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Abstract
Algebraic Cryptanalysis is a widely used technique that tackles the problem of 
breaking ciphers mainly relying on the ability to express a cryptosystem as a solv-
able polynomial system. Each output bit/word can be expressed as a polynomial 
equation in the cipher’s inputs—namely the key and the plaintext or the initialisa-
tion vector bits/words. A part of research in this area consists in finding suitable 
algebraic structures where polynomial systems can be effectively solved, e.g., by 
computing Gröbner bases. In 2009, Dinur and Shamir proposed the cube attack, a 
chosen plaintext algebraic cryptanalysis technique for the offline acquisition of an 
equivalent system by means of monomial reduction; interpolation on cubes in the 
space of variables enables retrieving a linear polynomial system, hence making it 
exploitable in the online phase to recover the secret key. Since its introduction, this 
attack has received both many criticisms and endorsements from the crypto com-
munity; this work aims at providing, under a unified notation, a complete state-of-
the-art review of recent developments by categorising contributions in five classes. 
We conclude the work with an in-depth description of the kite attack framework, 
a cipher-independent tool that implements cube attacks on GPUs. Mickey2.0 is 
adopted as a showcase.
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1  Introduction

In modern cryptographic algorithms, security assumptions which follow the com-
putational model are usually based on problems whose difficulty is provable.

Extensively used in many cryptographic applications, among the mathematical 
problems known to be difficult, a central question concerns how to find the solu-
tion to a system of polynomial equations. Solving large systems of multivariate 
polynomial equations reduces to a more general problem: how to represent in a 
“standard” way a (multivariable) polynomial ideal (see [23]).

The problem is simple if the degree of polynomials is one since essential alge-
braic tools (like Gaussian reduction) provide feasible resolution algorithms. How-
ever complexity rises quickly when degrees are higher than one; in fact, the prob-
lem becomes NP-complete also under basic assumptions, like quadratic equations 
in �2 only.

On the other hand, it is also true that any algorithm may be seen, extensionally, 
as a black box computing a boolean function. This is a fortiori true for crypto-
graphic algorithms where outputs can be sketched as the bits generated by inputs 
evaluation regardless of the intrinsic structure of the algorithm itself. Moreover, 
under the coercion of domain and codomain having the algebraic structure of a 
finite field, such a representation of the algorithm can be built from the evaluation 
of enough points in the domain. This analysis paves the way for a wide variety of 
cryptanalysis techniques based on the reformulation of a cryptosystem as a poly-
nomial function over �2.

Many efforts were devoted in recent years to find efficient techniques to solve 
high-degree multivariate polynomial systems (see [71]). We annoverate Gröbner 
bases (see [5, 41, 70]) and linearisation techniques (see XL in [24] and XSL in 
[25]) as some of the most promising approaches actually fading after the same 
fate: Gröbner bases, in particular, despite being a very general and versatile solu-
tion, are unfeasible in many practical cases due to their computational cost.

Such failures led to the objective of finding useful algebraic relations between 
cryptographic schemes’ input and output as a research topic meagre in results for 
a number of years.

In 2009, however, everything changed as a novel approach introduced by Dinur 
and Shamir at Eurocrypt’09 brought nourishment to algebraic cryptanalysis 
research branch. In [31], the first paper of a long run, authors introduced the cube 
attack, a fresh technique employed to extract a linear system of equations from 
the polynomial specification of a given cryptosystem. In a few years, such a tech-
nique diversified to become a big family of attacks, consisting of many variants 
including property testers [7] and differential trails [112] amongst the others.

The newly born family was characterised by the just introduced concept of ana-
lysing a cypher as a black-box tweakable polynomial, a polynomial where some 
variables could be set at will during the attack; the target of the attack consists, 
in fact, in building multiple linear equations and collect them in a system that is 
easy-to-solve. We feel comfortable admitting that the valuable original idea here 
exploited is not the effort from the sole Dinur and Shamir. They surely have the 
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merit of clearly pointing out crucial steps and making organised this technique in 
all its aspects; higher-order differential cryptanalysis mentioned by Lai [59] and 
Knudsen [58] in the 1990s probably contributed to its successful development, as 
well as Vielhaber’s AIDA (algebraic IV differential attacks) [104].

The scope of this paper is to give a wide view of the complex and entangled 
development of the cube attack family, by unravelling the various contributions and 
presenting them in a more cohesive view. The work is organised as a survey of the 
many concepts developed around the cube attack. Nevertheless, we work on all the 
examples of the application of the cube attack, to uniform to a common notation we 
introduced in [77].

In Sect. 2, we revise and extend our novel notation, already introduced in [77], 
and we revise the original cube attack applied on the binary field �2 . Then we extend 
it to a general finite field �q and we provide some consideration on cube search.

Section 3 provides a summary of various techniques that fall in the macro-family 
of cube attacks, here divided into five main categories.

In Sect. 4, we revise the few attempts of implementing cube attack techniques, 
while we provide it with a Sect. 5, where we give a list of the best-known attacks on 
real-world ciphers due to the various families techniques.

Finally, we conclude this work with some considerations in Sect. 6 and we pro-
vide in “Appendix A” a spot “dive–in” into one of the most recent frameworks for 
cube attacks, implementing the kite attack.

2 � The cube attack

2.1 � Notation

Any field of research has its own nomenclature and cryptography makes no excep-
tion. However, cube attacks in particular never saw a common agreement on how 
to refer to its various key concepts. For this reason, each research line developed its 
own language and notation, often incoherent with the others. Do mind, as a simple 
example, that the name “Conditional Cube Attacks” is overloaded in literature: usu-
ally, it refers to an extension of “Cube Testers”, however, it is used also in relation to 
cube attacks where conditions are imposed a priori.

Diversity in notations makes it difficult to agree upon the specific novel contribu-
tions brought by each research; it is not unusual that concepts are claimed as novel 
and revolutionary, while simply being reformulations of already-known results.

We found this as a valid motivation to propose a novel nomenclature that encloses 
the various approaches of this field in [77]. In the following, we revise such a nota-
tion while enriching it to make it even more inclusive.

Usually, a cipher is a function f defined over �q as:

(1)
f ∶ �

n
q
× �

m
q

→ �q

(x, v) ↦ c
.
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where x = (x1,… , xn) ∈ �
n
q
 represents a private key, v = (v1,… , vm) ∈ �

m
q

 repre-
sents a public vector and c is the output value. It is possible to have vectors or stream 
of values as well (e.g., a keystream); in such cases, we consider a function f per out-
put component.

In a natural way, we are able to reformulate the function f as its algebraic nor-
mal form (ANF) representation: a polynomial � defined in the equivalence classes 
of the polynomial ring with variables in x1,… , xn, v1,… , vm and coefficients in �q:

We omit the modulus for the sake of readability by considering exponents of vari-
ables yei

i
 in integers 0 ≤ ei ≤ q − 1 . We cast � ∈ �q[x, v] when it is important to 

distinguish between private and public part, and � ∈ �q[y] , when it is not (with 
y = (y1,… , yN),N = n + m).

In the following, we use capitalised I and J to identify sets of variable indices 
in {1,… , n} , {1,… ,m} , or {1,… ,N} (as it is clear from the context). Such sets 
are particularly useful when referring to monomials. This is particularly straight-
forward in the binary setting q = 2 (see later in Sect. 2.3 for the same notation in 
fields of higher-order q = pk > 2 ); in fact, monomials � ∈ �2[y] are in bijective 
correspondence with subsets I ⊂ {1,… ,N} , |I| = d so that any index set I cor-
responds to a monomial:

where d ∶= deg(�I) = |I|.
We then introduce the following notations:

Zero vector (0 ) is a generic-length 0 vector, meaning that 

Unit vector (i ) is a unitary basis vector, meaning that 

where the i-th variable only is set to 1.
Unit vector set (I ) is the set of unit vectors obtained from the indices i ∈ I ; 
namely, the underlined notation is mapped through I, i.e. 

Explicit concat ( ∶∶ ) is the concatenation notation (omitted when it is not nec-
essary), meaning that: 

Vector copy ( yl ) is the notation to l-times repeat y, meaning that 

�q[x1,… , xn, v1,… , vm] modulo x
q

1
− x1,… , xq

n
− xn, v

q

1
− v1,… , vq

m
− vm.

(2)�I ∶=
∏

i∈I

yi ∈ �2[y]

y = 0 represents y = (0,… , 0)

y = i represents y = (0,… , 0, 1, 0,… , 0)

I ∶= {i|i ∈ I}.

(1, 1, 0) ∶∶ (1, 0, 1) = (1, 1, 0, 1, 0, 1).
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Do also note that x = 0 is equivalent to x = 0n.
Addition ( + ) is the component wise sum meaning that 

The sum behaviour depends on the underlying finite field; e.g. in �2 , it operates as 
the xor, meaning that 

where we write binary vectors as bit sequences.
Do also note that the following equality always holds: 

Polynomial mapping �(S) is a compact notation for applying a polynomial or a 
function through a set, as it occurs to unit vector sets, meaning that 

Partial assignment ( y[I → a] ) is a compact notation to perform the assignment 
of specific variables to the values given in a =

(
a1,… , a|I|

)
 , meaning that 

where i ∈ I is mapped to the corresponding element index  ji respecting the nat-
ural numbers  ordering.  The partial assignment is particularly useful when it is 
combined with (3) to perform partial polynomial evaluations1: 

The same notation also applies when considering public and private variables 
separately; consider the following polynomial: 

then, given two index sets J = {1} and I = {1, 3} , and two vectors a = (1) and 
b = (1, 0) we have that �(x[J → a] ∶∶ v[I → b]) evaluates to: 

Cube notation ( y[I → A] ) defines a set of copies of the vector y where components 
specified by I are assigned to every possible value in a given set A, meaning that: 

y3 = y ∶∶ y ∶∶ y.

(1, 1, 0) + (1, 0, 1) = (2, 1, 1).

1 1 0 + 1 0 1 = 0 1 1

x ∶∶ v = x ∶∶ 0m + 0n ∶∶ v

(3)�(S) = {�(s) ∣ s ∈ S}.

(4)y[I → a] represents the assignments yi = aji i ∈ I,

�(y[I → a]) = �(�1,… , �N) where �i =

{
aji if i ∈ I

yi otherwise
.

�(x1, x2, x3, v1, v2, v3) = x1x2 + v1v2 + x1v3 + x2v2 ∈ �q[x, v]

�(x[{1} → (1)] ∶∶ v[{1, 3} → (1, 0)]) = x2 + v2 + x2v2.

1  We should say �i = aji if i ∈ I , where ji is the index of the element of a which corresponds to the ele-
ment i in I. However, we trust in readers’ adaptability.
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The size d = |I| is called dimension of the cube and each vector in A has exactly 
d components. Usually, the set A is built as a cartesian product of binary assign-
ments per each variable: 

The name cube is further legitimised if we consider the case A = �
d
2
= {0, 1}d . In 

fact, � d
2

 represents a canonical hyper-cube of dimension d, a very common choice 
for cube attacks; hence, we omit the A and we write: 

To further clarify this cardinal notion, we provide the following two examples 
whose pictorial representation can be found in Fig. 1: 

and 

Sum reduce ( 
∑

S ) is a compact notation for the sum of all the elements within 
a set S, namely 

The notation fits particularly well with cubes notation: 

y[I → A] ∶= {y[I → a], for all a ∈ A}.

A = A1 × A2 ×⋯ × Ad Ai = {0, ai}, ai ∈ �q.

(5)y[I] ∶= y[I → �
d
2
] = {y[I → a], for all a ∈ {0, 1}d}.

y[{2, 4, 5}] = {y1 ∶∶ z2 ∶∶ y3 ∶∶ z4 ∶∶ z5 ∶∶ y6 ∶∶ … ∶∶ yN ,

for all z = {z2, z4, z5} ∈ {0, 1}3}.

y[{2, 4} → ({0, 1} × {0, 3})] = {y1 ∶∶ z2 ∶∶ y3 ∶∶ z4 ∶∶ y5 ∶∶ … ∶∶ yN ,

for all z2 ∈ {0, 1}, z4 ∈ {0, 3}}.

∑
S ∶=

∑

s∈S

s.

∑
y[I] =

∑

z∈y[I]

z =
∑

a∈{0,1}d

y[I → a].

y2

y4

y5

1

1

1 (y1 1 y3 0 1 y6 . . . yN )

y4

y2

1 2 3

1
(y1 1 y3 3 y5 . . . yN )

Fig. 1   Pictorial representation of the cubes y[{2, 4, 5}] (on the left) and y[{2, 4} → ({0, 1} × {0, 3})] (on 
the right) where dots represent points of the cube. One sample point is highlighted and explicitly identified
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Shorten summation notation can be used to derive the characteristic vector of an 
index set too, meaning that 

Cube & partial assignment ( y[J → a, I] ) is a compact notation to perform both 

partial assignment and cube evaluation I ∩ J = � , namely: 

Do mind that, as we certify at the end of this section, it is common to have the 
variables with indices in I� = {1,… ,N}�I set to zero. In such a case, do note that 
the following equality holds: 

Cube & partial assignment in �2 ( y[I0, I1, I] ) is an even more compact notation 
applicable in �2 to perform both partial assignment and cube evaluation. In �2 , in 
fact, each variable can only be set to either 0 or 1, therefore it makes sense to dis-
tinguish three sets: the set ( I0 ) of indices of variables substituted by 0, the set ( I1 ) 
of indices variables substituted by 1 and the set of indices I of cube variables. We 
can then shorten the previous notation as follows: 

In general, I0 ∪ I1 ∪ I ≠ {1,… ,N} therefore the result can still depend of some 
variables. If it is not the case, however, we remove the set I0 from the list, since it 
can be derived from the context, therefore writing: 

Finally, if I1 = � ( I0 = {1,… ,N}�I = I� ), we adopt the strategy of (6): 

Monomial generation ( ys ) is a notation to generate a monomial from a charac-
teristic vector s = (s1,… , sN), si ∈ {0, 1} , in other words: 

Note that (2) can be written this way as well: 

Monomial set generation ( yS ) is the natural mapping of the previous notation to 
a set S of vectors in ℤN , in other words: 

y =
∑

I represents y = (y1,… , yN) yi =

{
1 if i ∈ I

0 otherwise
.

y[J → a, I] represents y[J → a, I → �
d
2
].

(6)y[I𝖼 → 0N−d, I] = 0[I].

y[I0, I1, I] = y[I0 → 0|I0|, I1 → 1|I1|, I].

y[I1, I] = y[(I1 ∪ I)𝖼 → 0, I1 → 1|I1|, I] = 0[I1 → 1|I1|, I].

y[I�, �, I] = y[�, I] = 0[I]

ys =
∏

i∈{1,…,N}

y
si
i
.

�I = y
∑

I .
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Note that yI  by monomial set generation is the set of variables yi such that i ∈ I . 
This notation is particularly useful in the Division Property setting since, fusing the 
notation with (5), we get the set of all monomials which divide the monomial �I : 

Monomials assignments (�[◦]) all the assignment notations given for sets of 
variables are still valid also for monomials, like the partial assignment �[I → a] , 
the cube operator �[I → A] and their combinations.

2.2 � Cube attack forefather

Shamir and Dinur introduced in [31] the cube attack by considering any encryption 
function represented as a polynomial � on the binary field �2 . This is a very conveni-
ent setting since z2 = z and z + z = 0 for any z ∈ �2 and, as in (2), each monomial 
can be represented by the set of indices of its variables. The attack splits into a key-
independent (offline) phase and a key-specific (online) phase.

During the offline phase, the attacker has access to an oracle ciphering machine 
for � and can set x and v at will; the goal of this phase is to find appropriate values of 
v to get at least n independent linear equations on the x unknowns. The online phase 
takes place when the defender sets a specific key vector x . Once again, we suppose 
the attacker as able to set the public vector v at will: this assumption requires either a 
chosen plaintext setting (as it could be for Message Authentication Code generation) 
or enough spoofing time on randomly generated v (as it could be for authentication 
challenges, e.g., in Wi-Fi handshaking). The goal of this phase is to reconstruct the n 
equations found during the off-line phase and solve the corresponding linear system 
to retrieve (a portion of) x.

We now describe the two phases in detail.

2.2.1 � Offline phase

Let �I be the monomial generated by a set of variable indices I ⊆ {1,… ,N} , |I| = d . 
In actual applications, I should address public variables only ( I ⊆ {1,… ,m} ); how-
ever, since the methodology we are now describing is general, we prefer (also for 
ease of notation) to consider I as referring to both private and public variables.

Given the cipher � and the monomial �I , according the Division Algorithm there 
exist �I and �I such that:

where none of the monomials in the reminder �I is divisible by �I (all of them miss 
at least a variable from yI  ) and none of the variables yI  can be found in the quotient 
�I (since all of the variables in � are of degree 1).

yS = {ys ∣ s ∈ S}.

y0[I] = {ys ∣ s = (s1,… , sN) where si ∈ {0, 1} if i ∈ I and si = 0 if i ∉ I}.

(7)�(y) = �I ⋅ �I(y) + �I(y)
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We call �I the superpoly of I in � and, if �I is linear, we refer to �I as a d-degree 
maxterm of �.

In particular, applying � to the cube y[I] exterminates the reminder �I while keep-

ing (when y[I → 1d] ) a single instance of the superpoly �I . We then claim:

Proposition 1  (cfr. [31]) The superpoly �I , defined in (7), can be retrieved as:

Surprisingly, provided that �I is a maxterm, (8) gives us a method to numerically 
determine the ANF of �I , even when � is given as a black-box. In fact, since �I is lin-
ear it does not contain any of the variables yI  and its ANF is given by:

We then claim:

Proposition 2  (cfr. [31]) Let �I be the superpoly defined in (7). Its coefficients, as 
defined in (9) are given by

As stated above, the linear relations we are building are exploited later in the 
online phase, where the attacker’s aim is to retrieve the private key x . For this rea-
son, cube variables I are in general chosen amongst the public ones ( I ⊂ {1,… ,m} ), 
while the remaining ones ( I� = {1,… ,m}�I ) are usually tweaked to zero or to any 
other value s to lower the complexity of the resulting system [34]. In this case, the 
ANF of � assumes the following form:

and, therefore, the superpoly only depends on the private key vector x:

where (10) assume the following form:

In particular, when s = 0 , we omit to report the subscript s , obtaining:

(8)�I(y) =
∑

�(y[I]).

(9)�I = a0 +
∑

j∉I

ajyj, aj ∈ {0, 1}.

(10)a0 =
∑

�(0[I]) and aj =
∑

�(j[I]) − a0.

�(x ∶∶ v[I𝖼 → s]) = �I ⋅ �I,s(x) + �I,s(x ∶∶ v[I
𝖼
→ s])

�I,s(x) =
∑

�(x ∶∶ v[I𝖼 → s, I]).

(11)
a0 =

∑
�(0 ∶∶ v[I𝖼 → s, I]) and aj =

∑
�(j ∶∶ v[I𝖼 → s, I]) − a0.

�I(x) =
∑

�(x ∶∶ 0[I]) a0 =
∑

�(0 ∶∶ 0[I]) aj =
∑

�(j ∶∶ 0[I]) − a0.
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2.2.2 � Online phase

In online phase we suppose the unknown key x = k to be set and secret while the public 
vector v to be settable at will. Online phase is made of two parts: (i) for each maxterm 
�I found in the offline phase, let us obtain an evaluation of the superpoly �I via

and (ii) solving the corresponding linear equations system with x as unknown vari-
ables, yielded by

The complexity of the first part depends on the size and the number of the cubes, as 
well as on the practical difficulty to set v . The second part can be tackled by means 
of basic linear algebra algorithms in order to retrieve the full key or a portion of it 
(depending on the number of independent equations found); gaussian elimination 
algorithm requires e.g., O(n3) steps.

Both parts of the online phase, despite being computationally intense, are compu-
tationally bounded by the complexity of the offline one. Therefore, being able to carry 
out the offline phase actually breaks (or weakens) a specific cipher in all of its instances.

2.3 � Cube attack in higher order fields

As we highlight in the previous section, the standard cube attack works when poly-
nomials are given over the binary field �2 . This restriction is required to prove (8) 
which is crucial to the cube attack and derives from fundamental equations in the 
binary field, namely y2 = y and y + y = 0.

When we place the encryption function in the finite field �q those equations 
assume a different form that depends on the order q and on the characteristic p i.e., 
if q = pk , then yq = y and p ⋅ y = 0 . Consequently, monomials are no longer one-to-
one with the indices sets since each variable can have exponent up to q − 1 . A mono-
mial is therefore defined by a vector s = (s1,… , sN) of exponents where si ∈ ℤq , 
obtaining the following equation equivalent to (2):

where the set of variables involved are, as always, denoted by I, namely:

Given a cipher � and a monomial �s , we can derive via Division Algorithm an 
equation analogous to (7), namely

where none of the monomials in the reminder is divisible by �s . Though, such 
monomials can contain some of the variables yI  , therefore, in order to resemble an 

bI,s = �I,s(k) =
∑

�(k ∶∶ v[I𝖼 → s, I])

a0 +
∑

ai ⋅ ki = bI,s.

(12)�s = ys

I = {i ∈ {1,… ,N} ∣ si ≠ 0}.

(13)�(y) = �s ⋅ �s(y) + �s(y) + �I(y)
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analogy with �2 , it makes sense to divide the reminder into two parts: monomials 
that do contain all the variables from I ( �s ) and monomials that do not ( �I).

Dinur and Shamir claimed in [31] the possibility of extending the attack to a 
generic field, however, the first proof of this approach can be found in [3] due to 
Agnesse and Pedicini. Their main contribution consists of reworking Proposition 1 
to extend it by considering the relation given by (13):

Proposition 3  (cfr. [3]) Given a set s of exponents working on the variables defined 
by I, the superpoly defined in (7) can be retrieved as:

where the set y[I] is partitioned as y[I] = y[I]0 ∪ y[I]1 and y[I]0 contains those vec-
tors with the same parity as y[I → 1d].

The parity of y[I → 1d] is a symbolic parity since it depends on the values 
assigned to I� variables, namely:

This key concept is resumed in 2012 Vargiu Master Thesis [103] and later expanded 
in [76] where Onofri presented many proofs and computational bounds when �s is 
chosen as in standard cube attack, i.e. si = 1, i ∈ I , see also [13]. If this condition 
holds, in fact, the cube attack straightforward extends from �2 to �q up to a factor −1 
(which depends on the parity of the specific element within the cube evaluation); in 
fact �I = 0 , then (14) shortens to

and, in particular, we can state, analogously to Proposition 2, that

Proposition 4  (cfr. [76]) For any polynomial � in �q[x] and cube I yielding a max-
term �I , the superpoly has ANF

Coefficients can be numerically evaluated by

An analogous approach to [3] to extend cube attack in higher order fields can be 
found in [83], where authors fuse standard cube attack with higher order differentiation 
technique introduced by Lai in [59]. The key concepts are, to the best of our knowledge, 
totally comparable; however, the processing is performed under the point of view of dif-
ferentiation techniques. Here, the main contribution is given by the following observation:

(14)�I(y) = �s(y[I → 1d]) + �I
s
(y[I → 1d]) =

∑
�(y[I]0) −

∑
�(y[I]1)

y[I]0 = {a ∈ y[I] ∣ a[I𝖼 → 0] = d mod 2}.

(15)�I(y) = �s(y) =
∑

�(y[I]0) −
∑

�(y[I]1)

�I(y) = a0 +
∑

j∉I

ajyj, aj ∈ �q.

a0 =
∑

�(0[I]0) −
∑

�(0[I]1) and aj =
∑

�(j[I]0) −
∑

�(j[I]1) − a0.



	 M. Cianfriglia et al.

1 3

Proposition 5  (cfr. [83])

where we are denoting with m × I the multiset of single-variable single-step 
differentiation:

and the �(k) notation is the standard definition of multi-differentiation:

and the standard differentiation is given by

2.4 � Searching for cubes

A cardinal point of the cube attack is to efficiently determine if (9) holds, or, in 
other words, whether the superpoly �I is linear or not. Two main approaches are 
used in this context: (i) retrieve the maximum degree � of � and then consider cubes 
of dimension d = � − 1 or (ii) employ stochastic tests to guess the linearity of �I.

The first approach was firstly introduced and used in [30], where Dinur et al. applied 
it to attack Keccak sponge functions; however, it has limited applications since cor-
rectly determining the degree is hard when the � is complex. As we see later in the 
next section, this approach is often reversed instead, employing the cube attack itself to 
probabilistically determine � (see [7]).

The latter approach is the widely used instead. In the original paper [31], Dinur and 
Shamir employed the Bloom-Luby-Rubinfeld Test from [15], a linearity test originally 
developed as a self-testing/correcting with applications algorithm. Later, a novel test 
optimised by reusing computations is proposed in [34]. In this sense, however, a nota-
ble contribution is by Winter, Salagean, and Phan who proposed in [111] an improved 
linearity test based on higher-order differentiation, enhanced by the Moebius trans-
form. Srinivasan et al. propose instead a three-steps algorithm in [87], where filters are 
applied one after the other to “prove” the linearity of a given black box polynomial at a 
computational cost of O(2d+1(n2 + n)).

Testing the linearity of randomly chosen superpolies �I proves however, to be ineffi-
cient. For this reason, in [31], variables with indices in I were originally picked accord-
ingly to a random walk on the monomial lattice. “Moving” aleatory, however, does not 
guarantee a success, therefore efforts were devoted to find a pattern to efficiently select 
monomials �I while looking for the maxterms. Aumasson et  al. proposed in [6] an 
evolutionary algorithm to search for cubes that maximise the number of rounds after 
which the superpoly is still unbalanced. Also Wang et al. in [110] propose a new meth-
odology to find more linear equations from the same cube set. Following this trend, 

(16)�I = �
(
∑

m)

m×I
�

(17)m × I = {i taken mi times }i∈I

(18)�(k)
a1,…,ak

� = �a1
…�ak

�

(19)�a�(y) = �(y + a) − �(y).
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Cianfriglia et al. developed in [20] a CUDA framework to parallel control all the cubes 
within a specific kite shaped region of the lattice (see “Appendix A”).

However, sophisticated algorithms were also developed to avoid manipulating such 
large cubes directly. Stankowski in [88], for example, introduced a greedy bit set algo-
rithm with O(2n+c) complexity, later expanded in [53].

By talking about heuristics, cryptographers also tried to reduce the density of the 
ANFs empirically: two examples can be found in [42, 69].

Following a different research path, more recently, Ye and Tian developed in [117] 
a novel algebraic criterion to recover the exact superpoly of useful cubes while Rohit 
et al. introduced in [81] a technique called partial polynomial multiplication to obtain 
complex cubes by multiplying some specific sets of partial polynomials (the degree-
homogeneous) from lower round computations.

3 � Cube attacks family

The cube attack is a powerful but expensive approach to break ciphers. The idea behind 
is, however, very solid and flexible and can be combined with many different other 
approaches to enhance their efficiency. Figure 2 presents various branches traversed by 
cube attacks.

3.1 � Dynamic cube attack and cube testers

The first approach in this sense can be found in [7] where cube building is mixed 
with efficient property-testers in order to detect non-randomness in cryptographic 
primitives (or mount cipher distinguishers). The cube framework can, in fact, be 
exploited in order to test global properties of a black-box polynomial without 
retrieving the formal expression of the polynomial.

Such strategy is under the name of Cube Testers and combines a property tester 
on the superpoly (for some property P ) with a statistical decision rule that probabil-
istically recognises whenever the superpoly is �-far from P . Namely, the linearity 
test exploited in the canonical cube attack is itself a cube tester; other examples of 
properties realisable as cube testers are polynomial randomness (i.e. the superpoly 
coefficients are balanced) and the test of presence of neutral variables (i.e. the super-
poly does not depend of such a variable).

Cube testers are the basis to create flexible distinguishers as can be seen in [9] 
first and in [84] later, where authors develop, relying on [88], distinguishers for 
Trivium based ciphers; however, cube testers main contribution to cryptanalysis can 
be found in [33] where they are exploited to create Dynamic Cube Attacks. The main 
observation here is that the resistance of many ciphers to cube testers depends on 
a few number of non-linear operations that usually take place in the latest stages 
of the encryption process; this is especially true if inputs variables are not mixed 
enough during the encryption process. Such a behaviour reflects in very few high-
order monomials in the ANF of � that, if identified at the early stages of the encryp-
tion process, can be efficiently killed by vanishing specific input bits—often called 
Dynamic variables. Such dynamic variables, forming a disjoint set from cube 
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variables, usually belong both to public and private ones: the public ones can be set 
at will during online phases; private ones must instead be guessed and, in particular, 
these guesses can be confirmed or refuted by cube testers themselves. This, there-
fore, allows the cryptographer to eventually retrieve key bits without solving any 
algebraic system at the cost of a more complex offline phase.

Effective usage of this approach can be found, for example, in [79] where authors 
attack a reduced version of Simon lightweight cipher by using deterministic distin-
guishers based on cube testers, or in [10] where the author proposes a bi-dimen-
sional dynamic cube attack against 105 rounds Grain v1 that retrieves nine secret-
key-bits of the cipher.

A similar approach is also developed in [49] on Keccak sponge functions, where 
authors combine cube testers with bit-tracing method (see [109]) to create Condi-
tional Cube Testers. Here authors impose a further classification of cube variables, 
dividing those that mix together after the second encryption round (conditional cube 
variables) from those that are not multiplied with each other after the first round and 
are not multiplied with any conditional cube variable after the second round (ordi-
nary cube variables).

The same approach is further improved firstly in [62], where the limitation that no 
mutual multiplication between cube variables occurs in the first round is removed, 
and then in [67], where more constraints on the number of conditions involving the 
secret bits are added.

Conditional cube testers were also fused with Mixed Integer Linear Programming 
by Li et al. in [61] and [14], by Song et al. in [85, 86] and, more recently, by Zhao 
et al. in [123] where ciphers of the Keccak family were attacked.

Many efforts focussed recently on novel methods for finding cube testers. A pos-
sible strategy is to esteem the probability for the superpoly in selected rounds, as in 
[26]. Another interesting approach can be found in [113] where Liu et al. extended 
its numeric mapping method for estimating the algebraic degree of NFSR-based 
cryptosystems (presented in [68]) with the works [53, 88] by Stankowsky et al.

Liu’s numeric mapping method was also employed in a more recent work by Kes-
arwani et al. where, in [55], the authors propose a new algorithm for cube generation 
following the research branch of [84].

3.2 � Exploiting of non‑linear equations

As we pointed out in the previous section, linearity is not the only property we can 
require on the degree of the superpoly. In particular, we can consider maxterms up 
to a certain small degree and still recover a polynomial system whose resolution is 
feasible.

As an example, Mroczkowski and Szmidt propose in [74] an improvement to the 
cube attack concerning both linear and quadratic equations. They employed a Quad-
racity Test to retain discarded non-linear equations and use key bits obtained via lin-
ear equations to solve “by hand” the quadratic ones. This solution highly enhances 
the number of key bits the attacker can recover while still limiting the cube search 
phase: in their application to Trivium-709, for example, they claim no brute-force is 
needed to recover the whole key.
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Combining the ideas of [74] with their previous work [110], Wang et al. proposed 
in [28] a new methodology which makes use of those common variables in two dif-
ferent dimensional cubes to induce maxterms of higher-order from those of lower-
order, thus recovering more key bits and reducing the search complexity.

It is also worth of mention the work by Ye and Tian [115], where an experimental 
approach is employed against Trivium-like ciphers. The authors focus on improving 
nonlinear superpolys recovery by means of linearisation techniques. Under this set-
ting, several linear and quadratic superpolys are claimed for the 802-round Trivium 
as well as the possibility of finding a quadratic superpoly for Kreyvium is shown. 
Relying on specific features discovered on Trivium also an enhanced method to 
attack Trivium-like ciphers is presented, claiming a generic method of choosing use-
ful nonlinear key expressions.

Clearly, the higher degree equation found this way can be used in many different 
ways; two more interesting approaches on this side are given by Sun and Guan in 
[91] where cube attacks are exploited to find new linear relations for linear crypta-
nalysis purposes and by Eskandari and Ghaemi Bafghi in [39] where non-linear 
equations are treated as linear equations with noise to attack KATAN lightweight 
cipher.

3.3 � Cube attacks on side channel attacks

The original version of cube attack has no free quarters for uncertainty or measure-
ment errors. However, cube attacks have a natural error correction mechanism (see 
[32]): by considering a cube K large enough during the offline phase and by evaluat-
ing all of its sub-cubes I ⊂ K yielding linear relations it is in fact possible to gather 
redundant linear equations. In the online phase, assuming a per-round leakage with 
uncertainty (as it happens when Hamming weight only is available), the summation 
of all the leaked bits from a specific sub-cube assignment yields a new linear equa-
tion in the x with a known term depending on the assignment of the known leaked 
bits. These new relations can be equated to the corresponding linear combination of 
key variables k pre-evaluated during the offline phase, obtaining a linear system of 
equations in the x and k variables that the attacker can exploit.

This approach was applied to many block ciphers by exploiting their specific 
structure starting from [32], where many linear relations were found for Serpent and 
AES. Later the same year also Yang et al. used this approach to analyse PRESENT 
Lightweight cipher in [114].

The same approach led Abdul-Latip et  al. to produce two works: in [2] they 
halved the complexity of NOEKEON block cipher by considering a single bit infor-
mation leakage from the internal state after the second round; in [1], the authors 
modified the cube attack used in [114] by employing some low-degree non-linear 
equation (e.g. quadratic equations) to exploit leakages on PRESENT.

The theory from the previous section was also combined with side channel cube 
attacks by Fan and Gong in [40] where the security of the Hummingbird-2 cipher 
(an ultra-lightweight cryptographic algorithm) is discussed. In particular, they 
describe an efficient term-by-term quadraticity test for extracting simple quadratic 
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equations besides linear ones to be exploited along with the bit-leakage model in a 
fast GPU model.

Concurrently, also Zhao et al. produced an attack to PRESENT in [122] relying 
on [114] where a two-layer “divide and conquer” strategy is used concurrently with 
a sliding window approach and an iterated version of the attack is proposed. Their 
iterative method was further refined in [121] where the authors also propose a model 
based on non-linear equations.

During the same year, the full version of LBlock was also attacked by means of 
these techniques in [50].

Li et al. also approached side channel cube attacks on PRESENT the same year 
in [64] after their preliminary work on LBlock of the year before [66]. However, 
their work focussed on data refinement employing the maximum likelihood decod-
ing algorithm in order to correct the side channel outputs by considering it as a lin-
ear code transmitted through a binary symmetric channel with crossover probability 
depending on the accuracy of the measurements. A 50% success rate is achieved in 
[65] even when data are more than 40% dirty.

3.4 � Meet in the middle techniques

One more interesting approach to the cube attack is the possibility to fuse it with 
meet-in-the-middle techniques. Firstly suggested in the original paper [31], the first 
implementation of this approach is to the iconic 120-bit Courtois Toy cipher (CTC) 
due to Mroczkowski and Szmidt in [72]. Here the offline phase is performed against 
four rounds of encryption, by recovering many linear equations as usual (here more 
than 600 linear equations were found). In the online phase, however, the defender 
encrypts the messages with a five-round encryption. The explicit inversion is there-
fore performed by obtaining the ciphertext bits after four rounds of encryption by 
means of equations in the key bits as unknowns and ciphertext bits as known vari-
ables. Due to the simplicity of the encryption round rule, these equations are linear 
in the key bits so, by equating these polynomials to the one gathered in the offline 
phase, the result is still a linear system that can be solved as in usual cube attack 
approaches.

Later on, just mimicking what they did earlier in [72], the authors extended the 
technique to 255-bit Courtois Toy cipher 2 in [73].

A different approach about dynamic cube attack on stream ciphers that is some-
how related to MitM techniques can also be found in [4]. Here Ahmadian et al. pro-
ceed in the opposite direction to usual MitM, by explicitly splitting the cipher into 
three sections computed independently: an upper extension part, an intermediate 
section where cube variables are chosen, and a lower extension part.

3.5 � Cube attacks based on division property

Finally, one of the most recent and promising extensions of cube attack family con-
sists in fusing it with the division property, a tool originally introduced by Todo in 
[97] (later formalised in [98]) as an improvement over Integral Cryptanalysis (see 
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[57]). A multiset A with elements in � N
2

 is said to have the division property DN
k

 , 
with 0 ≤ k ≤ N , if:

at the varying of s ∈ ℤ
N
2

.
Before pairing it with cube attacks, the concept was firstly extended at FSE 2016, 

where Todo and Morii in [101] applied it to SIMONs family, introducing the con-
ventional bit-based division property (CBDP) and the bit-based division property 
using three subsets (BDPT) and exploiting for the first time the zero-sum property: 
this solution was more robust than the classical division property, even though it was 
not efficient enough to carry out a feasible attack.

In order to overcome the efficiency issue, Xiang et al. introduced in [112] the divi-
sion trails i.e. the propagation of the division property through the rounds of the 
cipher, along with an approach to evaluate them through MILP (Mixed Integer Linear 
Programming) models, hence enabling faster computations. More formally, given R 
rounds of a cipher, an input y generates, for each round r, an internal state y(r) . Analo-

gously, a set A with elements in � N
2

 , generates R sets (A(0) = A,A(1),… ,A(R−1)) , where 

A(r) = {y(r) ∣ y ∈ A} . A division trail for the set A is a vector k = (k0,… , kR−1) , with 
0 ≤ kr ≤ N , such that the division property DN

kr
 holds for the set A(r) , for all 0 ≤ r < R . 

By analysing the round function of the cipher, we can build relations between ele-
ments of a trail (i.e., study the propagation of the division property): by writing such 
relations in a MILP way (relying on the three basic operations of and, xor and 
copy) we obtain a system of linear inequalities which solutions correspond to valid 
trails.

The introduction of MILP models allowed Todo et Al. in [99] to efficiently apply 
Division Property along with cube attack, exploiting the CBDP: the non-blackbox 
representation of the cipher allowed, jointly with the efficient MILP interpretation of 
the division trail, to obtain unexpected results, hence enabling the authors to break 
832-round Trivium. Further results on Trivium were obtained firstly the following 
year at Crypto’18, where Wang Q. et al. improved the attack up to 839 rounds in 
[105], and later in 2019 by Wang S. et al. in [107] where, using BDPT, the authors 
were able to recover the superpolies of 832- and 839-round Trivium with a reduced 
computational time. It is also worth noticing that, later that year, Ye and Tian 
showed using MILP-based division property in [116] that many of the key-recovery 
attacks to Trivium presented at Crypto’18 were also distinguishing attacks.

In [46], Wang et  al. introduced a new algorithm to find better cubes: to do so, 
they used a particular MILP model to find division trails based on SAT from [89] 
and on the flag technique from [106].

The MILP approach made BDPT exploitable in feasible time too, as it is shown 
more recently in [45] where up to 841-round of Trivium were successfully broken 
thanks to a careful selection of which differential trail are found in even number and 
whose evaluation can be hence safely skipped since their contribution nullifies in the 

deg(ys) =
∑

s < k implies
∑

ys[{1,… ,N} → A] = 0
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resulting ANF; approaches from [45, 106] well combine together, as it can be seen in 
[54].

Later, Wang et al. introduced in [108] a novel algebraic version of the division 
property under the name of monomial prediction, also showing its strict similarities 
with BDPT itself: here, the state variables y(r) = (y

(r)

0
, y

(r)

1
,…) of round r are consid-

ered as polynomial components y(r)
i

= �r,i(y
(r−1)) representing the update function of 

the i-th component of the state at round r depending on state components at round 
r − 1 (hence, � can be obtained iterating composition of �r,i , round-by-round); these 
formal relations are then exploited to determine whether specific input state varia-
bles y(0)

i
 (or, possibly monomials � in the y(0) variables) do or do not propagate to the 

upcoming rounds. This task can be achieved by analysing round-by-round whether 
�r,i does contain first-degree monomials y(r−1)

j
 for some j or does not, that is, consid-

ering the set Pr,i of the monomials �r,i is made of (namely, such that �r,i =
∑

Pr,i ), 
we say that y(r−1)

j
 is monomial predicted at round r if:

A set of variables (y(0)
i0
, y

(1)

i1
,… , y

(R−1)

iR−1
) such that (20) pairwise holds (i.e., y(r−1)

ir−1
 is 

monomial predicted in y(r)
ir

 ) is said a monomial trail. We then claim:

Proposition 6  (cfr. [108]) A given first-round state variable y(0)
i0

 can be found in �r,ir 
if and only if the number of monomial trails connecting them is odd.

The same proposition holds if considering monomials �(0) in y(0) variables too.
Given a cube I, Proposition  6 gives us a method to evaluate the superpoly �I 

of the cube attack by exploiting the monomial trails and, hence, by adopting effi-
cient MILP models. In fact, if we consider the set P of all monomials � is made of 
(namely, � =

∑
P ), we can then reformulate (7) as follows:

The speed-up obtained via MILP modelling, allowed the authors to break Trivium 
reduced up to 842-rounds [108].

Further recent work on monomial prediction is by Hu et  al. in [47] where the 
authors describe a novel technique under the name of nested monomial prediction to 
efficiently evaluate the ANF of massive polynomials. In particular, a temporal-com-
plexity pre-evaluation is performed to decide whether a given intermediate state var-
iable should be further expanded or not. Key recovery technique is further enhanced 
as well by the application of the Möbius transformation.

Division property is also linked with other kinds of cube attacks, such as dynamic 
cube attacks: in [44], Hao et al. introduced on one hand a heuristic algorithm using 
flag technique division property that permits to find superpolies with low bias, on 
the other hand, a new MILP model method for division property using nullification 
strategies. With this approach, it was possible to define a new dynamic cube attack 

(20)y
(r−1)

j
∈ Pr,i for some component j of the state at round r − 1.

�I =
∑

M, M = (y0[I→1d ,I𝖼] ∩ P)∕�I = {� ∈ y0[I
𝖼] ∣ � ⋅�I ∈ P}.
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on Grain-128 with a success probability of 99.83% and to use the new MILP model-
ling to attack 892 rounds of Kreyvium.

DP was also used to design a heuristic algorithm to find valuable cubes, as 
defined in [92] (i.e., cubes whose superpoly has (at least) a balanced secret variable), 
that proved to be effective against Trivium and Kreyvium, actually elevating by one 
round (up to 843 and 893 rounds respectively) the attacks proposed by Hao et al. in 
[45] and Hu et al. in [48].

4 � Frameworks and implementations

Since its very first introduction, cube attack was presented not only as a theoretical 
attack, but also as a practical methodology to break real-world ciphers.

For this reason, Aumasson et al. built in [6] a first cube tester framework on field-
programmable gate array (FPGA) capable of attacking 237 rounds in Grain-128 (out 
of 256) in 254 cipher runs. The idea behind this implementation is hereafter to split 
the computation into an input generator, an output collector and a controller unit that 
employs an evolutionary algorithm for cube searching.

Later FPGA implementation of dynamic cube attacks can also be found in [29] 
(later revised in [43]) where the RIVYERA computing system is adopted.

The main contribution of previous approaches was however given by the possi-
bility of simultaneously evaluating multiple instances of the cipher in order to frac-
tion execution times. Following this trend, GPUs were for example employed to test 
SHA-3 candidates against unbalances, as reported in [52].

Cipher evaluations occurring in cube construction are highly related one to the 
other and often repeated. In [18–20], the Cranic Computing group2 worked out a 
complete refactoring of the computation on GPUs in view of repurposing of val-
ues already computed. Their main contributions are in the organisation of the cube 
attack as a Time Memory Data Trade-off algorithm, named kite attack, to optimise 
the computation in accord with the structure of GPU memory layers. The develop-
ment of a CUDA framework for the cube attack resulted in an open source frame-
work enabling the finding of an 800-rounds superpoly in Trivium [21].

As highlighted by Zhu et al. in [124], the framework development is a key point 
not only to check attacks feasibility, but also to show the correctness of many unfit-
ting assumptions cryptographers may claim. In particular, their contribution is under 
a python-based web application (unfortunately no longer accessible by now) to test 
cube attacks-like (in particular linearity of given superpoly) on different ciphers 
(Trivium only was implemented, however, simple extensions could be made to inte-
grate other ciphers).

Amongst the most interesting published frameworks, there is also the one 
for nested monomial prediction by Hu et  al. introduced in [47] and discussed in 
Sect. 3.5.

2  https://​www.​cranic.​it.

https://www.cranic.it
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Other notable cube attacks implementations are introduced in [4] as we discuss 
earlier in Sect. 3.4 and in [50] where Islam et al. develop a GUI toolkit which can 
load a stream or a block cipher and can check its resistance against the cube attack.

Ye and Tian introduced in [118] a framework for Trivium efficient key-recovery 
where Stankovski’s greedy bit set algorithm fuses with division property and the 
Improved Moebius Transformation to construct potentially good cubes. Building 

Table 1   Results on Trivium cipher

Attack family Attack type Rounds out 
of 1152

Maxterms/
key bits

Time Bibliography term

Cube attack Key recovery 735 53 M 2
30 [31]

Cube attack Key recovery 767 35 M 2
45 [31]

Cube tester Distinguisher 790 − 2
30 [7]

Cube tester Non-randomness 885 − 2
27 [7]

Cube tester Distinguisher 806 − 2
44 [88]

Cube tester Non-randomness 1078 − 2
54 [88]

Cube tester Distinguisher 806 − − [56]
Non-linear eqs Key recovery 709 Full − [74]
Non-linear eqs Key recovery 799 Full 2

39 [42]
Linear extension Direct Key Rec 576 26 M − [28]
Cube like Distinguisher 839 − 2

37 [69]
Cube like Key recovery 576 69 M − [87]
Cube like Key recovery 703 − − [111]
Bias cube tester Distinguisher 823 − 2

42.74 [9, 84]
Cube attack Key recovery 576 69K 2

12.63 [51]
Kite attack Key recovery 799 15 M 2

45.3 [19]
Kite attack Key recovery 800 1 M 2

46.3 [20]
MILP CBDP cube Key recover 832 − − [99]
Non-linear eqs Key recovery 802 7 M − [115]
Division property Distinguisher 838 − − [100]
MILP CBDP cube Key recovery 839 − − [105]
Algebraic recovery Key recovery 838 5 M 2

37 [117]
Cube tester Distinguisher 850 − − [55]
MILP BDPT cube Key recovery 839 Full 2

78.6 [48]
MILP BDPT cube Key revovery 841 − − [45]
MILP BDPT cube Weak key recov 978 1 K 2

28.5 [119]
MILP BDPT cube Weak non-random 1108 − 2

28.5 [119]
MILP monomial pred Key recovery 842 − − [108]
MILP monomial pred Key recovery 843 2 M 2

79 [93]
Div. prop. framework Key recovery 805 Full 2

41.4 [118]
Div. prop. framework Key recovery 806 16 2

41.4 [118]
Nested monomial pred Key recovery 845 2 M 2

78 [47]
Div. prop. framework Key recovery 820 30 2

53.17 [17]
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upon their idea, very recently Che and Tian developed in [17] a framework (whose 
implementation is online available) to find well-balanced superpoly.

Concurrently, Delaune et al. propose in [27] a novel model based on a digraph 
representation of the cube. Authors claim the graph structure handles some of the 
monomial cancellations more easily than those based on division property, hence 
improving timing results. Model implementation is proposed and implemented 
(online available) in both MILP and Constrained Programming.

Finally, code for the approach adopted by Sun in [92] and by Baudrin et  al. in 
[11] are supplied as well.

5 � Applications

The cube attack family focussed since its beginning on stream ciphers like Trivium 
(Kreyvium, Quavium, ...) and Grain (Grain-v1, Grain-128, ...). We report the respec-
tive main results in Tables 1 and 2.

Also PRESENT cipher is entitled of an honourable mention, as many develop-
ments in side-channel cube attacks were performed on this cipher. Table 3 reports 
principal contributions.

Table 2   Results on Grain-128 and Grain-v1 ciphers

Grain-128

Attack family Attack type Rounds 
out of 256

Maxterms/key bits Time Bibliography term

FPGA tester Distinguisher 237 − 2
54 [6]

Cube tester Distinguisher 246 − 2
42 [88]

Cube tester Non-randomness Full − − [88]
Dynamic cube Key recovery 207 80 K 2

31 [33]
Dynamic cube Key recovery 250 Theo 2

101 [33]
Dynamic cube Key recovery Full Theo 2

113 [33]
Dynamic cube Key recovery Full Full 2

90 [29, 43]
Kite attack Key recovery 160 70,000 M − [21]
DP dynamic cube Key recovery full 3 2

97.86 [44]
Cube tester Distinguisher 191 − 2

33.86 [26]

Grain-v1

Attack family Attack type Rounds 
out of 160

Maxterms/key bits Time Bibliography term

Cube tester Distinguisher 90 − 2
39 [88]

Cube tester Non-randomness 96 − 2
7 [88]

Cube attack Key recovery 75 19 M − [110]
Dynamic cube Key recovery 105 9 K 2

34 [10]
Dynamic cube Key recovery 100 Full 2

47 [80]
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More recently, much interest was devoted to the lightweight cipher Ascon, one 
of the finalists of the NIST lightweight cryptography standardisation process that 
uses a total of 30 rounds of permutations divided into 12/6/12 rounds of initialisa-
tion/plaintext processing/finalisation. Different work focused on the different phases 
of the cipher, actually mounting key-recovery attacks on the initialisation phase, 
state recovery attacks on plaintext processing phase, forgery attacks on the finalisa-
tion phase, or distinguishers on the global permutation function. Many of the recent 
works assume collateral conditions like the usage of a weak key or the nonce-mis-
use setting, i.e., a key/nonce pair is reused many times to encrypt (contrary to the 
recommendations of the designers). Table 4 reports principal contributions, with a 
notable notion of [36], where the authors design a hardware Trojan to reduce the 

Table 3   Key recovery results via side channel attack on PRESENT cipher with key length of 80 and 128 
bit

LSB states the Least significant bit in the hamming weight of the internal state bytes
Error tolerant methods all have success probability above 50%
† : tested on real devices with SC countermeasures like random delay and masking

Attack 
family

Leakage 
round

Leaked data Error toll Key bits Time bound Data 
required

Biblio. term

PRESENT-80
Cube attack 3rd 0,1,2,3 0% 48 2

32
2
15 [114]

Non-linear 
eqs

After 1 Hamming 0% 64 2
16 2

13 [1]

Cube attack 3rd 4,8,12 0% 48 − 2
11.92 [122]

Iterated 
cube

4rd 0 0% 72 − 2
15.154 [122]

Non-linear 
iterated

After 3 Hamming 0% 72 − 2
8.95 [121]†

Max likeli-
hood

After 1 LSB 0.6% 64 2
21.6 2

18.9 [64]

Max likeli-
hood

After 2 2nd LSB 0.4% 64 2
20.6 2

23.1 [64]

Max likeli-
hood

After 1 LSB 19.4% 64 2
21.6 2

10.2 [64]

Max likeli-
hood

After 1 LSB 23.2% 64 2
31.6 2

10.1 [65]

Max likeli-
hood

After 1 LSB 29.5% 64 2
27.6

2
16.2 [65]

Max likeli-
hood

After 1 LSB 40.5% 64 2
27.6 2

21.2 [65]

PRESENT-128
Non-linear 

eqs
After 1 Hamming 0% 64 2

64 2
13 [1]

Iterated 
cube

4rd 0 0% 85 − 2
15.156 [122]

Non-linear 
iterated

After 3 Hamming 0% 121 − 2
9.78 [121]†
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Table 4   Results on Ascon-128 lightweight cipher

† : Nonce-misuse setting and attack model
‡ : Weak-key subspace

Attack family Attack type Rounds out of 
(12/6/12)

Data Time Bibli-
ography 
term

Cube-like Key recovery 6∕ ⋆ ∕⋆ 2
34

2
66 [35]

Cube tester† Key recovery 7∕ ⋆ ∕⋆ 2
33

2
97 [60]

Cube-like† State recovery ⋆∕ 5 ∕⋆ 2
18

2
66 [60]

Cube tester† Forgery ⋆∕ ⋆ ∕6 2
33

2
33 [60]

Conditional cube Key recovery 6∕ ⋆ ∕⋆ 2
40

2
40 [63]

Conditional cube Key recovery 7∕ ⋆ ∕⋆ 2
77.2

2
103.9 [63]

Conditional cube‡ Key recovery 7∕ ⋆ ∕⋆ 2
77.2

2
77 [63]

Cube-like Key recovery 7∕ ⋆ ∕⋆ 2
64 2

123 [81]
Division property Distinguisher 7 2

60
2
60 [81]

Cube-like‡ Key recovery 7∕ ⋆ ∕⋆ 2
64 2

97 [82]
Cube-like‡ Key recovery 7∕ ⋆ ∕⋆ 2

63
2
115.2 [82]

Conditional cube† Part. State Rec ⋆∕ 6 ∕⋆ 2
44.8

2
44.8 [16]

Conditional cube† State recovery ⋆∕ 6 ∕⋆ < 2
40 < 2

40 [11]

Table 5   Results on Keccak sponge function

Attack Family Attack Type Rounds out 
of 24

Time Memory Bibliography term

Keccak-MAC-128
 Cube like Key recovery 6 2

66 2
32 [30]

 Conditional cube Key recovery 6 2
40 − [49]

 Divide-and-conquer Key recovery 6 2
45 2

13 [115]
 MILP-aided cube-like Key recovery 6 2

42
2
9 [14]

 Cube-like Key recovery 7 2
97

2
32 [30]

 Conditional cube Key recovery 7 2
72 − [49]

 Divide-and-conquer Key recovery 7 2
84

2
64 [115]

 MILP-aided cube-like Key recovery 7 2
80

2
15 [14]

 Cube-like Forgery 7 2
65 − [30]

Keccak-MAC-256
Cube-like Forgery 8 2

129 − [30]
Keccak-MAC-512
 Conditional cube Key recovery 6 2

58.3 − [61]
 Conditional cube Key recovery 6 2

40 − [86]
 Conditional cube Key recovery 7 2

111 − [85]
 Conditional cube Key recovery 7 2

112.6 2
47 [14]

 Conditional cube Key recovery 7 2
72 − [62]

 MILP-aided cube-like Key recovery 7 2
108

2
108 [123]
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number of initialisation rounds to make cube attack-based key-recovery feasible in 
94 s on average.

Even if cube attacks work on ciphers by considering them as black-box poly-
nomials and therefore are suitable to attack nearly any cryptosystem, they can 
also exploit specific cipher vulnerabilities. It is the case, for example, of the work 
performed by Dinur and Shamir first, and by many other cryptographers later, on 
Keccak family (Ketje, Keyak, ...). In Table 5, we report principal results obtained 
against Keccak sponge function.

Many other cipher were attacked via cube family. It is the case of e.g., lightweight 
and ultra-lightweight ciphers like SIMONs ([79, 101], ...), Simeck ([120]) KATAN 
([56, 108], ...), Subterranean 2.0 ([67]), Hitag2 ([90]), LBlock ([50], ...), Humming-
bird-2 ([40]), TinyJAMBU ([37, 38, 94]), MORUS ([46]), Lizard ([54]), and many 
others.

6 � Conclusions

In this paper, we revise and improve a novel notation for the cube attack family. We 
employ the new notation to analyse and provide a cohesive review of the state-of-
the-art for this wide family of cryptanalysis techniques.

We discuss the original Dinur and Shamir’s attack in �2 and we extend it to 
a generic finite field �q , also describing recent methodologies employed to find 
cubes. We summarise the family of attacks in five principal research branches: 
(i) Cube Testers and their extensions (Dynamic and Conditional Cube Attacks), 
(ii) Cube Attacks with non-linear equations, (iii) Cube Attacks with information 
leakages, (iv) Meet in the Middle cube attacks, and (v) Cube Attacks based on 
the Division Property and its extensions (based on Division Trails and Monomial 
Prediction). For what concerns the latter, we also, focus on formalising the con-
tributions with the introduced notation, lightening the wordiness of the original 
one. Later we provide an overview of the few frameworks and implementations 
currently available. We devote a single appendix to describe in detail our frame-
work implementation of the Kite Attack, where we also present Mickey2.0 as a 
test case. Finally, we resume by convenient tables all of (to the best of our knowl-
edge) the most significant results obtained through the various approaches applied 
to the principal attacked ciphers, namely: Trivium, Grain, PRESENT, and Kec-
cak. We believe that cube attacks, in particular, combined with Division Property 
approaches, still have a long road to run across.

Appendix

Unboxing the kite attack

Here we describe the Kite-Attack framework focusing on its source code and how to 
extend it. The framework has been designed to be cipher independent; as shown in 
[19] the cost of the attack differs only by a constant factor when different ciphers are 
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used. This “Appendix” aims at providing a detailed guideline on how to extend the 
framework support to new ciphers; we believe this work can be useful to the crypto-
community as the framework provides an easy way to test/analyse ciphers strength 
w.r.t. the cube attack. A brief description of the structure of the code framework 
appeared in [22], however here we provide a more detailed version along with all 
the steps to add a new cipher. We organise the “Appendix” as follows. We start with 
a brief introduction to Nvidia GPUs and CUDA jargon.3 Then we describe in detail 
the framework and its code structure, we define and describe all the steps needed to 
add a new cipher and, finally, we show how to add it, Mickey2.0, to the framework 
by crossing these steps.

CUDA and GPU

For a better understanding of our work, we report a few, basic, information about the 
micro-architecture of NVIDIA GPUs as exposed through the CUDA software frame-
work, since this is the solution used in our study. From a hardware standpoint, an 
NVIDIA GPU is an array of Streaming Multiprocessors (SMs); each SM contains a 
certain number of CUDA cores. From a software perspective, a CUDA program is a 
sequence of computing grids; in turn, each grid is split into blocks, and each block 
comprises a certain number of threads. Each function executed on the GPU on behalf 
of the CPU is called kernel. To attain a significant fraction of the theoretical peak 
performance, occupancy (i.e., the fraction of active computing elements at a given 
time) must be consistently kept high, in such a way that thousands of threads must 
be ready to be scheduled at any time. Threads are executed by an SM in groups of 
32 units called warps, and performance improves significantly when threads in the 
same warp execute the same code with no divergence and access memory according 
to patterns that privilege threads locality, i.e., if threads belonging to the same warp 
access consecutive memory locations (memory coalescing in CUDA jargon). Any 
thread may access data from multiple memory spaces: (private) registers, (private) 
local memory, shared memory, global memory, and constant, texture memories that 
are read-only. Global memory is the biggest but slowest memory available and it is 
persistent across kernel launches by the same application; it can be accessed by all 
the threads. Shared memory is visible to all threads of a block and it has the same 
lifetime as the block. It is roughly 100× faster than global memory and it can be used 
for caching or to facilitate memory coalescing in cases where it is not possible other-
wise [102]. Local memory is actually part of the global memory and it is used to pro-
vide private memory to the threads whenever registers are not enough. Registers are 
the fastest memory and they are also used for the warp-level operation called shuffle 
that allows threads belonging to the same warp to exchange data using registers with-
out passing through higher-latency components of the memory hierarchy.

(˛,ˇ)‑Kite attack

The (�, �)-kite attack, introduced in [21], is based on the choice of a set Imax of � 
public variables and a proper subset Imin of � variables, with 𝛼 > 𝛽 . These two sets 
3  Readers familiar with the subject may safely skip Sect. A.1.
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represent a maximal and a minimal cube, respectively x[Imax] and x[Imin] . The name 
kite comes from the observation that the choice of Imin and Imax defines a diamond-
shaped subspace of all possible monomials, with the bottom vertex of the diamond 
being �Imin

 and the top vertex being �Imax
 . This subspace, schematically depicted in 

Fig. 3, is made of all monomials �I ’s such that Imin ⊆ I ⊆ Imax and it is exhaustively 
explored by our attack.

This definition of the kite naturally leads us to a Time Memory Data Trade-Off 
algorithm where first 

(1)	 for the given minimal index set Imin and an initial vector v , we compute many 
variants of the cube on the index set Imin : one for each possible combination I 
of the indices in Imax⧵Imin , we evaluate the encryption function in each cube 
x ∶∶ v[I, Imin] for all possible increments of index set I ⊂ {Imax�Imin} and for any 
value of x ∈ {0, 1,… , n} ; values are stored in memory to be accessed in a suc-
cessive moment,

(2)	 we iteratively combine previously computed results to evaluate coefficients of the 
superpoly and test its linearity on larger cubes, namely if we want to step from 
I = {i1,… , id} to I� = I ∪ {id+1} , by keeping the setting of remaining variables 
as specified by the index set I1 of variables assigned to 1, we apply the following 
differentiation formula:   

where I−
1
∶= I1�{id+1} and I+

1
∶= I1 ∪ {id+1} and the increment variable 

id+1 ∈ Imax�I in such a way that I′ always falls in the kite-area ( Imin ⊆ I′ ⊆ Imax).

∑
�(x ∶∶ v[I−

1
, I�]) =

∑
�(x ∶∶ v[I+

1
, I]) +

∑
�(x ∶∶ v[I−

1
, I])

Fig. 3   A schematic representa-
tion of the kite attack 
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The implementation following this idea leads to two distinct CUDA kernels: 
Kernel1 which is responsible for running (1) and Kernel2 which runs (2).

A schematic representation of the two kernels, in the case of a minimal example 
with Imin = {2} and Imax = {1, 2, 3} is reported in Figs. 4 and 5.

Fig. 4   A schematic representation of the Kernel1 . For a given index set Imin computes all the cubes 
x ∶∶ v[I, Imin]) for all possible increments of the index set I ⊂ {Imax⧵Imin} . In the picture |Imin| = 1 there-
fore any cube on Imin contains just two elements and corresponds to the blue dashed edges of the three-
dimensional cube

Fig. 5   A schematic representation of the Kernel2 . Starting from evaluation results of the first kernel in 
cubes on Imin stored in memory, it combines the results to obtain values on larger cubes. To obtain evalu-
ation of a face we sum results of evaluations on edges: for instance to obtain evaluations on the face 
labelled as ⋆ which is x ∶∶ v[{3}, Imin ∪ {1}] : we have to combine results coming from the two edges 
x ∶∶ v[{3, 1}, Imin] and x ∶∶ v[{3}, Imin] . For each cube it also performs the linearity test by exploiting 
evaluations of the selected cube with different assignments to x
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Framework code overview

The framework is composed of three source files (cubaCUDA.cu, auxiliary_
functions.c, and twiddle.c ) along with their corresponding header files. There 
are two header files: def.h which contains all the definitions, macros and includes 
needed by all the sources, and key_table.h must contain two arrays describing how 
the keys are combined in the linearity tests. Furthermore, each cipher requires the source 
code for the CUDA implementation and another source file containing auxiliary func-
tions specific to the cipher; for instance, the setBit function described below.

The file called cubeCUDA.cu includes the two CUDA kernels, the main func-
tion and other high-level functions useful in managing the attack and several steps of 
computation concerning superpolys. The file called auxiliary_functions.c 
consists of all the auxiliary functions and wrappers used in the framework. 
twiddle.c contains the functions to generate all combinations of M elements 
drawn without replacement from a set of N. This code has been written by M. Bel-
monte and the original version can be downloaded from [12].

A GPU run is the sequential call of the runAttack function and then of the 
computeSuperpoly one. The first one is in charge of the real attack, it launches 
the CUDA kernels to compute partial sums over x ∶∶ v[Imin] and combines them to 
test linearity. It also dumps on a binary file all the candidate maxterms found and 
returns the number of them. The latter function is responsible for reading the binary 
file containing candidate maxterms, computing the corresponding superpolys, and 
printing them in human readable format.

Before running the attack, the framework parses the configuration file which 
contains the following information: the target cipher, the number of initialisation 
rounds, the indices belonging to Imin and those belonging to Imax⧵Imin , and an ID 
string to identify the run.

The framework provides some scripts to interactively generate configuration files. 
After the setup is complete, it verifies the selected CUDA device is able to run the 
attack and, if so, it generates all the data needed for the attack and copy them on 
device memory. For instance, it initialises (i) the vector containing the set of keys 
used in the attack, (ii) the mask representing Imin which is composed by setting the 
� bits with indexes in Imin , and (iii) the 2�−� masks that represent all the possible 
monomials which are divisible by �Imin

 and divide �Imax
 (see Fig. 3). Keys and ini-

tial vectors (IV) are mapped on contiguous unsigned integer (u32); in particular, 
⌈keysize∕32⌉ and ⌈IVsize∕32⌉ unsigned integers are respectively used for each key and 
IV. Moreover it allocates the memory to store the output of linearity tests or, in the 
case of the second kernel, to store coefficients of the superpoly.

Every cipher implementation may adopt its own layout to map keys and IV bit 
indexes. For instance, assuming we have a cipher with IVsize of u32; the bit iv0 could 
be mapped to the most significant bit (msb) of the most significant byte (MSB), to 
the less significant bit (lsb) of MSB or to the lsb of the less significant byte (LSB), 
and so on. As the framework cannot predict which layout will be used by the cipher, 
an auxiliary function for each cipher enables the framework to correctly manage any 
layout. This function basically takes three input parameters: the index of the key/IV 
to set, the value to set and the pointer to the first unsigned integer that represents the 
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key/IV. We are used to naming these auxiliary functions setBit<cipher name>. 
For each supported cipher, the following information has to be provided to the 
framework through the def.h file:

–	 KEY_SIZE and IV_SIZE: define the number of bits representing respectively 
the key and the IV;

–	 KEY_ELEM and IV_ELEM: represent the number of u32 needed to contain 
respectively one key and one IV;

–	 CIPHER_NAME: is a quoted string containing the cipher name;
–	 CIPHER: is an unquoted string containing the cipher name. This is used to auto-

matically select the setBit corresponding to the cipher.
–	 KEYS_COEFFICIENT: is equal to ���_���� + 1 . It is used for superpolys 

computations.
–	 TOTAL_KEYS: represents the smallest multiple of 32 greater than KEYS_

COEFFICIENT
–	 RESIDUAL_KEYS: contains the value �����_���� − ����_�����������.

We define some preprocessing macros that automatically select the appropriate setBit 
function once the cipher specific properties are specified in the file def.h; of course, 
the file containing the function implementation should be added to the Makefile.

The framework is ready to work with ciphers that support key and IV of length 
up to 256 bits. We use other preprocessor macros to setup the framework and kernel 
functions accordingly to the key and IV sizes. We adopt this method as it lets us 
provide optimised code for any size while, at the same time, it keeps the code simple 
and easy to read. We use the preprocessor macros also to define which cipher func-
tion has to be called by the kernels for the above reason.

Porting the cipher

We now describe the hardest step, adapting the cipher function to CUDA. Given a 
target cipher E, the first essential step is the definition of the CUDA device func-
tion that implements E. This kernel function should require the key and the IV as 
input parameters and should return the corresponding keystream. If the key cannot 
be stored in just one u32 word (i.e. ≥ 32 bit) it should be provided as multiple u32 
variables4 rather than an array of u32 (i.e. it is better key1, key2, ..., key N than 
key[ N ]). In this way, elements of the key are placed in registers (if available) oth-
erwise, data are stored on the global memory which has higher latency access time. 
Of course, IV should be treated in the same way.

The function implementing the cipher is called by hundreds of threads simultane-
ously on different inputs; for this reason, this function must be self-contained, i.e. it 
should use only (thread) local variables to store partial computations and it should 
not do anything that can interfere with other computations. In other words, our goal 
is to implement the target cipher E efficiently in CUDA such that it can be executed 
concurrently by thousands of threads. The implementation should be efficient as the 

4  The number of u32 words is equal to ⌈keysize∕32⌉.
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cipher function is called 2� × 2� times5 by each thread involved in the computation; 
so any effort in optimising it will not be in vain.

To maximise the attack throughput, the cipher function should return 32 bits of 
the keystream, so to fully exploit the framework’s capability to test the linearity of 
32 polynomials simultaneously; however, this is usually trivial to do.

Finally, as mentioned in Sect. A.3, the throughput is maximum when all the threads 
in the same warp execute the same code with no divergence. For this reason, any if/
else statement should be avoided unless you are sure that the result of the condi-
tion is the same at warp level, i.e. all the threads in the warp obtain the same result 
when testing the condition. In the case this cannot be guaranteed, the if/else block 
of code should be carefully analysed, and, if possible, redesigned with an equivalent 
block of code that does not contain the branch. An example is reported in Sect. A.6.

Mickey2.0: cipher definition

MICKEY (Mutual Irregular Clocking KEYstream generator) belongs to eSTREAM 
portfolio. It is an hardware-efficient stream cipher designed by S. Baggage and M. 
Dodd [8]. It takes two input parameters, an 80-bit secret key K and an IV with varia-
ble length between 0 and 80 bits. It is composed of two registers R and S of 100-bits 
each called respectively the linear and non-linear registers. It defines two functions 
clock_R and clock_S to update R and S respectively. Differently from other 
ciphers like Trivium and Grain128, Mickey2.0 does not initialise the registers with 
key and IV; it relies on one specific function instead, called clock_kg, that updates 
both R and S by calling clock_R and clock_S. In the initial steps, the IV and the 
key bits are used as input; after these clocks, it runs for 100 more clocks with input 
0. Interested readers may find more details in [8].

Mickey2: porting to CUDA

We use as a reference for our porting the faster version of Mickey, source code pro-
vided in [95]. This version has the advantage that already works with u32 and effi-
ciently updates register states.

For the other supported ciphers (Trivium and Grain128) we adopted the layout 
that maps key and IV of index 0 to the msb of the MSB; to avoid maintaining 
multiple layouts, we adopt the same layout also for Mickey2.0 and we define the 
masks representing the update sequences COMP0, COMP1, FB0 and FB1 and the 
mask defining the RTAPS vector accordingly to the selected layout.

With respect to the original implementation, we do not use auxiliary functions 
for clocking R and S or to initialise the cipher with key and IV; we implement all the 
steps inside the cipher function to avoid the overhead of calling auxiliary functions. 
Moreover, for the reasons explained in Sect. A.4, our function does not use arrays 
for keys and IV but multiple u32 words; for instance three u32 for both a key or 
an IV. All these choices, however, induced us to split the load IV and load key steps 
in three loops each. In this way, we duplicate the code but we do not need extra 

5  2� cubes each of dimension 2� . The cipher function has to be computed for each vertex of the cube.
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computations to identify which u32 variable is used at every step. We also define 
a loop that implements pre-clock and another one for the keystream generator. This 
choice allows us to perform optimisations as described below.

The functions CLOCK_KG, CLOCK_R and CLOCK_S as defined in Mickey2.0 
specification, contain some if statements. In the following, we analyse each of them:

–	 CLOCK_KG: the value of the MIXING parameter determines how to com-
pute INPUT_BIT_R. However the result of this check is known a priori as it 
is always TRUE in the initialisation phase and FALSE in keystream generation 
mode. As we managed the initialisation and keystream generation phases in dif-
ferent loops, we can safely skip the check of MIXING parameter and set the cor-
rect value of INPUT_BIT_R in the loops;

–	 CLOCK_R: there are two if; the first one checks the RTAPS vector to determine 
which states have to be xored with the value of the FEEDBACK_BIT. The sec-
ond one checks the value of CONTROL_BIT_R to determine if the new states 
need to be bitwise-xored with the older ones. We apply the same approach used 
in [95] in both the checks; we perform a xor operation between states and results 
of the multiplication of masks representing RTAPS and FEEDBACK_BIT for the 
first check, and the result of the older states multiplied by CONTROL_BIT_R;

–	 CLOCK_S: here we have an if-then-else statement. This is a little bit dif-
ferent w.r.t. the other examples mentioned above as we need to manage also the 
else case. The control statement checks the value of the CONTROL_BIT_S 
variable; if it is 1, the states of the registers are updated by computing the xor of 
ŝi with the result of the multiplication of FB1 and the FEEDBACK_BIT; if it is 
0, the xor is computed between the state and the result of the multiplication of 
FB0 and the FEEDBACK_BIT. We rewrite this check in the following way

S0 ̂= ( (!contr_s & 0x1) * (S_MASK0_0 * feedback));
 S0 ̂= (contr_s * (S_MASK1_0 * feedback));

	    where

	   –	 S0 contains the states s0...s31,
–	 contr_s is the CONTROL_BIT_S,
–	 feedback is the FEEDBACK_BIT, and
–	 S_MASK_0_0 S_MASK_0_0 contain respectively FB00 ...FB031 and FB10 

...FB131 bits.

	    These operations are equivalent to the original if-then-else statement.

The above rewriting of each if statement grants that all the threads of a warp exe-
cute the same instruction on different data at the same time. Please notice that if we 
had left the original if statements we could not have the same assurance. This is due 
to the fact that values in INPUT_BIT_R, INPUT_BIT_S, CONTROL_BIT_R and 
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CONTROL_BIT_S are determined from the states of the registers; as each thread 
executes the cipher on a unique couple of key and IV, each thread may have different 
values for the variables and consequently yields different results on statement checks.

Framework installation and test case

Here we describe all the steps to install the framework and run a test case. Please 
notice that you need a Linux computer equipped with an Nvidia GPU of CUDA 
compute capability ≥ 3.5.

Moreover, you need gcc ≥ 4.5.0 and CUDA ≥ 7. To verify the CUDA compute 
capability please refer to [75].

Before starting please download the latest version of the framework from our repos-
itory [96]. You can download it as a zip file or you can clone it from the git repository.

A Makefile is provided to install the framework, it instructs the compiler to gen-
erate optimised code for most of the compute capabilities. If you have one of the lat-
est GPUs or a Jetson Board, please check if the computing capability of your device 
is listed on the Makefile; if not, please add it to CUDA_FLAGS variable with the 
-gencode arch=compute_X, code=sm_X, where X is your computing 
capability. To install the kite-attack framework, simply run make install.

Once it is successfully installed, you may test it using one of the test configura-
tion files provided in the config directory or you may generate a new configuration 
file for your customised attack.

An interactive BASH script, called genConfigFile.sh, is provided inside the 
scripts directory. This script helps users to customise their attacks. It allows 
choosing the target cipher, the number of initialisation rounds to attack, the Imax and 
Imin indexes, the run identifier and the path-name of the file where the chosen con-
figuration is stored. An example of how to use the script is provided below.

To launch the attack, run the binary file corresponding to the selected target 
cipher, provide the configuration file, the output directory, and the id of the CUDA 
device you selected for the attack. If your system has only one device the value to 
pass is 0, in the case your system has more than one CUDA device provide the id of 
the chosen device. You may use nvidia-smi tool to obtain the list of all devices 
of your system along with the id and some other details.

In the following, we provide a complete session as a list of commands, including 
instructions to get the framework, install it, generate a custom configuration file to 
attack the Mickey2.0 cipher, and run the attack.

The interactive script genConfigFile.sh asks the user for some questions 
and generates the configuration file accordingly to the answers. In the following, 
we report the list of questions and corresponding answers along with the generated 
configuration file:
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The last step is to run the attack, this can be done with the following command:

In the config directory, there are also configuration files to test Trivium and 
Grain128; with these configuration files the framework finds several superpolys of 
reduced rounds Trivium and Grain128.
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