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Abstract. We consider pricing options in a jump-diffusion model which requires
solving a partial integro-differential equation. Discretizing the spatial direction
with a fourth order compact scheme leads to a linear system of ordinary differ-
ential equations. For the temporal direction, we utilize the favorable boundary
value methods owing to their advantageous stability properties. In addition, the
resulting large sparse system can be solved rapidly by the GMRES method with a
circulant Strang-type preconditioner. Numerical results demonstrate the high order
accuracy of our scheme and the efficiency of the preconditioned GMRES method.
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1 Introduction

One of the most influential financial models is the jump-diffusion model presented by
Merton [19] in 1976. In Merton’s model, the asset return follows a standard Brownian
process impelled by a compound Poisson process with normally distributed jumps.
Under this assumption, the value of a contingent claim satisfies a partial integro-
differential equation (PIDE). A PIDE usually comprises a differential operator and
a non-local integral term. Numerical methods for solving PIDEs have already been
widely studied [1, 2, 10–12, 15, 24]. However, the commonly used central difference
discretization is only second order accurate in the spatial direction. Recently the au-
thors of this paper proposed to apply a fourth order compact (FOC) finite difference
scheme with local mesh refinement strategy to attain fourth order convergence in the
spatial direction [18]. The approach in [18] is to firstly discretize the temporal direction
of the PIDE by an implicit-explicit (IMEX) scheme. Then the semi-discretized equation
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at each time step can be naturally approximated by the FOC scheme. Though conve-
nient to use, the IMEX scheme is only first order accurate. Therefore one has to employ
the extrapolation strategy to reach high order accuracy for the time direction [12], and
thus the operation cost depends highly on the number of extrapolation stages.

The unwanted workload of the above treatment pushes us to seek an alternative
path. In 2003, Sun and Zhang [23] combined the boundary value method (BVM) with
FOC scheme to solve one-dimensional heat equations. The main concept in [23] is
as follows. After discretizing the derivatives of the spatial variable by FOC scheme,
they utilize a high order BVM to approximate the semi-discretized linear system of
ordinary differential equations (ODEs). The BVMs are a class of numerical methods
based on the linear multistep formula (LMF) for solving initial value problems (IVPs)
of ODEs [5,6]. In particular, the unconditional stability properties of BVMs make them
preferable over other initial value methods (IVMs) [6]. Furthermore, one can obtain a
high order BVM by implementing the LMF properly [5], i.e., there is no need to use
any extrapolation strategy.

In this paper, we consider solving a PIDE by extending Sun-Zhang’s idea. Un-
like [18], we first carry out a three point FOC discretization for the spatial direction,
and then a high order BVM is employed for the semi-discretized ODE system. This
combination, known as the FOCBVM, retains high order accuracy and remarkable sta-
bility property at the same time. Unfortunately, we remark that the initial condition
is always non-smooth in option pricing theory. In the spatial direction, a specific lo-
cal mesh refinement strategy [18, 25] is required to ease the impact of the non-smooth
payoff function and restore fourth order convergence of the FOC scheme. In the tem-
poral direction, as stated in [13, 20, 24], a numerical correction process should be exe-
cuted beforehand or numerical oscillations are likely to spoil the desired convergence.
For a high order BVM, we can retrieve the expected result by replacing the approxi-
mations of the beginning time steps with the second order backward difference for-
mula (BDF2). The BDF2 has been previously used by Almendral and Oosterlee [1]
to achieve second order convergence in time, and they showed that the linear system
at each time step can be swiftly solved by an iterative method based on the regular
splitting of matrices.

Nevertheless, a direct solver for FOCBVM may not be a wise move because of
the incredibly huge size of the resulting system. In fact, this is a major challenge for
solving systems of LMF-based ODE codes. In 2000, Bertaccini [3] proposed to use the
Krylov subspace method with block-circulant preconditioners to solve such systems.
From then on, many circulant preconditioners are designed to pair with the GMRES
method for the same purpose [8,16,17]. In this paper, we follow [8] ’s idea to speed up
calculation by constructing a Strang-type circulant preconditioner. We will see from
the numerical results that the preconditioned GMRES method works very well.

The rest of the paper is organized as follows. In Section 2 we apply the FOC scheme
with local mesh refinement strategy to discretize the spatial direction of the PIDE. In
Section 3 we introduce the BVM implementation and the BDF2 startup procedure.
The preconditioning technique is discussed in Section 4. In Section 5 we illustrate the



S. T. Lee, H. W. Sun / Adv. Appl. Math. Mech., 6 (2009), pp. 845-861 847

numerical results. Concluding remarks are given in Section 6.

2 FOC scheme and local mesh refinement

First we briefly introduce how to price a European call option for a single underlying
asset in Merton’s jump-diffusion model [19], where jumps are normally distributed
with mean δ and variation γ. The option value v(x, t) with logarithmic price x and
backward time t satisfies a forward PIDE on (−∞, +∞)× [0, T]:

vt =
σ2

2
vxx + (r− λκ − σ2

2
)vx − (r + λ)v + λ

∫ ∞

−∞
v(x + z, t) f (z)dz, (2.1)

where T is the maturity time, σ is the stock return volatility, r is the risk-free interest
rate, λ is the arrival intensity of a Poisson process,

κ = e(δ+γ2/2) − 1,

is the expectation of the impulse function and f is the probability density function of
the Gaussian distribution given by

f (z) =
e
−(z−δ)2

2γ2

√
2πγ

.

For an European call option, the initial condition is

v(x, 0) = max(Kex − K, 0), (2.2)

where K is the strike price. Boundary conditions are

v(x, t) ≈
{

0, as x → −∞,
Kex − Ke−rt, as x → +∞.

(2.3)

See [1, 2, 10–12, 15, 18, 19, 24] for details. Our aim is to determine the option value
v(x, T).

2.1 FOC scheme

Here we will apply an FOC scheme to discretize the spatial variable of (2.1), see [18,
22,23] for details. The coefficients of (2.1) are transformed into constants only for sim-
plicity and boundary conditions can be imposed when a finite computational domain
is used [15]. Hence we first truncate the infinite x-domain (−∞, ∞) to [xmin, xmax]. Let
hx be a uniform mesh size, then the computational spatial domain is denoted by

{xl ∈ R : xl = xmin + lhx, l = 0, 1, 2, . . . , m + 1} , Ωm ∪ {xmin,xmax},
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where x0 = xmin, xm+1 = xmax and Ωm denotes the set of inner grid points. Note that
xmin, xmax are selected appropriately such that x∗ = 0 ∈ Ωm.

Rewrite the PIDE (2.1) as

vt = avxx + bvx − (r + λ)v + λ(v ∗ f ), (2.4)

where

a =
1
2

σ2, b = r− λκ − σ2

2
, (2.5)

and the convolution integral

(v ∗ f )(x, t) =
∫ ∞

−∞
v(x + z, t) f (z)dz =

∫ ∞

−∞
v(y, t) f (y− x)dy.

Let vl(t) and (v ∗ f )l(t) be the discrete approximations to v(xl , t) and (v ∗ f )(xl , t)
respectively. A three point stencil of FOC difference scheme for (2.4) can be written in
matrix form:

[Bv(t) + c(t)]′ = Av(t) + d1(t) + λB(v ∗ f )(t) + d2(t), (2.6)

where the entries of tridiagonal matrices B, A ∈ Rm×m are

A(k1, k2) =





ζ1 − (r + λ)η1, if k1 = k2 + 1,
−ζ1 − ζ2 − (r + λ)(1− η1 − η2), if k1 = k2,
ζ2 − (r + λ)η2, if k1 = k2 − 1,
0, otherwise,

B(k1, k2) =





η1, if k1 = k2 + 1,
1− η1 − η2, if k1 = k2,
η2, if k1 = k2 − 1,
0, otherwise,

and 



η1 =
1
12
− bhx

24a
, η2 =

1
12

+
bhx

24a
,

ζ1 =
b2

12a
+

a
h2

x
− b

2hx
, ζ2 =

b2

12a
+

a
h2

x
+

b
2hx

.
(2.7)

All the vectors are given by

v(t) =




v1(t)
v2(t)

...
vm(t)


 , (v ∗ f )(t) =




(v ∗ f )1(t)
(v ∗ f )2(t)

...
(v ∗ f )m(t)


 , c(t) = η2




0
0
...

Kexmax − Ke−rt


 ,

d1(t) = [ζ2 − (r + λ)η2]




0
0
...

Kexmax − Ke−rt


 , d2(t) = λη2




0
0
...

(v ∗ f )max(t)


 .
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2.2 Evaluation of the convolution integral

To obtain (v ∗ f )(t) and d2(t), we have to evaluate the following convolution integral:

(v ∗ f )(x, t) =
∫ ∞

−∞
v(y, t) f (y− x)dy.

For the non-local y-domain, we apply the splitting method which is used in [1, 11].
The concept of this method is to divide the y -domain into [x1, xm] and [x1, xm]c =
(−∞, x1] ∪ [xm, ∞). It follows that

(v ∗ f )(x, t) =
∫ xm

x1

v(y, t) f (y− x)dy +
∫

[x1,xm]c
v(y, t) f (y− x)dy

, vloc(x, t) + vc(x, t).

Hence we have
(v ∗ f )(t) = vloc(t) + vc(t),

where
vloc(t) = [vloc(x1, t), vloc(x2, t), . . . , vloc(xm, t)]ᵀ,

and vc(t) = [vc(x1, t), vc(x2, t), . . . , vc(xm, t)]ᵀ.

To evaluate the first local integral, we discretize the integral domain by the uniform
mesh {x1, x2, . . . , xm} and write its discrete form by using fourth order accurate com-
posite Simpson’s rule:

vloc(x, t) =
hx

3

[
v(x1, t) f (x1 − x) + 2

m−3
2

∑
k=1

v(x2k+1, t) f (x2k+1 − x)

+ 4

m−1
2

∑
k=1

v(x2k, t) f (x2k − x) + v(xm, t) f (xm − x)
]
+O(h4

x). (2.8)

Substituting the spatial nodes x1, x2, . . . , xm into (2.8), we can write vloc(t) in a matrix
form Tf v(t), where

Tf =
hx

3




f (0) 4 f (x2 − x1) 2 f (x3 − x1) · · · f (xm − x1)
f (x1 − x2) 4 f (0) 2 f (x3 − x2) · · · f (xm − x2)
f (x1 − x3) 4 f (x2 − x3) 2 f (0) · · · f (xm − x3)

...
...

...
...

f (x1 − xm) 4 f (x2 − xm) 2 f (x3 − xm) · · · f (0)




,

is an m-by-m matrix. We now reduce the local integral to a matrix-vector product
Tf v(t). Note that Tf is restored to an m-by-m Toeplitz matrix when the coefficients
[1, 4, 2, . . . , 4, 2, 1]ᵀ of the composite Simpson’s formula are transferred to the vector
v(t). If a matrix-vector multiplication Tf v(t) is required, we can carry out a fast
Fourier transform (FFT) for rapid evaluation [7, 9].
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For the second integral vc(t), we have already known from (2.3) that v(y, t) can be
approximated by asymptotic boundary conditions. Hence direct calculation gives

vc(x, t) ≈
∫ ∞

xm

(Key − Ke−rt) f (y− x)dy

= Kex+δ+γ2/2N

(
x− xm + δ + γ2

γ

)
−Ke−rtN

(
x− xm + δ

γ

)
, (2.9)

where N is the standard normal cumulative distribution function. After all, we obtain

(v ∗ f )(t) = vloc(t) + vc(t) = Tf v(t) + vc(t).

Moreover, the integral on the boundary point xmax is derived in the same way:

d2(t) = λη2 [Tmaxv(t) + d3(t)] ,

where

Tmax =
hx

3




0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

...
f (x1 − xmax) 4 f (x2 − xmax) 2 f (x3 − xmax) · · · f (xm − xmax)


 ,

and d3(t) = [0, 0, . . . , vc(xmax, t)]ᵀ. Consequently, the ODE system (2.6) is simplified
as

[Bxv(t) + c(t)]′ = Axv(t) + d(t), (2.10)

where

Bx = B, Ax = A + λBxTf + λη2Tmax,
d(t) = d1(t) + λBvc(t) + λη2d3(t).

2.3 Local mesh refinement

However, it is shown in [18] that the FOC scheme on a uniform grid only achieved
second order accuracy. It is because the financial payoff function of a European call
option (2.2) is non-smooth around x∗=0. Thus grid points concentration near x∗ is
necessary. In this paper, we prefer the local mesh refinement strategy [18, 25] because
it is easily adapted to the three-point stencil of FOC scheme. Assume that the spatial
direction is first discretized by a uniform mesh containing x∗ with initial mesh size hx.
After applying the local mesh refinement strategy in [18], there are 4 d− log2 hxe new
nodes all together, where the operator dxe rounds x to the nearest integer greater than
or equal to x. Let Ωnew be the set of new grid points and n = m + 4 d− log2 hxe . Note
that 4 d− log2 hxe is a number of order O(log m), thus n is close to m. Then the refined
computational domain is the following union:

{xmin, x1, . . . , xm, xmax} ∪Ωnew , Ωn ∪ {xmin,xmax},
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where Ωn=Ωm ∪Ωnew denotes the set of inner grid points in the refined domain. After
refining the grid nodes, we need to move from Ωm to Ωn and modify all the operator
matrices. For the differential operators, the original tridiagonal matrices B, A ∈ Rm×m

are now tridiagonal-like matrices B̂, Â ∈ Rn×n. Note that B̂ and Â remain sparse
as the three-point stencil of FOC scheme only produces three non-zero entries on each
row. For the integral operator, we keep the splitting method as before and compute the
second non-local integral directly by (2.9). The local integral is similarly approximated
by the fourth order composite Simpson’s rule and its corresponding operator is an n-
by-n matrix T̂f . Note that Tf ∈ Rm×m is a submatrix of T̂f ∈ Rn×n and n−m is merely
a number of order O(log m). Therefore Tf takes an overwhelmingly large part of T̂f
and we can make good use of the Toeplitz-like structure of Tf . The semi-discretized
ODE system (2.10) is then altered to

[
B̂xv̂(t) + ĉ(t)

]′
= Âxv̂(t) + d̂(t), (2.11)

where B̂x=B̂, Âx is a combination of Â, λB̂xT̂f and a certain rank-1 matrix. The defini-
tions of all the vectors v̂(t), ĉ(t), d̂(t) of length n are analogous to those of v(t), c(t),
d(t) of length m.

3 BVMs for ODE system and BDF2 startup

3.1 BVMs and their matrix forms

After the discretization of spatial direction, the semi-discretized system (2.11) is an
IVP of ODEs with initial condition (2.2). That is why we turn to the BVMs, which
are numerical methods based on the LMF for solving ODEs. For simplicity, we first
consider solving the following general IVP:

{
u′(t) = g(t, u), t ∈ [0, T],
u(0) = u0,

(3.1)

by BVMs. Suppose the time direction [0, T] is first divided into s time steps with
ht=T/s and tj=jht, j=0, 1, 2, . . . , s. Let uj be an approximation to u(tj) and gj be an
approximation to g(tj, u(tj)). By using a µ-step LMF, we have the following relations:

µ−ν

∑
l=−ν

αl+νuj+l = ht

µ−ν

∑
l=−ν

βl+νgj+l , j = ν, . . . , s− µ + ν, (3.2)

where αl and βl are determined by different choice of BVM [5]. The BVM in (3.2)
should be used with υ initial conditions and (µ − υ) final conditions. However, the
IVP (3.1) only gives the initial value u0. To obtain the other initial and final values, we
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can apply adequate difference methods and obtain the additional µ− 1 equations:
µ

∑
l=0

α
(k)
l ul = ht

µ

∑
l=0

β
(k)
l gl , k = 1, . . . , ν− 1, (3.3)

µ

∑
l=0

α
(k)
µ−lus−l = ht

µ

∑
l=0

β
(k)
µ−l gs−l , k = s− µ + ν + 1, . . . , s. (3.4)

Suppose p-th order accurate BVM formulas (3.2), (3.3) and (3.4) are chosen. Applying
these formulas to (3.1), we obtain a linear system in matrix form as follows:

Atu = htBtg + e1u0 +O(hp
t ),

where u = [u0, u1, . . . , us]ᵀ, g = [g0, g1, . . . , gs]ᵀ, e1 = [1, 0, . . . , 0]ᵀ ∈ R(s+1) and At and
Bt are (s + 1) -by-(s + 1) banded matrices:

At =




1 · · · 0
α

(1)
0 · · · α

(1)
µ

...
...

...
α

(ν−1)
0 · · · α

(ν−1)
µ

α0 · · · αµ

α0 · · · αµ

. . . . . . . . .
. . . . . . . . .

α0 · · · αµ

α
(s−µ+ν+1)
0 · · · α

(s−µ+ν+1)
µ

...
...

...
α

(s)
0 · · · α

(s)
µ




,

and

Bt =




0 · · · 0
β

(1)
0 · · · β

(1)
µ

...
...

...
β

(ν−1)
0 · · · β

(ν−1)
µ

β0 · · · βµ

β0 · · · βµ

. . . . . . . . .
. . . . . . . . .

β0 · · · βµ

β
(s−µ+ν+1)
0 · · · β

(s−µ+ν+1)
µ

...
...

...
β

(s)
0 · · · β

(s)
µ




.

See [3, 5, 8] for details.
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3.2 FOCBVM

Recall the FOC-discretized ODE system (2.11) and let ϕ be the discrete initial condi-
tion. We consider the solution of

{ [
B̂xv̂(t) + ĉ(t)

]′
= Âxv̂(t) + d̂(t),

v̂(0) = ϕ,
(3.5)

by BVMs. We remark that the formulas (3.2), (3.3) and (3.4) are still applicable in block
cases. After applying the p-th order BVM for (3.5), we derive the following discretized
form [23]:

(At ⊗ B̂x)v + (At ⊗ In)c

=(htBt ⊗ Âx)v + (htBt ⊗ In)d + e1 ⊗ ξ +O(h4
x + hp

t ), (3.6)

where ⊗ is the Kronecker product, At and Bt are defined in the previous section, the
vectors are

v = [v̂(t0), v̂(t1), . . . , v̂(ts)]ᵀ, c = [ĉ(t0), ĉ(t1), . . . , ĉ(ts)]ᵀ,
d = [d̂(t0), d̂(t1), . . . , d̂(ts)]ᵀ, ξ = B̂x ϕ + ĉ(t0).

The matrix form of (3.6) is
Mv = q, (3.7)

where
M = At ⊗ B̂x − htBt ⊗ Âx, (3.8)

and the right-hand side is

q = (htBt ⊗ In)d + e1 ⊗ ξ − (At ⊗ In)c.

3.3 BDF2 startup

However, in the framework of BVMs, we have not taken into account the situation of
the initial condition and are unaware of the numerical disasters it might bring. To un-
cover the temporal malfunction caused by initial conditions, we start with the classic
Black-Scholes option pricing model [4]. In the Black-Scholes model, the price of an
option satisfies a partial differential equation (PDE) and hence the well-known Crank-
Nicolson method is highly recommended. Unfortunately, the unconditionally stable
Crank-Nicolson method has been shown to have oscillation issues in time because
most of the financial payoff contracts are non-smooth or discontinuous [24]. Take the
European call option as an example, the second derivative of the initial data is the
Dirac delta function. As a result, the Crank-Nicolson method does not restrain nu-
merical oscillations effectively and fails to converge with second order accuracy as the
mesh size decreases.
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Since the non-decaying parts usually disappear after a small number of time steps
[24], special initialization treatment should be satisfactory. In [20], Rannacher diag-
nosed the convergence of convection-diffusion approximations with discontinuous
initial data. He managed to recover the second order convergence of Crank-Nicolson
method by replacing the Crank-Nicolson approximation of the very first time step by
two half time steps of Backward Euler timestepping. We refer to this technique as
Rannacher timestepping, and it has been significantly used for numerical solutions
in computational finance. Giles and Carter [13] also examined the convergence of
Crank-Nicolson approximations of one-dimensional convection-diffusion equations
and provided an asymptotic analysis.

Consider the semi-discretized (2.11), it is possible to achieve quadratic conver-
gence by Crank-Nicolson approximations and Rannacher timestepping. Since we are
aiming for high order convergence, another startup procedure should be exploited.
Note that the BDF2 simply reaches second order accuracy in time because it already
includes one step of fully implicit method [1]. Thus we decide to choose the second
order accurate BDF2 as the startup unit. By any means, the fundamental idea is to re-
place the approximations of the starting time steps with BDF2 before applying BVMs
to the adjusted data.

In this paper, we tend to replace the approximations of the first two time steps
{0, ht, 2ht} to make sure oscillations are dampened. For brevity, we consider applying
the BDF2 to the following ODE:

{
w′(t) = φ(t, w), t ∈ [0, 2ht],
w(0) = w0,

Suppose the interval [0, 2ht] is first divided into a uniform mesh with a smaller step
size ĥt. The step size ĥt is selected in accordance with the convergence order of the cho-
sen BVM. For instance, if a fourth order BVM is used, then we can simply set ĥt ≤ h2

t
because the BDF2 is second order accurate. The BDF2 approximations are as follows.
For the first step, we employ a fully implicit scheme to approximate w(ĥt). For the
remaining steps, we have the following three-steps algorithm for t = ĥt, 2ĥt, . . .:

1

2ĥt

[
3w(t + ĥt)− 4w(t) + w(t− ĥt)

]
= φ

(
t + ĥt, w(t + ĥt)

)
.

According to the above relations, we apply the BDF2 to (2.11) on a uniform mesh

{0, ĥt, 2ĥt, . . . , 2ht},

and the related linear system can be quickly solved by the iterative method in [1] or
the fixed point iteration in [15]. Eventually, the BDF2 solution on 2ht is reckoned as
the renewed initial condition and the BVM is implemented on the uniform grid

{2ht, 3ht, 4ht, . . . , T},

instead. Note that all the items in the BVM are now linked with the number s− 1 since
we have already moved two steps forward.
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4 GMRES method with Strang-type preconditioners

4.1 Strang-type circulant preconditioner

Though BVMs are known for their stability properties, the large size of the resulting
system (3.7) makes direct methods numerically expensive. Consider the matrix (3.8)
in system (3.7), the components At and Bt are Toeplitz matrices plus small rank per-
turbation. Hence preconditioned iterative methods are favorable [3, 8, 16, 17]. Instead
of solving (3.6) directly, we consider the following preconditioned system:

P−1Mv = P−1q, (4.1)

where P is called the preconditioner of M. If P is set accordingly, then we can ac-
celerate the convergence rate of GMRES method [21] and solve (4.1) efficiently. In
particular, P can be chosen as a circulant-type matrix as in [3, 8]. In this paper, we
apply a Strang-type preconditioner, which is similar to the one in [8], for solving (3.7):

P = s(At)⊗ B̂x − hts(Bt)⊗ Â, (4.2)

where s(At), s(Bt) ∈ R(s−1)×(s−1) are the generalized Strang-type preconditioners of
At and Bt [7, 9]. More specifically, s(At) and s(Bt) are circulant matrices generated by
column vectors [αν, . . . , α0, 0, . . . , 0, αµ, . . . , αν+1]ᵀ and [βν, . . . , β0, 0, . . . , 0, βµ, . . . , βν+1]ᵀ

respectively. Here αl and βl for l = 1, 2, . . . , µ are the coefficients in the BVM formula
(3.2).

To study the invertibility of the preconditioner P, we first introduce the two char-
acteristic polynomials related to the given BVM (3.2) on the complex plane C:

ρ(z) = zν
µ−ν

∑
l=−ν

αl+νzl , and ς(z) = zν
µ−ν

∑
l=−ν

βl+νzl .

Define

Dν,µ−ν = {ω ∈ C : ρ(z)−ως(z) has ν zeros in |z| < 1 and µ− ν zeros in |z| > 1}.

Then a BVM is said to be Aν,µ−ν-stable if C− ⊆ Dν,µ−ν [5], where C− is the negative
half of the complex plane. The following theorem is a straightforward result of the
Corollary 1 in [8].

Theorem 4.1. [8] If the chosen BVM is Aυ,µ−υ-stable and the eigenvalues of B̂−1
x Â are in the

negative half of the complex plane, then the preconditioner P (4.2) is invertible.

4.2 Operation cost of preconditioned system

In this section, we will study the operation cost of the preconditioned system (4.1).
Recall that B̂x, Â are n-by-n tridiagonal-like matrices, Âx is a combination of Â, λB̂xT̂f
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and a rank-1 matrix, and the two numbers m, n are about the same. Both At, Bt are
(s− 1)-by-(s− 1) banded matrices and s(At), s(Bt) are their circulant preconditioners
respectively. The main work of the GMRES method in each iteration is the following
matrix-vector product [21]:

P−1Mψ = (s(At)⊗ B̂x − hts(Bt)⊗ Â)−1(At ⊗ B̂x − htBt ⊗ Âx)ψ,

where P is the preconditioner (4.2), M is the coefficient matrix (3.8) and ψ is a given
vector. We first consider the latter part:

Mψ = (At ⊗ B̂x − htBt ⊗ Âx)ψ.

Since At and Bt are banded, B̂x is tridiagonal-like, these matrices do not cause too
much trouble when they are involved in matrix-vector multiplications. Note that the
full matrix Âx is mainly composed of T̂f and the Toeplitz-like matrix Tf is a major sub-
matrix of T̂f . It is well known that the matrix-vector product for Toeplitz-like matrices
can be calculated by FFTs [7, 9]. Totally speaking, the matrix-vector product Mψ is
obtained in O(sm log m) operations.

To get P−1(Mψ), we first diagonalize the circulant matrices s(At) and s(Bt) by the
Fourier matrix F [7, 9]:

s(At) = FΛAt F
∗, and s(Bt) = FΛBt F

∗,

where ΛAt and ΛBt are (s− 1)-by-(s− 1) diagonal matrices holding the eigenvalues
of s(At) and s(Bt) respectively. It follows that

P−1(Mψ) = (F∗ ⊗ In)(ΛAt ⊗ B̂x − htΛBt ⊗ Â)−1(F⊗ In)(Mψ).

Note that F is an (s− 1)-by-(s− 1) Fourier matrix, therefore (F⊗ In)(Mψ) is a direct
outcome of FFTs with O(ms log s) complexity. The product for (F∗ ⊗ In) is a similar
case. As B̂x, Â are tridiagonal-like, the central matrix

Λt = ΛAt ⊗ B̂x − htΛBt ⊗ Â,

is a large sparse matrix and consists of s − 1 smaller systems with size n. Note that
all these sub-systems are tridiagonal-like, they can be solved effortlessly and the re-
lated operation cost can be omitted. In conclusion, the operation cost of the product
P−1(Mψ) is of order

O(sm log m) +O(ms log s) = O(ms log ms).

5 Numerical results

In the following experiments, we utilize two special families of BVMs, known as the
Extended Trapezoidal Rules of first kind (ETR) and second kind (ETR2). The ETR
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and ETR2 are families of symmetric schemes and the generalization of the trapezoidal
rules. Such methods are noted for having good stability properties [5, 6]. To match up
the FOC scheme in spatial direction, here we prefer fourth order ETR and ETR2 with
µ=3 and ν=2. The associated equations for initial and final conditions can be found
in [5]. After selecting the fourth order BVM, we can specify how the BDF2 startup
procedure is to be used in our case. For the sake of fourth order convergence, we
replace the approximations of the first two time steps by using BDF2 with step size h2

t
as discussed before.

We regard the analytical formula of pricing European call options for Merton’s
model [19] as the true solution. For the GMRES method, the initial guess is the zero
vector and the stopping criterion is

‖rk‖2

‖r0‖2
< 10−14,

where rk is the residual after k iterations, see [21] for details. We remark that the
true solution increases exponentially along the spatial direction and hence a relatively
small tolerance is needed to lower the errors.

The choice of truncation points xmin and xmax is also crucial. As mentioned before,
xmin and xmax should be adjusted properly such that x∗ = 0 belongs to the spatial com-
putational grid. Moreover, we need to make sure x∗ is the common boundary point of
two integral subdomains, i.e., the term v(x∗, t) f (x∗ − x) should hold the coefficient 2
of the composite Simpson’s rule. We can achieve this by using asymptotic grid points
outside of the computational domain when we calculate the integral.

We first try out the FOCBVM with ETR2, and compare the iteration numbers re-
quired for convergence of the preconditioned GMRES method with the unprecondi-
tioned one. The first set of input parameters are

T = 0.25, K = 100, σ = 0.25, r = 0.05, λ = 0.1, δ = −0.9, γ = 0.45.

In Fig. 1, we see that the eigenvalues of the matrix B̂−1
x Â for different n are all negative

real numbers and bounded away from zero. Since the fourth order ETR2 is A2,1-stable
[5, 6], according to Theorem 4.1, the preconditioner P is invertible.

−0.2001 −0.1999 −0.1997 −0.1995

2  

2.5

3  

3.5

largest eigenvalue

lo
g1

0(
n)

Figure 1: Largest eigenvalues of the matrix B̂−1
x Â for different n.
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Table 1: Errors and numbers of iterations of FOCBVM with no preconditioner or Strang-type preconditioner
for pricing a European call option under Merton’s jump-diffusion model.

n s l∞(hx, ht) order Is Ps
41 5 2.17e-2 - 26 23
73 10 4.62e-3 2.23 74 25

133 20 3.87e-4 3.58 242 27
249 40 2.76e-5 3.81 711 30
509 80 1.88e-6 3.87 >1000 38

1059 160 1.22e-7 3.95 >1000 50

Recall that n is the number of grid nodes in the refined spatial grid minus xmin and
xmax, and s is the number of time steps. In Table 1, l∞(hx, ht) is the maximum absolute
error between the true solution and the approximation with mesh size hx and ht. The
“order” is the log 2-ratio of l∞(hx, ht) to l∞(hx/2, ht/2). Since the FOCBVM is now
fourth order accurate in both directions, we simultaneously halve hx and ht after each
approximation and the convergence order should gradually approach 4. The term
“Is” denotes the number of iterations of the GMRES method without preconditioning,
and “>1000” means that the scheme needs more than 1000 iterations to converge.
Similarly, “Ps” denotes the number of iterations of the GMRES method with Strang-
type preconditioner. We observe fourth order convergence from the numerical results,
though the ordinary GMRES method demands a dramatic number of iterations to
converge as the grid is refined. On the other hand, the preconditioned GMRES method
needs far fewer iterations for convergence.

We would also like to compare the FOCBVM with other existing efficient meth-
ods, e.g., the Crank-Nicolson (CN) scheme. It is shown in [15] that the CN scheme
with Rannacher timestepping procedure obtains second order accuracy, and systems
at each time step can be rapidly solved by fixed point iteration. In Table 2, the column
”CPU” displays the CPU time in seconds, and the other columns are analogous to Ta-
ble 1. Though the FOCBVM is more costly to carry out than the CN scheme, it can
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3  
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largest real part

lo
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0(
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Figure 2: Largest real parts of eigenvalues of the matrix B̂−1
x Â for different n.
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Table 2: Errors and CPU time of CN scheme and FOCBVM.

CN FOCBVM
s m l∞(hx, ht) order CPU n l∞(hx, ht) order CPU
5 31 2.08e+0 - 0.01 41 2.17e-2 - 0.07

10 63 7.40e-1 1.49 0.02 73 4.62e-3 2.23 0.12
20 127 1.57e-1 2.24 0.02 133 3.87e-4 3.58 0.30
40 255 3.74e-2 2.07 0.05 249 2.76e-5 3.81 0.97
80 511 9.27e-3 2.01 0.15 - - - -

160 1023 2.31e-3 2.00 0.58 - - - -
320 2047 5.78e-4 2.00 5.04 - - - -

Table 3: Errors, numbers of iterations and CPU time of FOCBVM with Strang-type preconditioner for
pricing a European call option under Merton’s jump-diffusion model.

n s l∞(hx, ht) order Ps CPU
41 10 3.24e-4 - 14 0.08
89 20 4.46e-5 2.86 17 0.15

229 40 3.50e-6 3.67 22 0.71
561 80 2.70e-7 3.69 27 3.88
1313 160 2.04e-8 3.73 50 44.53

reach the same error level as the second order scheme with fewer grid points and less
time. In such sense, the FOCBVM is more effective than the CN scheme. For example,
if a solution with maximum absolute error around 10−4 is wanted, the CN scheme
finishes the job with m=2047 in about 5 seconds. However, the FOCBVM can do the
same thing with only n=133 in 0.3 seconds.

At last we will test another set of parameters, which will show the essence of our
proposed method. This time we choose the fourth order ETR as the BVM for time
direction, and the input parameters are

T = 0.5, K = 1, σ = 0.1, r = 0, λ = 1, δ = 0, γ = 0.5.

In Fig. 2, we see that the eigenvalues of the matrix B̂−1
x Â for different n all lie in the

negative half of complex plane. Since the fourth order ETR is also A2,1-stable [5, 6],
according to Theorem 4.1, the preconditioner P is invertible.

In Table 3, all the column tags are similar to the ones in the previous tables. We see
that the FOCBVM still achieves fourth order convergence for both directions.

6 Concluding remarks

In this paper, we have shown that the FOCBVM with local mesh refinement and BDF2
startup procedure achieves high order convergence in both spatial and temporal di-
rections for solving a PIDE, and the preconditioned GMRES method outperforms the
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original one. We once again remark that the constant coefficient assumption is only
for simplicity. In fact, the spatial operators will still be sparse matrices after applying
an FOC scheme for variable coefficients. Therefore, the total operation cost is pretty
much the same after all. Also, we note that inaccuracies mostly appear at the strike
price and both ends of the spatial domain. Hence, we should concentrate grid nodes in
these regions, especially when we are pricing other discontinuous options or maturity
time T gets larger. For the BDF2 startup procedure, it is of great interest to optimize
the number of initial time steps required for convergence.

By recalling the construction of the Strang-type preconditioner (4.2), we chose the
tridiagonal-like matrix Â over full matrix Âx because of the resulting sparse subsys-
tems. Suppose we embed Âx, which contains a Toeplitz-like submatrix, in the pre-
conditioner. Then all the subsystems after Fourier diagonalization will turn out to be
Toeplitz-like, hence it is possible to create another preconditioner for these subsys-
tems. In our numerical tests, we also notice that the iteration number of the precon-
ditioned GMRES method steadily increases as we halve the mesh size in spatial di-
rection. Therefore, for future work, we would consider other preconditioners for (3.7)
so that we can further reduce the number of iterations and CPU time. We would also
like to price different types of options and extend our method to advanced financial
models.
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