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Abstract Edge-enhancing diffusion (EED) can reconstruct a close approximation
of an original image from a small subset of its pixels. This makes it an attractive foun-
dation for PDE based image compression. In this work, we generalize second-order
EED to a fourth-order counterpart. It involves a fourth-order diffusion tensor that is
constructed from the regularized image gradient in a similar way as in traditional
second-order EED, permitting diffusion along edges, while applying a non-linear
diffusivity function across them. We show that our fourth-order diffusion tensor
formalism provides a unifying framework for all previous anisotropic fourth-order
diffusion based methods, and that it provides additional flexibility. We achieve an
efficient implementation using a fast semi-iterative scheme. Experimental results on
natural and medical images suggest that our novel fourth-order method produces
more accurate reconstructions compared to the existing second-order EED.

1 Introduction

The increased availability and resolution of imaging technology, including digital
cameras and medical imaging devices, along with advances in storage capacity and
transfer bandwidths, have led to a proliferation of large image data. This makes image
compression an important area of research. Image compression techniques can be
divided into two main groups: Lossy and lossless compression. Lossless compres-
sion techniques permit restoration of the full, unmodified image data, which however
limits the achievable compression rates. Our work is concerned with lossy compres-
sion, which achieves much higher compression rates by replacing the original image
with an approximation that can be stored more efficiently.
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We continue a line of research that has explored the use of Partial Differential
Equations (PDEs) for lossy image compression [12, 13, 23, 28]. This approach is
based on storing only a small subset of all pixels, and interpolating between them in
order to restore the remaining ones. There is a strong similarity between that inter-
polation process and image inpainting, whose goal it is to reconstruct missing or
corrupted parts of an image. PDE-based methods for image inpainting and compres-
sion are inspired by the physical phenomenon of heat transport. It is described by
the heat diffusion equation

∂t u = div(D · ∇u) , (1)

which relates temporal changes in a heat concentration ∂t u to the divergence of
its spatial gradient ∇u. When diffusion takes place in an isotropic medium, the
diffusivity D is a scalar that determines the rate of heat transfer. In an anisotropic
medium, heat spreads out more rapidly in some directions than in others. In those
cases, D is a diffusion tensor, i.e., a symmetric matrix that encodes this directional
dependence.

When applied to image processing, the gray value at a certain location is inter-
preted as the heat concentration u. In diffusion-based image inpainting, Eq. (1) is
used to propagate information from the known pixels, whose intensity is fixed, to the
unknown pixels which will ultimately reach a steady state in which their intensity is
determined by their surrounding known pixels. In this sense, Eq. (1) has a filling-in
effect that can be exploited for image compression.

Different choices of the diffusivity function D lead to different kinds of diffu-
sion. Linear diffusion [20] and nonlinear diffusion [24] were widely used for image
smoothing and image enhancement. Edge structures in images can be enhanced by
employing a diffusion tensor which allows diffusion in the direction perpendicu-
lar to the local gradient, while applying a nonlinear diffusivity function along the
gradient direction. This idea has led to the development of anisotropic nonlinear
edge-enhancing diffusion (EED) [34]. Among the six variants that were evaluated
for image compression by Galić et al. [13], EED led to the most accurate reconstruc-
tions. Subsequently, this idea was applied to three-dimensional data compression
[25], and combined with motion compensation in order to obtain a framework for
video compression [2]. When combined with a suitable scheme for selecting and
storing the preserved pixels, a few additional optimizations, and at sufficiently high
compression rates, anisotropic diffusion has been shown to beat the quality even of
JPEG2000 [27].

In this paper, we introduce a novel fourth-order PDE that generalizes second-order
EED, and achieves even more accurate reconstructions. We build on prior works that
proposed fourth-order analogs of the diffusion equation, and used them for image
processing [10, 19, 21, 22, 26, 35]. In particular, we extend a work by Gorgi Zadeh
et al. [15], who introduced the idea of steering anisotropic fourth-order diffusion
with a fourth-order diffusion tensor. However, their method focuses on the curvature
enhancement property of nonlinear fourth-order diffusion [10] in order to better
localize ridge and valley structures. Deriving a suitable PDE for image inpainting
requires a different definition of the diffusion tensor, more similar to the one in edge-
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enhancing diffusion [34]. Two anisotropic fourth-order PDEs for inpainting were
previously introduced by Li et al. [21]. However, they only apply them to image
restoration tasks in which small parts of an image are missing (such as in Fig. 8),
not to the reconstruction from a small subset of pixels. Moreover, we demonstrate
that the fourth-order diffusion tensor based framework is more general in the sense
that it can be used to express anisotropic fourth-order diffusion as it was described
by Hajiaboli [19] or by Li et al. [21], while providing additional flexibility.

2 Background and Related Work

We will now formalize the above-mentioned idea of diffusion-based inpainting
(Sect. 2.1), and review two concepts that play a central role in our method: Anisotropic
nonlinear diffusion (Sect. 2.2) and fourth-order diffusion (Sect. 2.3). Further details
can be found in works by Galić et al. [13] and Weickert [34], respectively. Finally,
we provide additional context with a brief discussion of alternative approaches to
image compression (Sect. 2.4).

2.1 Diffusion-Based Inpainting

In order to apply Eq. (1) to image smoothing, we have to restrict it to the image
domain �, and specify the behavior along its boundary ∂�. It is common to assume
that no heat is transferred through that boundary (homogeneous Neumann boundary
condition). Moreover, the positive real line (0,∞) is typically taken as the time
domain. The resulting PDE can be written as

∂t u = div(D · ∇u), � × (0,∞) ,

∂nu = 0, ∂� × (0,∞) ,
(2)

where n is the normal vector to the boundary ∂�. The original image f : � → R is
used to specify an initial condition u = f at t = 0. For increasing diffusion time t ,
u will correspond to an increasingly smoothed version of the image.

In image inpainting, we know the pixel values on a subset K ⊂ � of the image,
and aim to reconstruct plausible values in the unknown regions. A diffusion-based
model for inpainting can be derived from the one for smoothing, by modeling the set
of locations at which the pixel values are known with Dirichlet boundary conditions.
In this case, f : K → R will be used to model the known values. In inpainting-based
image compression, K will consist of a small fraction of the pixels in the original
image. With this, we obtain the following model for inpainting:
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∂t u = div(D · ∇u), �\K × (0,∞) ,

∂nu = 0, ∂� × (0,∞) ,

u = f, K × [0,∞)

(3)

In this case, the diffusion process spreads out the information from the known
pixels to their spatial neighborhood. For time t → ∞, image smoothing and inpaint-
ing both converge to a steady state, i.e., limt→∞ ∂t u = 0. However, the steady-state
of smoothing is trivial (u approaches a constant image with average gray value),
while the Dirichlet boundary conditions in the inpainting case ensure a non-trivial
steady-state, which is taken as the final inpainting result: uinpainted = limt→∞ u.

2.2 From Linear to Anisotropic Nonlinear Diffusion

So far, we assumed that the diffusion coefficient D is a scalar and constant, indepen-
dent from the location within the image. This results in an inpainting model based
on linear homogeneous diffusion [20]. With D = 1, it can be written as

∂t u = �u, �\K × (0,∞) . (4)

In this and all remaining equations in this section, the same boundary conditions
are assumed as specified in Eq. (3). Despite its simplicity, it has been demonstrated
that using this inpainting model for image compression can already beat the JPEG
standard when applied to cartoon-like images, and selecting the retained pixels to be
close to image edges [23].

When the diffusion coefficient is a scalar but depends on u, i.e., D = g(u), then
we call the model inpainting based on nonlinear isotropic diffusion [24]. A common
variant is to make D depend on the local gradient magnitude, i.e.,

∂t u = div(g(||∇uσ ||2)∇u), �\K × (0,∞) , (5)

where g is a decreasing nonnegative diffusivity function, e.g., the Charbonnier
diffusivity

g(s2) =
1

√

1 + s2

λ2

, (6)

and λ is a contrast parameter separating low from high diffusion areas [8]. In order
to localize edges better and to make the problem well-posed, the image is pre-
smoothed with a Gaussian before taking its gradient, i.e., g(||∇uσ ||2) is used instead
of g(||∇u||2) [6].
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In the above-discussed models, the diffusion occurs only in the gradient direction.
This can be changed by replacing the scalar diffusivity with a second-order diffusion
tensor, i.e., a symmetric positive definite matrix. This is the basis of anisotropic
nonlinear diffusion [34],

∂t u = div(D · ∇u), �\K × (0,∞) . (7)

In edge-enhancing diffusion (EED), the diffusion tensor D is defined as

D = g(||∇uσ ||2) · v1vT
1 + 1 · v2vT

2 , (8)

where v1 = ∇uσ

||∇uσ ||2 and v2 = ∇u⊥
σ

||∇uσ ||2 . This means that diffusion across the edge (v1)
is decreased depending on the gradient magnitude, while diffusion along the edge
(v2) is allowed. Examples of EED based inpainting are included in our experimental
results. In general, EED based inpainting results in better interpolated images than
linear homogeneous or nonlinear isotropic PDEs. This makes it a current state-of-
the-art choice for PDE-based image compression.

2.3 From Second to Fourth Order Diffusion

All models discussed above, as well as several others that have been proposed for
inpainting [36], share a common property: They rely on second order PDEs. In
image denoising, higher-order PDEs have a long history, going back to work by
Scherzer [26]. You and Kaveh [35] propose fourth-order PDEs as a solution to the
so-called staircasing problem that arises in edge-enhancing second-order PDEs, such
as the filter proposed by Perona and Malik [24]: While the second-order Perona-
Malik equation creates visually unpleasant step edges from continuous variations
of intensity, corresponding fourth-order methods move these discontinuities into the
gradients, where they are less noticeable to the human eye [16]. Subsequently, other
fourth-order PDE-based models have been introduced, and have mostly been applied
for denoising [18, 19, 22].

For a specific family of higher-order diffusion filters, Didas et al. [10] have shown
that, in addition to preserving average gray value, they also preserve higher moments
of the initial image. Moreover, depending on the diffusivity function, they can lead to
adaptive forward and backward diffusion, and therefore to the enhancement of image
features such as curvature. Gorgi Zadeh et al. [15] made use of this property in order
to enhance ridges and valleys, by steering fourth-order diffusion with a fourth-order
diffusion tensor. Our work adapts their method in order to achieve accurate inpainting
and reconstruction from a small subset of pixels.
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2.4 Alternative Approaches to Image Compression

The dominant lossy image compression techniques today are JPEG and JPEG2000.
They are based on the discrete cosine transform (DCT) and wavelet transform, respec-
tively. However, they are not sensitive to the geometry of an image, i.e. those stan-
dards are not tailored to their geometrical behavior [5]. Especially, the JPEG standard
involves dividing the image into small square blocks. This can cause a degradation
called “blocking effect” [30], and can result in unsatisfactory reconstructions espe-
cially at high compression rates.

It is an ongoing research trend to apply machine learning methods to image com-
pression, such as convolutional and recurrent neural networks [3, 31, 32]. Learning
based approaches tend to perform very well on the specific class of images on which
they were trained, but require a huge amount of data. For example, Toderici et al.
[33] used for training a dataset of 6 million 1280 × 720 images taken from the web.

3 Method

We will now introduce our novel PDE (Sect. 3.1), investigate its relationship to
previously proposed anisotropic fourth-order diffusion (Sect. 3.2), and comment on
our chosen discretization, as well as numerical stability (Sect. 3.3).

3.1 Anisotropic Edge-Enhancing Fourth Order PDE

Our fourth-order PDE builds on a model that was proposed by Gorgi Zadeh et al. [15]
for ridge and valley enhancement. It can be stated concisely using Einstein notation,
where summation is implied for indices appearing twice in the same expression:

∂t u = −∂ j i

[

D(Hρ(uσ )) : H(u)
]

i j
(9)

In this equation, H(u) denotes the Hessian matrix of image u. The “double dot
product” T = D : H indicates that matrix T is obtained by applying a linear mapD
to H, and the square bracket notation [T]i j indicates taking the (i, j)th component:

[T]i j =
[

D(Hρ(uσ )) : H(u)
]

i j
=

[

D(Hρ(uσ ))
]

i jkl
[H(u)]kl (10)

Since D maps matrices to matrices, it is a fourth-order tensor. Since its role is
analogous to the second-order diffusion tensor in Eq. (7), it is referred to as a fourth-
order diffusion tensor.
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The diffusion tensor D in Eq. (9) is a function of the local normalized Hessian
Hρ(uσ ) which contains the information that is relevant to achieve curvature enhance-
ment. For image inpainting, we propose to instead steer the fourth-order diffusion
in analogy to edge-enhancing diffusion, i.e., as a function of the structure tensor
J(uσ ), which is obtained from image u after Gaussian pre-smoothing with band-
width σ . We construct our fourth order diffusion tensor D from its eigenvalues μi

and eigentensors Ei via the spectral decomposition:

D (J(uσ )) = μ1E1 ⊗ E1 + μ2E2 ⊗ E2 + μ3E3 ⊗ E3 + μ4E4 ⊗ E4 (11)

The eigenvalues and eigentensors are defined as

μ1 = g(λ1), E1 = v1 ⊗ v1 ,

μ2 = 1, E2 = v2 ⊗ v2 ,

μ3 =
√

g(λ1), E3 =
1

√
2
(v1 ⊗ v2 + v2 ⊗ v1) ,

μ4 = 0, E4 =
1

√
2
(v1 ⊗ v2 − v2 ⊗ v1) ,

(12)

where g is a nonnegative decreasing diffusivity function, λi and vi are eigenvalues
and eigenvectors of the structure tensor J(uσ ) = ∇uσ∇uT

σ , i.e., λ1 = ||∇uσ ||22, v1 =
∇uσ

||∇uσ ||2 and λ2 = 0, v2 = ∇u⊥
σ

||∇uσ ||2 . The above-defined eigentensors are orthonormal

with respect to the dot product A : B = trace(BTA) [15].
Combining this new definition of the fourth-order diffusion tensor with Dirichlet

boundary conditions as in Eq. (3) results in our proposed model:

∂t u = − ∂ j i [D(J(uσ )) : H(u)]i j , �\K × (0,∞) ,

u = f, K × [0,∞)
(13)

As it is customary in PDE-based inpainting, we allow Eq. (13) to evolve until
a steady state has been reached, i.e., the time derivative becomes negligible. In our
numerical implementation, we use a Fast Semi-Iterative Scheme (FSI) [17] to greatly
accelerate convergence to a large stopping time.

In the definition of our fourth-order diffusion tensor D, the choice of μ1 and μ2

is analogous to anisotropic edge enhancing diffusion [34]. However, two additional
terms occur in the fourth-order case, μ3 and μ4. As noted in [15], μ4 is irrelevant,
since the corresponding eigentensor E4 is anti-symmetric, and the dot product E4 : H

with the Hessian of any sufficiently smooth image will be zero due to its symmetry.
To better understand the role of μ3, we observe that
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E3 : H =
1

√
2

(

vT
1 Hv2 + vT

2 Hv1

)

=
1

√
2

(

u(

v1+v2√
2

)(

v1+v2√
2

) − u(

v1−v2√
2

)(

v1−v2√
2

)

)

,

(14)

which amounts to a mixed second derivative of u, in directions along and orthogonal
to the regularized image gradient ∇uσ

||∇uσ ||2 or, equivalently, to the difference of second
derivatives in the directions that are exactly in between the two. This term vanishes if
the Hessian is isotropic, or if the gradient is parallel to one of the Hessian eigenvectors.
Therefore, the role of μ3 can be seen as steering the amount of diffusion in cases
of a Hessian anisotropy that goes along with a misalignment between gradient and
Hessian eigenvectors.

Gorgi Zadeh et al. [15] simply set μ3 to the arithmetic mean of μ1 and μ2. In our
work, we empirically evaluated several alternative options for μ3 by reconstructing
the test image shown in Fig. 1a, which contains one rectangle, one circle, and two
stars, from a randomly selected subset of 5% of its pixels. In this experiment, we
compare EED based inpainting with our novel fourth-order edge enhancing diffusion
(FOEED) with different settings of μ3: Specifically, μ3 = 1 corresponds to the max-

(a) Original test image of size

300 × 300

(b) Randomly chosen 5% of

pixel values

(c) Second-order EED inpaint-

ing based on (b)

(d) Fourth-order EED inpaint-

ing with µ3 = 1

(e) Fourth-order EED inpaint-

ing with µ3 =
µ 1+µ 2

2

(f) Fourth-order EED inpaint-

ing with µ3 = √µ1µ2

Fig. 1 Reconstruction of a synthetic test image (a) from 5% of its pixels (b) based on second-order
diffusion (c) and fourth-order diffusion with different coefficients for the mixed term μ3 (d–f).
Visually, the reconstruction in (f) is most similar to the original image
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Table 1 Numerical reconstruction errors on the test image (Fig. 1)

Errors EED FOEED (μ3 = 1) FOEED
(μ3 = μ1+μ2

2 )
FOEED
(μ3 = √

μ1μ2)

MSE 647.183 660.588 634.321 533.987

AAE 5.043 4.581 4.505 4.140

imum of μ1 and μ2 (Fig. 1d), μ3 = (1 + g(λ1)) /2 corresponds to their arithmetic
mean (Fig. 1e), and μ3 =

√
g(λ1) corresponds to their geometric mean (Fig. 1f). In

all cases, we used the Charbonnier diffusivity (Eq. (6)), which is popular for image
compression [13], the same contrast parameter (λ = 0.1) and smoothing parameter
(σ = 1). The only difference is time step size, where second-order EED permitted a
stable step size of 0.25, while a smaller step size of 0.05 was chosen for FOEED. A
more detailed theoretical and empirical analysis of stability will be given in Sect. 3.3.

A numerical comparison of the results is given in Table 1. For evaluation, we
used the well-known mean squared error (MSE) and average absolute error (AAE)
between original and reconstructed images. For two-dimensional gray-valued images
u and v with the same dimensions m × n, the MSE and AAE are defined as

MSE(u, v) =
1

mn

∑

i, j

(ui, j − vi, j )
2 ,

AAE(u, v) =
1

mn

∑

i, j

|ui, j − vi, j | .

(15)

According to Table 1, the most accurate results are achieved by setting μ3 to
the geometric mean of μ1 and μ2. Fourth-order EED with this setting produces
higher accuracy than second-order EED. Visually, Fig. 1 supports this conclusion.
Specifically, fourth-order EED with μ3 = √

μ1μ2 is the only variant that correctly
connects the thin bar at the top of the test image, and it leads to a straighter shape of
the thicker bar below, which is more similar to its original rectangular shape. In all
subsequent experiments, we set μ3 = √

μ1μ2.

3.2 A Unifying Framework for Fourth-Order Diffusion

Several fourth-order diffusion PDEs have been used for image processing previously.
We can better understand how they relate to our newly proposed PDE by observing
that the fourth-order diffusion tensorD introduces a unifying framework for fourth-
order diffusion filters. In particular, given its coefficients di jkl , we can expand Eq. (9)
by using Einstein notation as

∂t u = −∂ j i [di jklukl] (16)
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Effectively, the fourth-order diffusion tensor allows us to separately set the diffu-
sivities for all 24 = 16 fourth-order derivatives of the two-dimensional image u. We
will now demonstrate how several well-known fourth-order PDEs can be expressed
in this framework, starting with the You-Kaveh PDE [35]

∂t u = −�(g(|�u|)�u) , (17)

which can be rewritten as

∂t u = −∂xx [g(|�u|)uxx + 0 · uxy + 0 · u yx + g(|�u|)u yy]
−∂yx [0 · uxx + 0 · uxy + 0 · u yx + 0 · u yy]
−∂xy[0 · uxx + 0 · uxy + 0 · u yx + 0 · u yy]

−∂yy[g(|�u|)uxx + 0 · uxy + 0 · u yx + g(|�u|)u yy] .

(18)

Here and in all subsequent examples, many terms have zero coefficients. For
brevity, we will omit them from now on.

Hajiaboli’s anisotropic fourth-order PDE [19] is

∂t u = −�
(

g(||∇u||)2uN N + g(||∇u||)uT T

)

, (19)

where N and T are unit vectors parallel and orthogonal to the gradient, respectively.
It can be rewritten as

∂t u = −∂xx

[(

g(||∇u||)2u2
x + g(||∇u||)u2

y

u2
x + u2

y

)

uxx +
(

g(||∇u||)2ux uy − g(||∇u||)ux uy

u2
x + u2

y

)

uxy

+
(

g(||∇u||)2ux uy − g(||∇u||)ux uy

u2
x + u2

y

)

uyx +
(

g(||∇u||)2u2
y + g(||∇u||)u2

x

u2
x + u2

y

)

uyy

]

−∂yy

[(

g(||∇u||)2u2
x + g(||∇u||)u2

y

u2
x + u2

y

)

uxx +
(

g(||∇u||)2ux uy − g(||∇u||)ux uy

u2
x + u2

y

)

uxy

+
(

g(||∇u||)2ux uy − g(||∇u||)ux uy

u2
x + u2

y

)

uyx +
(

g(||∇u||)2u2
y + g(||∇u||)u2

x

u2
x + u2

y

)

uyy

]

(20)

From this method, Li et al. [21] derived two anisotropic fourth-order PDEs that, to
our knowledge, are the only anisotropic fourth-order models that have been applied
to inpainting previously. We will refer to them as Li 1

∂t u = −�(g(||∇u||)uN N + uT T ) (21)

and Li 2
∂t u = −�(uT T ) . (22)
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Li 1 can be re-written as

∂t u = −∂xx

[(

g(||∇u||)u2
x + u2

y

u2
x + u2

y

)

uxx +
(

g(||∇u||)ux u y − ux u y

u2
x + u2

y

)

uxy

+
(

g(||∇u||)ux u y − ux u y

u2
x + u2

y

)

u yx +
(

g(||∇u||)u2
y + u2

x

u2
x + u2

y

)

u yy

]

−∂yy

[(

g(||∇u||)u2
x + u2

y

u2
x + u2

y

)

uxx +
(

g(||∇u||)ux u y − ux u y

u2
x + u2

y

)

uxy

+
(

g(||∇u||)ux u y − ux u y

u2
x + u2

y

)

u yx +
(

g(||∇u||)u2
y + u2

x

u2
x + u2

y

)

u yy

]

,

(23)

while Li 2 becomes

∂t u = −∂xx

[(

u2
y

u2
x + u2

y

)

uxx +
(

−ux uy

u2
x + u2

y

)

uxy +
(

−ux uy

u2
x + u2

y

)

uyx +
(

u2
x

u2
x + u2

y

)

uyy

]

−∂yy

[(

u2
y

u2
x + u2

y

)

uxx +
(

−ux uy

u2
x + u2

y

)

uxy +
(

−ux uy

u2
x + u2

y

)

uyx +
(

u2
x

u2
x + u2

y

)

uyy

]

.

(24)

We observe that Li 1 is based on a similar idea as our proposed PDE: It permits
fourth-order diffusion along the edge, while applying a nonlinear diffusivity function
across the edge. However, expressing Li et al.’s models in terms of fourth-order
diffusion tensorsD1 andD2 reveals that our approach is more general. In particular,
we can observe that

D1 : H = g(||∇u||)uN N I + uT T I ,

D2 : H = uT T I ,
(25)

where I is the 2 × 2 identity matrix. In our model, D : H can yield arbitrary
anisotropic tensors. In this sense, our model more fully accounts for anisotropy
compared to the ones by Hajiaboli and Li et al.

The fourth-order Eq. (16) involves inner second derivatives of the image, which
then get scaled by diffusivities, before outer second derivatives are taken. We observe
that, in both cases, our model accounts for mixed derivatives that are ignored by
previous approaches to anisotropic fourth-order diffusion: In the outer derivatives,
this can be seen from the fact that Eq. (9) involves mixed derivatives, while Hajiaboli
and Li et al. only consider the Laplacian.

Similarly, our definition of a fourth-order diffusion tensorD accounts for mixed
derivatives also in the inner derivatives. Following Eq. (14), we obtain

D : H = μ1(E1 ⊗ E1) : H + μ2(E2 ⊗ E2) : H + μ3(E3 ⊗ E3) : H

= μ1uv1v1 E1 + μ2uv2v2 E2 +
μ3√

2

(

u(

v1+v2√
2

)(

v1+v2√
2

) − u(

v1−v2√
2

)(

v1−v2√
2

)

)

E3 .

(26)
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Comparing Eqs. (25) and (26) reveals differences in the considered directions:
First, N and T are derived from the unregularized gradient, while the corresponding
directions v1 and v2 in our model include a Gaussian pre-smoothing. A second
difference is that our model involves an additional term, which is steered by μ3, and
accounts for the directions in between the regularized gradient and its orthogonal
vectors, i.e.,

(

v1+v2√
2

)

and
(

v1−v2√
2

)

. As it was demonstrated in the previous section,
this term can have a noticeable effect on the outcome. Overall, we conclude that our
newly proposed model is more general than the previously published ones.

3.3 Discretization and Stability

When discretizing Eq. (13) with standard finite differences

uxx ≈
(ui−1, j − 2ui, j + ui+1, j )

(�x)2
,

u yy ≈
(ui, j−1 − 2ui, j + ui, j+1)

(�y)2
,

uxy ≈
(ui−1, j−1 + ui+1, j+1 + ui−1, j+1 + ui+1, j−1)

4(�x)(�y)
,

u yx = uxy ,

(27)

we can write it down in matrix-vector form as in [15],

uk+1 = uk(I − τ Pk) , (28)

where uk is an mn dimensional image vector at iteration k. m, n are image width
and height respectively; �x and �y are the corresponding pixel edge lengths. Pk

is a positive semi-definite matrix that, with step size τ , leads to the system matrix
(I − τ Pk). The notation Pk indicates that it is iteration dependent, i.e., Pk = P(uk).

Stability of fourth-order PDEs for image processing is typically formalized in an
L2 sense, i.e., a time step is chosen such that

||uk+1||2 ≤ ||uk ||2 . (29)

In an inpainting scenario, it depends on our initialization of the unknown pixels
whether we can expect Eq. (29) to hold. Therefore, we rely on a stability analysis of
the smoothing variant of our proposed PDE. This variant is obtained by removing the
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Dirichlet boundary conditions and instead solving a standard initial value problem.
In this case, the stability analysis presented by Gorgi Zadeh et al. [15] carries over.
It ensures that time step sizes

τ ≤
2

16(�x)2 + 16(�y)2 + 2(�x�y)
(30)

are stable in the L2 sense. For a spatial discretization �x = �y = 1, this yields
τ ≤ 1/17 ≈ 0.0588. In inpainting, we empirically obtained a useful steady state
with a time step size τ ≤ 0.066, independent of the initialization. The fact that this
slightly exceeds the theoretical step size reflects the fact that Eq. (30) results from
deriving a sufficient, not a necessary condition for stability.

Stability of fourth-order schemes generally requires a quite small time step τ . This
makes it computationally expensive to reach the steady state by evaluating Eq. (28).
Hafner et al. [17] propose a remedy to this problem, the so-called Fast Semi-Iterative
Scheme (FSI). It extrapolates the basic solver iteration with the previous iterate and
serves as an accelerated explicit scheme. The acceleration of the explicit scheme (28)
is given as

um,k+1 = αk · (I − τP(um,k))um,k + (1 − αk) · um,k−1 , (31)

where um,−1 := um,0 and αk = 4k+2
2k+3 for k = 0, . . . , n − 1. Here m stands for outer

cycle, i.e. m-th cycle with inner cycle of length n. And for passing to the next
outer cycle, we set um+1,0 := um,n . The stability analysis requires the matrix P to be
symmetric. This is satisfied since the diffusion tensorD is symmetric, and symmetric
central discretizations are used. In our implementation, we used n = 40, and stopped
iterating after the first outer cycle for which ‖um − um−1‖2 < 10−4.

4 Experimental Results

To establish the usefulness of our proposed new model, we applied it to the recon-
struction of images from a sparse subset of pixels (Sect. 4.1). Moreover, we evaluate
performance for a more classic inpainting task, scratch removal (Sect. 4.2). We
also demonstrate how results depend on the chosen diffusivity function and contrast
parameter (Sect. 4.3).
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4.1 Reconstruction From a Sparse Set of Pixels

Improving image reconstruction from a sparse set of known pixels was the main
motivation behind our work. Therefore, we applied it to two well-known natural
images, toucan and peppers, as well as to a medical image, a slice of a T1 weighted
brain MR scan (t1slice). For toucan, we kept a random subset of only 2% of the
pixels. Due to the lower resolution of the peppers and t1slice images, we kept 5%
and 20%, respectively.

In all three cases, results from our approach (FOEED) were compared to results
from second-order EED, as well as from the two anisotropic fourth-order PDEs
proposed by Li et al. [21]. In all experiments, we used the Charbonnier diffusivity
function, we set the contrast parameter to λ = 0.1, and the pre-smoothing parameter
to σ = 1.

Results for toucan are shown in Fig. 2, for peppers in Fig. 3, and for t1slice in Fig. 4.
A quantitative evaluation in terms of MSE and AAE is presented in Table 2. In terms of
the numerical results, our proposed method produced a more accurate reconstruction
than any of the competing approaches. Visually, there is a clear difference between
second-order (EED) and fourth-order approaches (Li1, Li2, FOEED). Especially, we
found that the shapes of edges were reconstructed more accurately. For example, we
noticed this around the body and face in the toucan image (Fig. 2). Similarly, the
white and grey matter boundaries were better separated in the t1slice (Fig. 4).

As we expected based on the theoretical analysis in Sect. 3.2, visual differences
between the fourth-order methods are more subtle. However, in the peppers image
(Fig. 3), the tall and thin and the small and thick peppers in the foreground are much
more clearly separated in the FOEED result than in any of the others.

In addition to experimenting with grayscale versions of the toucan and peppers

images, we also applied EED and our FOEED filter channel-wise to the original
RGB color versions. Results for toucan can be found in Fig. 5, for peppers in Fig. 6.
Table 3 again provides a quantitative comparison. Similar observations can be made
as in the grayscale images: Again, FOEED leads to lower reconstruction errors than
EED, it visually reconstructs edges more accurately, and separates the peppers more
clearly.

Finally, we reconstructed images from a larger number of pixels, to obtain visually
cleaner results. Qualitative and numerical results are presented in Fig. 7 and Table 4,
respectively. FOEED still yields lower numerical errors than EED. Unsurprisingly,
the differences become smaller and less visually prominent as the mask density
increases. The table also reveals that FOEED requires more CPU time compared to
standard EED. However, due to the use of FSI in both cases, the difference in running
times until convergence is much lower than the difference in time step sizes.



Fourth-Order Anisotropic Diffusion for Inpainting and Image Compression 113

Fig. 2 1st row left: original toucan image of size 512 × 512; right: randomly chosen 2% of pixel
values; 2nd row left: EED based inpainted image; right: Li1 based inpainted image; 3rd row left:
Li2 based inpainted image; right: FOEED based inpainted image



114 I. Jumakulyyev and T. Schultz

Fig. 3 1st row left: original peppers image of size 225 × 225; Right: randomly chosen 5% of pixel
values; 2nd row left: EED based inpainted image; Right: Li1 based inpainted image; 3rd row left:
Li2 based inpainted image; Right: FOEED based inpainted image
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Fig. 4 1st row left: original t1slice image of size 256 × 256; Right: randomly chosen 20% of pixel
values; 2nd row left: EED based inpainted image; Right: Li1 based inpainted image; 3rd row left:
Li2 based inpainted image; Right: FOEED based inpainted image
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Table 2 Numerical comparison of inpainting models for gray-valued images

Image Errors EED FOEED Li1 Li2

Toucan MSE 105.37 96.228 100.994 102.665

AAE 4.488 4.164 4.397 4.465

Peppers MSE 467.261 443.129 455.633 459.606

AAE 10.94 10.523 11.042 11.107

t1-slice MSE 166.356 150.002 152.698 155.955

AAE 5.895 5.698 5.789 5.853

Fig. 5 RGB toucan image, reconstructed from randomly chosen 2% of pixel values using EED
(left) or FOEED (right)

Fig. 6 RGB peppers image, reconstructed from randomly chosen 5% of pixel values using EED
(left) or FOEED (right)
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Table 3 Numerical comparison of inpainting models for RGB images

Image Errors EED FOEED

Toucan MSE 119.062 108.061

AAE 4.819 4.594

Peppers MSE 478.799 441.203

AAE 11.049 10.543

Table 4 Numerical comparison and computation times corresponding to Fig. 7

Image Errors EED FOEED CPU time

Toucan MSE 18.029 17.295 53.060 (FOEED)

AAE 1.696 1.686 21.259 (EED)

Peppers MSE 113.5 110.885 20.999 (FOEED)

AAE 4.565 4.441 19.79 (EED)

t1-slice MSE 114.845 107.323 24.74 (FOEED)

AAE 4.610 4.553 10.64 (EED)

4.2 Scratch Removal

Li et al. [21] proposed their anisotropic fourth-order PDE for more classical image
inpainting tasks, such as scratch removal. We evaluated whether our more general
filter can also provide a benefit in such a scenario by reconstructing a scratched
version of the peppers image. Similar to Li et al., we first made the scratches rather
thin, covering only 6% of all pixels. Results are shown in Fig. 8 and in Table 5. In
this case, all methods work well: Numerical errors are small and similar between
methods, and even though FOEED achieves the best numerical result, differences
are difficult to discern visually.

Therefore, we created a more challenging version with thicker scratches, covering
18% of all pixels (Fig. 9). The corresponding numerical comparison is shown in
Table 6. Here, FOEED achieves the most accurate reconstruction. Visually, we again
observe that edges are reconstructed more accurately, and objects are more clearly
separated, with fourth-order compared to second-order diffusion, and that steering
it with a fourth-order diffusion tensor again provides small additional benefits over
the previous methods.

Table 5 Numerical comparison for peppers with thinner scratches (Fig. 8)

Image Errors EED FOEED Li1 Li2

Peppers MSE 9.520 7.813 8.161 8.132

AAE 0.363 0.326 0.346 0.346
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Fig. 7 Higher quality reconstructions from a larger subset of pixels. 1st row: toucan image, recon-
structed with EED (left) or FOEED (right) from randomly chosen 14% of pixels; 2nd row left: same
for 20% of pixels from peppers; 3rd row left: same for 30% of pixels from t1slice. As expected,
increasing the fraction of known pixels reduces the differences in the results of the two schemes
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Fig. 8 1st row left: original peppers image of size 225×225; Right: corrupted image. 2nd row
left: EED based inpainting; Right: Li1 based inpainting. 3rd row left: Li2 based inpainting; Right:
FOEED based inpainting
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Fig. 9 1st row left: original peppers image of size 225 × 225; Right: corrupted image. 2nd row
left: EED based inpainting; Right: Li1 based inpainting. 3rd row left: Li2 based inpainting; Right:
FOEED based inpainting
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Table 6 Numerical comparison for peppers with thicker scratches (Fig. 9)

Image Errors EED FOEED Li1 Li2

Peppers MSE 104.744 78.761 101.670 101.592

AAE 2.455 2.099 2.465 2.450

4.3 Effect of Diffusivity Function and Contrast Parameter

For image inpainting with second-order PDEs, the Charbonnier diffusivity was pre-
viously found to work better than other established diffusivity functions. To assess
whether this is still true in the fourth-order case, we repeated the reconstruction of
the peppers image as shown in Fig. 3 with different diffusivities. Table 7 summarizes
the results. We conclude that the Charbonnier diffusivity still appears to be optimal.

Finally, in Fig. 10, we illustrate how the reconstructed image depends on the
contrast parameter λ. As expected, increasing λ leads to an increased blurring of
edges. In the limit, the diffusivity function takes on values close to 1 over a substantial
part of the image, and our model starts to approximate homogeneous fourth-order
diffusion.

Table 7 Numerical comparison of FOEED with different diffusivity functions

Image Errors Charbonnier [8]
1

√

1+( s
λ

)2

Aubert [7]
( s
λ

)2

(s2+λ2)2

Perona-
Malik [24]

1
1+( s

λ
)2

Perona-
Malik2 [24]

e
−( s

λ
)2

Geman-
Reynolds [14]

2λ2

(s2+λ2)2

Peppers MSE 443.129 458.961 478.411 491.153 491.186

AAE 10.523 10.587 10.943 11.157 11.007

Fig. 10 From left to right: FOEED based inpainted image with λ = 0.1, λ = 0.5, λ = 15.5
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5 Conclusions

We introduced a novel fourth-order PDE for edge enhancing diffusion (FOEED),
steered by a fourth-order diffusion tensor. We implemented it using a fast semi-
iterative scheme, and demonstrated that it achieved improved accuracy in several
inpainting tasks, including reconstructing images from a small fraction of pixels, or
removing scratches.

Our main motivation for using fourth-order diffusion in this context is the
increased smoothness of results compared to second-order PDEs [35], which we
expected to result in visually more pleasant reconstructions. The model in our current
work is still based on a single edge direction at each pixel, extracted via a traditional
second-order structure tensor. It is left as a separate research goal for future work
to combine this with approaches for the estimation of complex structures such as
crossings or bifurcations [1, 29], and with their improved reconstruction, e.g., by
operating on the space of positions and orientations [4, 9, 11].

Finally, our current work only considered reconstructions from a random subset
of pixels. A practical image compression codec that uses our novel PDE should
investigate how it interacts with more sophisticated approaches for selecting and
coding inpainting masks [27].
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