P of the space is located strictly inside the polygon, then

P Pi < P Pj ,∀ j �= i . Thus, each polygon denotes a domain

of points which are closer to Pi than to any other point Pj .

Such a polygon is called a Voronoi cell. Voronoi tessellation

has proved to be classical and efficient in defining the geome-

try of Voronoi cell for a given cloud of points. It is used in the

present study to partition a domain for packing an assembly

of particles, and each generated particle belongs to only one

of the Voronoi cells.

Notably, however, the classical Voronoi tessellation has two

obvious drawbacks to perform such an operation:

(a) Some of the Voronoi cells may be “open”. Indeed, each

Voronoi cell related to a point Pi is also defined as the

intersection of a number of half-spaces (each one defin-

ing the points closer to Pi than to another point Pj ),

and this intersection may not be a closed domain if the

point Pi lies on the border of the cloud of points.

(b) There is no direct method to generate a cloud of points

Pi in such a way that their Voronoi cells follow the

prescribed statistical distributions in terms of particle

sizes and orientations.

Two algorithms are proposed to address the above issues.

One is called the bounded Voronoi tessellation method and

the other is the inverse Monte–Carlo (IMC) method. The per-

formance of two methods will be compared by examples in

later sections.

3.2 Bounded Voronoi tessellation

This subsection describes an algorithm to generate a closed

Voronoi tessellation, i.e. a tessellation for which each of the

seeding points Pi of the chosen domainD is assigned a closed

cell, the union of all these cells being equal to D. As an

example, let us consider the example provided in Fig. 6. In

this example, 100 points (xi , yi ) have been generated ran-

domly in the square domain of the plane (x, y), such that

0 < xi < 1 and 0 < yi < 1 (Fig. 6a). The proposed algo-

rithm of bounded Voronoi tessellation follows the subsequent

steps:

(a) A classical Voronoi tessellation is performed (Fig. 6b).

(b) The “problematic” cells are identified (in red in Fig. 6c).

A “problematic” cell refers to one that is not closed, or

has at least one vertex outside of the domain D.

(c) A number of new points are created outside of the

domain D (Fig. 6d). These points are the symmetric
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Fig. 6 Illustration of the stages of the bounded Voronoi tessellation algorithm

points to the problematic ones, with respect to the

boundaries of D.

(d) A new classical Voronoi tessellation is performed

(Fig. 6e), by considering both the initial cloud of points

and the new points generated outside of the domain.

(e) From this new tessellation, only the cells correspond-

ing to the initial points are kept.

As shown in Fig. 6f, after the above operation, there will be

no more open or problematic cells, and the union of all these

cells is equal to the target domain D. Indeed, key to this algo-

rithm lies in closing the problematic cells by adding some

half-spaces to their intersection-based definition.

3.3 Inverse Monte–Carlo (IMC) method

3.3.1 Main IMC algorithm

As mentioned before, the set of points generated in the

domain should necessarily lead to a Voronoi tessellation with

prescribed statistics in terms of cell size and orientations.

Note that a method with prescribed elongation on the Voro-

noi cells has been described in [23]. It is not followed in

the present study since the final elongation of the particles is

ensured by their Fourier spectrum, irrespective of the shape

of the surrounding Voronoi cell. Thus, this section only deals

with the size and orientation of the cells.

A method called IMC proposed in [37] and [38] may help

us to generate points with such constraints. In essence, this

stochastic iterative method introduces random modifications

in a set of points to improve the statistics of the correspond-

ing Voronoi tessellation as compared to the target distribu-

tions. The process is continued iteratively to render the set

of points tending gradually to the desired distributions until

certain prescribed tolerance is met. This method comprises

of the following major steps [37]:

(a) Generate an initial set of points within the selected

domain, and perform a Voronoi tessellation.

(b) Evaluate the statistics of this Voronoi tessellation

(note that we are here focusing on the cells size and

orientation distributions, but it could be any other

properties, such as the number of neighbours or the

perimeter).

(c) Compute an error corresponding to the discrepancy

between the current and the target statistics.
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Fig. 7 Illustration of the stages of the proposed improved IMC algorithm

(d) Move randomly one of the points of the set to another

position in the domain. Compute the new Voronoi tes-

sellation, and the new error value.

(e) If the error has been reduced with respect to the pre-

vious state, accept the modification. Otherwise, ignore

it.

(f) Cycle on Steps (d) and (e) until the error is smaller than

a prescribed threshold.

This algorithm has been found generally robust. However,

it can become very slow and inefficient when dealing with

a large sample, because it requires the computation of the

whole Voronoi tessellation at each cycle. An improvement

of the algorithm is herein proposed. Specifically, Step d) of

the original IMC algorithm is replaced by the following oper-

ations, by only modifying the local cells around the moving

point (see an illustrative case in Fig. 7):

(d1) Choose randomly one of the points (e.g. the red dot in

Fig. 7a).

(d2) Define two sets of Voronoi cells: Set 1 corresponds to

the initial Voronoi cell of the chosen point and all its

immediate adjacent cells (yellow area in Fig. 7a); Set

2 corresponds to two more successive “layers” of cells

around the Set 1 (green area in Fig. 7a).

(d3) Consider only these two sets of cells (Fig. 7b) and

ignore the rest of the points (Fig. 7c).

(d4) Move the selected point randomly to a new position

located somewhere in the first set of cells (yellow area).

Compute the new Voronoi tessellation of the union of

the two sets of cells only (Fig. 7d).

(d5) Reintroduce the new Voronoi tessellation inside the

existing one, and update the statistics of the global

tessellation. Go on with Step e).

Though not particularly straightforward to implement, this

new algorithm has the advantage to increase dramatically

the computation speed, especially in the case of large sam-

ples. After this modification, the computation efficiency of

each cycle of IMC has been found largely insensitive to the

total number of points.

3.3.2 Convergence of the algorithm

The number of cycles necessary to obtain convergence

depends on a number of factors: the chosen formulation of

the error function, the threshold value of this error function,

the number of Voronoi cells, the configuration of the initial

set of points and the target distributions of the size and orien-

tation of the Voronoi cells. It is instructive to carry out a brief

sensitivity study on convergence here. To reduce the number

of parameters of this study, the following assumptions are

made (notice however that none of them is mandatory, and

that different choices may be made in different contexts):

• The target distribution of the area S (considered here as

a random variable) of the cells follows a lognormal law

with a mean µ(S) = Np/SD(Np being the number of

Voronoi cells and SD being the area of the domain) and
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Fig. 8 Examples of target PDF: a cell areas; b cell orientation

a standard deviation σ(S) = C OV (S) · Np/SD . Thus,

when the domain and the number of cells have been

defined, the size distribution is only dependent on one

parameter, namely, the coefficient of variation C OV (S),

which is equal to the ratio between the standard deviation

and the mean value of the random variable S. As shown

in the examples provided in Fig. 8a, the lognormal dis-

tribution of S corresponds to a normal distribution of

ln(S). It should also be noted that a lognormal distribu-

tion has been chosen here to render the case as general as

possible. More specific distributions or size parameters

(such as the coefficient of uniformity commonly used in

soil mechanics) may be easily dealt with in the general

framework of this method.

• The target distribution of the cell orientation θ (this orien-

tation being defined in the same way as for the particles,

c.f. Fig. 1a) is proportional to a cosine of period π . It

is defined by two parameters: the angle θ̄ , correspond-

ing to the maximum probability of occurrence, and the

anisotropy ratio ᾱ, corresponding to the ratio between

the minimum (for θ̄ ± 90◦) and the maximum (for θ̄)

probabilities of occurrence. Notice that this distribution

is normalized in order for its integral on a π -period to

be equal to 1. Figure 8b provides several examples with

different values of θ̄ and ᾱ.

• The initial set of points used for the Voronoi tessellation

may be defined in many ways. Two specific methods are

chosen in this study and illustrated in Fig. 9. The first

method is to generate the points with a classical pseudo-

random number generator with a uniform distribution in

Fig. 9 Typical sets of points and corresponding Voronoi cells: a uni-

form distribution; b Halton sequence

the domain. The second method employs a low-discrep-

ancy algorithm, such as the Halton sequences [47]. As

shown in Fig. 10, a uniform distribution leads to a great

variety of sizes for the Voronoi cells, while a generation

based on the Halton sequences leads to a set of cells with

similar areas because this method has been designed to

fill a domain of space as homogeneously as possible.

• Three different formulations are examined for the error

function. They all express the discrepancy between the

current statistics of the Voronoi tessellation and the target

one, using the current and target normalized histograms

(NH) of the size (respectively hS and HS) and orientation

(respectively hθ and Hθ ) of the particles. These NH are

obtained by dividing the histograms (i.e. the numbers of

occurrences in each class corresponding to an interval

of sizes or orientations) with the number Np of Voronoi

cells, in order for them to be independent of this number.

The three error functions considered in this study are:

E1 = 0.5

⎛

⎝

√

∑

i

(

hS,i − HS,i

)2
+

√

∑

j

(

hθ, j − Hθ, j

)2

⎞

⎠

(16)

E2 = max

(

max
i

(∣

∣hS,i − HS,i

∣

∣

)

, max
j

(∣

∣hθ, j − Hθ, j

∣

∣

)

)

(17)

E3 = max

⎛

⎝

√

∑

i

(

hS,i − HS,i

)2
,

√

∑

j

(

hθ, j − Hθ, j

)2

⎞

⎠

(18)
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Fig. 10 Convergence study of the IMC method: a influence of the error function formulation; b influence of the number of cells; c influence of

the target COV(S); d influence of the target anisotropy ratio

Evidently, E1 denotes the average between the mean square

root errors of the size and orientation normalized histograms,

E2 is the maximum absolute difference on all the classes

between the current and target normalized histograms (for

both size and orientation), and E3 is the maximum between

the mean square root errors obtained on the sizes and orienta-

tions histograms. Figure 10a presents the evolution of these

errors during IMC processes starting from the same initial

configuration, in the case of 2,000 Voronoi cells. The num-

ber of steps on the horizontal axis of this chart corresponds

to the number of displacements of any point of the set, may

it be successful or not. Thanks to the improved IMC algo-

rithm proposed earlier in this study, the computation time is

directly proportional to this number of steps, but independent

of the total number of points. Figure 10a clearly shows that

the error E3 leads to the best convergence rate. The error E2

leads to a very slow rate of convergence, and the error E1 is

inefficient as well. Moreover, E1 may not be very satisfac-

tory because it is the average between the errors on the size

and on the orientation: it may thus lead to a very good con-

figuration for one aspect and not good enough for the other.

The error E3 is thus more efficient and more relevant, and

will be used in the rest of this article. The target threshold for

which the IMC algorithm is considered to have converged is

E3 = 0.002.

Based on the above aspects, a convergence study is con-

ducted and presented in Fig. 10b–d. Figure 10b shows the

number of steps (i.e. the computation time) needed to reach

E3 = 0.002 with respect to the total number of points

involved in the process. It clearly shows that, for Np larger

than 2,000, the computation time increases linearly with the

sample size on a log-log chart. This observation is very inter-

esting because it means that the method may be applied to

very large samples at a reasonable computational cost. It
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would not be the case without the improved IMC algorithm

proposed earlier in the paper, because the cost of each cycle

of the algorithm would be highly dependent on Np.

Figure 10c shows the influence of the target value of

C OV (S) on the number of steps needed for convergence.

This figure shows that this parameter has a significant impact

on the convergence rate, and that the method of generating

the initial set of points should be chosen carefully. Indeed,

an initial configuration based on a uniform distribution of

the points leads to a faster convergence in the case of large

values of C OV (S) (larger than 0.4), because the initial Voro-

noi cells already exhibit considerable size dispersion. On the

other hand, when targeting small values of C OV (S) (i.e.

smaller than 0.4), an initial configuration based on a Halton

sequence helps to improve the convergence rate because the

initial Voronoi cells have a relatively small dispersion. How-

ever, it is also found that the method could be computation-

ally expansive in the case of very low and very high values

of C OV (S) (i.e. lower than 0.1 or higher than 1). Figure 10d

shows the influence of the target anisotropy ratio on the com-

putational cost of the method. It appears that this parameter

is much less critical than the size dispersion, although a small

anisotropy (ᾱ < 0.4) might slightly increase the number of

steps needed to reach convergence.

The improved IMC algorithm has been implemented in a

Matlab environment (version 7.0) using one of the 8 cores of

an Intel I7-2630QM CPU (2.0 GHz). The average computa-

tional time is close to 12 steps per second, and is independent

of the total number of cells. In conjunction with Fig. 10, it

is possible to estimate the computation time needed to reach

convergence for a given configuration.

3.3.3 Examples

To illustrate the use of the IMC methodology in the frame-

work presented in the previous subsection, two examples of

target configurations with 500 cells in a unit square domain

(i.e. 0 < x < 1 and 0 < y < 1) are presented. The target

properties are:

• Configuration 1: C OV (S) = 0.8; ᾱ = 1

• Configuration 2: C OV (S) = 0.2; ᾱ = 0.1; θ̄ = 0◦

Figure 11 presents (from left to right) the initial configura-

tion, the result for target configuration 1, and the result for

target configuration 2. For each case, it provides (from top to

bottom) the size distribution (target and obtained), a plot of

the cells with colours corresponding to sizes, the orientation

distribution (target and obtained), and a plot of the cells with

colours corresponding to orientations. The match in terms

of statistical distributions appears to be very satisfying, and

the main differences between the two target configurations

can easily be observed on the coloured plots. Configuration 1

depicts clearly a larger size dispersion without preferred ori-

entation, while the cells of Configuration 2 are largely homo-

geneous in size but are mostly orientated along the horizontal

direction.

4 Cell filling

4.1 Method of optimized cell filling

The IMC method presented in the previous section makes

it possible to partition a container-domain into a number of

polygonal sub-domains with prescribed statistics in terms

of size and orientation. Each of these cells may then be

filled with a particle with required shape generated using

the method presented in Sect. 2. Meanwhile, to take advan-

tage of the prescribed properties of the Voronoi tessellation

obtained by IMC, the particles should be able to reproduce

the properties (size and orientation) of the cells in which they

are generated. A method is proposed as follows to respect this

condition when filling a polygonal cell with a particle with

a given Fourier spectrum. For each particle, an optimization

is performed such that this particle occupies a prescribed

proportion of the polygonal cell and meanwhile is entirely

contained inside the cell. This optimization is performed on

seven variables: the phase angles of Modes D2 to D7 (i.e.

the modes that are considered to control the particle shape,

as proposed in Sect. 2), and the average radius r0 of the

particle. The particle shape is obtained from the following

minimization, using the notations shown in Fig. 12:

minr0,δ2,δ3,δ4,δ5,δ6,δ7

(

Sp

S
− FS

)2

subjected to ri < rmax,i∀θi (19)

where Fs is the target solid fraction in the cell (i.e. the pro-

portion of the area of the cell covered by the particle), Sp is

the particle area, S is the cell area, and ri and rmax,i are the

radial distances from the centre to the edges of the particle

and of the cell, respectively, for an angle θi with 1 ≤ i ≤ 128.

The set of variables (r0, δ2, δ3, δ4, δ5, δ6, δ7) obtained from

this optimization is combined with the chosen discrete nor-

malized amplitude spectrum {Dn} and the random values for

the remaining phase angles (δn for n > 7). The final con-

tour of the particle is computed from Eqs. (14), (15), and

(5). The example shown in Fig. 12 corresponds to a target

solid fraction equal to 0.5, which is a relatively loose sample

indeed. In this case, the optimization of Eq. (19) is very fast

and does not lead to any problem. However, when targeting

high values of solid fraction (e.g. 0.7 or higher), some dif-

ficulties may arise because of the condition ri < rmax,i∀θi ,

which might introduce local optimums and prevent it from

reaching the target filling. A good way to overcome this issue
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Fig. 11 Results of the IMC method on two illustrative target configurations

is to choose carefully the starting point of the optimization.

It is suggested to choose the initial values of δn(2 ≤ n ≤ 7)

and r0 such that they are identical to the ones obtained after

running a DFT on the contour of the polygonal cell. In this

way, after the first trial of the optimization process, the shape

and orientation of the tentative particle will be quite close to

those of the cell, and a filling with high solid fraction will be

easier to achieve.

The cell-filling algorithm has been coded in Matlab, with

a classical penalty method being used to deal with the con-

strained optimization of Eq. (19). One of the main features

of this method is its high parallelizability. Indeed, as soon as
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Fig. 12 Notations used in the cell-filling method

the IMC has provided a suitable Voronoi tessellation, all the

cell-filling operations are perfectly independent and do not

require any information exchange. This is the perfect config-

uration for multi-processing-unit computations and makes it

applicable to large samples (although no parallelization has

been coded in the current version of the algorithm). Using

only one processor with Matlab, the current computation time

of the cell-filling algorithm is close to 1 s per particle.

4.2 From contour to ODEC

The particle shape defined in previous subsection cannot

be introduced directly in a DEM code because commonly

available DEM codes are not able to perform neighbour-

hood and contact detections with arbitrary shapes. One of

the most convenient methods to deal with this issue is to use

the ODEC framework, as proposed in [40] and [41]. In this

framework, the complex shape of a particle is filled with a

collection of overlapping disks (spheres in 3D) which are rig-

idly assembled as a single “cluster”. Such a cluster may then

be introduced in a DEM code for neighbourhood and contact

detections. This method is used in the remainder of this arti-

cle, and the interested reader may find a detailed description

of the ODEC algorithm in [40].

4.3 Shape descriptors versus Fourier descriptors

In order to investigate the relationship between the shape

descriptors in Sect. 2.1 and the Fourier descriptors in Sect. 2.2

used to generate granular assemblies with the method pro-

posed here, several packings have been performed and ana-

lysed. Each of these 75 packings involved 1,000 particles in

a unit-square domain (0 < x < 1 and 0 < y < 1), and used

the spectra corresponding to all the combinations between

the following Fourier descriptors:

• D2 = {0; 0.05; 0.10; 0.15; 0.20}

• D3 = {0; 0.025; 0.050; 0.075; 0.100}

• D8 = {0; 0.015; 0.030}

The descriptors D4 to D7 and the ones after D8 have been

obtained using Eqs. (10) and (11), respectively. A target value

Fs = 1 has been chosen during the particle generations [see

Eq. (19)] in order to maximize the packing density. Each

particle is then filled by overlapping discs using the ODEC

method, so that all the shape descriptors computed hereafter

correspond to the actual shapes of the particles as they would

be introduced in a DEM code. For each packing, the mean

values of elongation, roundness, circularity and regularity of

the 1,000 particles are computed. The results are presented

in Fig. 13. As can be seen from the figure, the average elon-

gation is largely influenced by Mode D2 only. All the other

modes hardly have an effect on this descriptor. A quite dif-

ferent behaviour is observed for the roundness: for “smooth”

particles (i.e. particles for which Dn = 0 for n > 7), the

roundness seems to be only affected by the modes D3 to D7.

However, once certain surface roughness is introduced, the

influence of the modes D3 to D7 become much less signif-

icant, and D8 and other greater modes tend to dominate the

behaviour of the roundness.

The circularity of the particles seems to be rather inde-

pendent on Mode D8 and larger ones, which is somehow

expected since this descriptor is mostly concerned with the

overall shape of the particle rather than with the small irregu-

larities of the surface. Thus, circularity appears to be strongly

dependant on D2 (because of the effect of this mode on the

particle elongation, which unavoidably influences circular-

ity) and on the modes D3 to D7 (which control the global

shape of the particle). The last descriptor used in this study,

the regularity, seems to have a somehow similar behaviour as

the roundness. It correlates weakly with Mode D2, but all the

larger modes seem to influence it strongly. The regularity can

be used together with the elongation as a global criterion for

all the irregularities introduced by the normalized spectrum.

It remains unclear how well each of the four descriptors may

be able to predict the behaviour of a granular mass, and it

is expected to be problem-dependant. The regularity intro-

duced in this paper may be a good description of the shape

irregularities at all scales, but it may also be “too general”.

Only a complete parametric study (focusing on a given prob-

lem) could bring an answer to this question, and it will be the

topic of our future studies.

Figure 13 may be used as a reference to estimate the shape

descriptors expected for a packing prepared by the proposed

method. It may also be used to choose the descriptors D2, D3

and D8 [jointly with Eqs. (10) and (11)] prior to such packing

to match some target descriptors. For example, one may first

choose D2 to match some target average elongation (using

the first row of Fig. 13), then choose D3 to match some target
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Fig. 13 Mean values of the shape descriptors of a particle (elongation, roundness, circularity and regularity) in relation with its Fourier descriptors
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Fig. 14 Maximum solid fraction provided by the method with respect to the Fourier descriptors

circularity (using the third row of Fig. 13 with a fixed value

of D2), and then choose D8 to match some target roundness

or regularity.

Further presented in Fig. 14 is the maximum solid frac-

tion that is achievable in a packing with respect to the values

of D2, D3 and D8 (this maximum solid fraction is the larg-

est one that may be provided by this packing method, but

not necessarily the largest density that the granular material

may reach after compression). The figure indicates that this

maximum density is strongly related to D2, i.e., elongated

particles are more likely to provide a good fill of the Voro-

noi cells (up to a solid fraction close to 0.72) while more

rounded particles can hardly reach a density more than 0.55.

It also shows that large values of D3 may help to increase

the maximum density (because they provide more freedom

in the particle shape and thus make it easier to fill the Voronoi

cell), while large values of D8 might lead to slightly reduced

maximum solid fraction.

5 Examples and discussion

Two packings of particles are generated to illustrate the

potential of the proposed method. They make use of the illus-

trative Voronoi tessellations described in earlier sections as

well as in Fig. 11. These rather dense packings are composed

of 500 particles each, with the following distinctive features:

• Example 1: large size dispersion (C OV (Sp) = 0.8),

isotropic orientations (ᾱ = 1), moderate elongation, low

roundness and regularity.

• Example 2: small size dispersion (C OV (Sp) = 0.2),

mostly horizontal orientations (ᾱ = 0.1; θ̄ = 0◦), elon-

gated particles with high roundness and regularity.

The properties of size dispersion and orientation are directly

obtained from the characteristics of the Voronoi tessellations

described in Sect. 3, while the properties related to the shape

descriptors are obtained by choosing carefully the discrete

Fourier spectrum. The target solid fraction is set to 0.65 in

both examples. The Fourier descriptors and resulting solid

fractions are presented in Fig. 15, along with the obtained

packings. For each example, Fig. 15 provides a detailed view

of the packing (Fig. 15a), two plots of the packing in which

the coloured particles correspond to sizes (Fig. 15b) and ori-

entations (Fig. 15c), the target and obtained size distributions

(Fig. 15d), the target and obtained rose diagrams of the parti-

cles orientations (Fig. 15e), and the expected average values

and obtained distributions of the four shape descriptors (elon-

gation, roundness, circularity and regularity) (Fig. 15f–i). All

these results show a fairly good match between the target and

the realized statistics of the packings. It is evident from the

examples that the proposed method is capable of generating

a wide range of granular materials in very diverse configura-

tions. A direct comparison between the packings (Fig. 15a)

and the original Voronoi Tessellations (Fig. 11) shows that

the algorithm of cell filling proposed in Sect. 4 leads to a very

good correspondence between the statistics of each cell and

of its filling particle, in terms of both size and orientation. The

differences between the two packings in Fig. 15a are clearly

recognizable: Example 1 reproduces an isotropic packing of

irregular particles with very diverse size, while Example 2

corresponds to an anisotropic packing (mostly horizontal) of

elongated but rather regular particles. The grain shapes and

sizes of the first example are somehow similar to the ones of

real sand, while those of the second example are more often

encountered in industrial powder processes.

The solid fractions obtained in these two examples are

quite similar (Fs = 0.635 and 0.623, which correspond,

respectively to void ratios equal to 0.575 and 0.605, for the

two examples) and both correspond to dense packings. Note

however that the resulting solid fractions of the packings

are slightly smaller than the target value (Fs = 0.65 in

this case). This is because some cells of the Voronoi tes-

sellation cannot be filled with the prescribed fraction, and

this happens frequently with very elongated Voronoi cells.
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Fig. 15 Two detailed examples of packing: (a1, a2) detailed view of

the packing; (b1, b2) particle sizes; (c1, c2) particle orientations; (d1,

d2) target and obtained size distributions; (e1, e2) rose diagram of the

target and obtained orientation distributions; (f1, f2) target value and

obtained distribution of elongation; (g1, g2) target value and obtained

distribution of roundness; (h1, h2) target value and obtained distribution

of circularity; (i1, i2) target value and obtained distribution of regularity
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Consequently, the resulting size distribution is always slightly

shifted towards the left (smaller values) when compared to

the target ones in both examples. In practice, it is suggested to

prescribe a slightly larger density than the one which is actu-

ally desired. However, it is important to note that the solid

fractions obtained by this packing method are not related to

any stress state. The density will easily be changed with such

processes as directional or isotropic compression and shear.

The target density is hence not a key parameter of the method.

It would be more appropriate to target a moderate value of

solid fraction (when compared to the maximum one provided

in Fig. 14) which corresponds to a medium dense case. This

will facilitate the algorithm to fill the Voronoi cells accord-

ingly to the prescribed density, and the size distribution will

not be strongly disturbed. The desired void ratio might then

be obtained later in the DEM code by applying gravity or

isotropic pressure.

6 Conclusion

This article presents a new method for the generation and

packing of samples of granular materials. Compared to exist-

ing methods, this new framework has the advantage to be

capable of dealing with complex particle shapes and aniso-

tropic particle orientations, in arbitrary container geometry.

The proposed method features the following major steps (1)

to generate a Constrained Voronoi Tessellation of the con-

tainer with a number of polygonal subdomains by impos-

ing the constraints of target statistics in terms of grain size

and orientation, and (2) to fill each of these subdomains

with a virtual particle respecting some target shape char-

acteristics. To achieve the first goal, an existing stochastic

and iterative method called IMC method initially proposed

in [37,38] has been improved, implemented and fully tested,

with much attention being paid to the accuracy and computa-

tional efficiency of the algorithm. A new method of random

particle generation, inspired by the shape characterization

methods proposed in [34–36] and based on the Fourier

Descriptors approach with further improvement on filling

each Voronoi cell efficiently, has been developed to fulfil the

second goal. With two demonstrative examples, the proposed

packing method proves to be capable of generating a wide

range of granular samples, with greatly varied characteristics

in terms of container shape, particle number, size distribution,

particles orientations, elongations, and shapes and packing

density. Indeed, there have been experimental data in geo-

mechanics available on these properties (such as the Fourier

amplitude spectra provided in [32] for several sands), which

make it easy to apply this method directly to the modelling

of real materials. In using the proposed method, however,

extensive experimental benchmarking tests are still required

to calibrate relevant parameters governing the contact behav-

iour of these materials. The proposed tool will also be useful

to evaluate the influence of a number of key parameters (such

as particles shapes and roughness, fabric anisotropy, size dis-

tribution) on the behaviour of granular materials subjected

to different loading conditions (compression, shearing, flow,

etc.), which will be the subjects of future studies.

The 2D formulation of the proposed method may seem-

ingly limit its practical use for real 3D particle modelling.

However, as far as we can see, there are no technical diffi-

culties preventing the method being extended to a general

3D case, although the practical implementation of the algo-

rithms for the 3D case may demand more effort. In general-

izing the current methodology to the 3D case, addition shape

descriptors, such as the flatness and angularity of a particle

as defined in [5], may be further introduced. The Fourier

spectra method and the Voronoi tessellation approach can be

readily extended to 3D as well. Nevertheless, a major issue

to be addressed would probably be the lack of experimental

data for the calibration of 3D Fourier spectra of real materials.

With the latest applications of such advanced technologies as

high-definition micro-CT and X-ray to particle shape studies,

this issue is more likely to be solved very soon. Therefore, it

is expected the methodology and numerical tools developed

in this paper may indeed open a wide range of interesting

areas for realistic discrete modelling of granular materials.
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