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Fourth Order Difference Methods for the Initial
Boundary-Value Problem for Hyperbolic Equations

By Joseph Öliger

Abstract. Centered difference approximations of fourth order in space and second order

in time are applied to the mixed initial boundary-value problem for the hyperbolic equation

«i = — cux. A method utilizing third order uncentered differences at the boundaries is shown

to be stable and to retain an overall fourth order convergence estimate. Several compu-

tational examples illustrate the success of these methods for problems with one and two

spacial dimensions. Further examples illustrate the effects of approximations of various

orders of accuracy used at the boundaries.

1. Introduction. We investigate the problem of obtaining approximate solutions

to the initial boundary-value problem for first order hyperbolic equations, e.g.,

(1.1) «, =  -cux,    c > 0, a g x g b, t ^ 0,

(1.2) u(x, 0) = f'x),        a S x ^ b,

(1.3) «(0,/) = g(t),        t ^ 0,

with the compatibility condition /(O) = g(0).

We restrict our attention to finite-difference methods and, further, to those methods

which can easily be extended for application to large nonlinear problems in several

space dimensions. For this reason, we use second order leap-frog differencing in time t

since it is explicit and only requires the storage of two "levels" of the solution. We

use the fourth order centered approximation of the first derivative in the spacial

coordinate x. The mesh ratio should be taken small enough that the 0(At2) and

0(Ax*) error terms are of the same size. The nearly optimal properties of fourth order

approximations have been demonstrated in [4] and [9] for the Cauchy problem

associated with (1.1). They have been shown to be far superior to lower order approx-

imations and only slightly inferior to sixth order approximations from the standpoint

of computational efficiency. Furthermore, little or nothing is gained using even higher

order approximations. So long as c ~ / = b — a, and certainly for c < 1, these same

conclusions hold for the present problem. The additional complications which arise

in the neighborhoods of the boundaries for the problem (1.1 )—( 1.3) when sixth order

methods are used seem to cancel the small advantage in computational efficiency

that they have over fourth order methods for the Cauchy problem.

In Section 2, we consider an extrapolation method for handling the closure problem

at the boundaries and examine the stability of this technique.

In Section 3, we give several computational results using the extrapolation tech-

nique of Section 2 for scalar and vector equations in both one and two space dimen-
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sions. We also compare several other extrapolation procedures with that discussed

in Section 2.

We use the theory of Gustafsson, Kreiss, and Sundström [6] and assume that the

reader is familiar with that paper.

2. An 0(h4) Approximation with 0(h3) Extrapolation at the Boundaries.

We want to compute an approximate solution to the problem (1.1), (1.2), (1.3) using

difference methods. For convenience, we take a = 0 and b = 1. Let k > 0 and

h = 1/iV, N a natural number, and define a grid function v,(t) = v(vh, t) for v =

0, 1, • • ■ , N and t = 0, k, Ik, ■ ■ ■ . For 2 ^ v ^ N — 2, we approximate (1.1) by

the 0(h* + k2) difference approximation

(2.1) v,(t + k) = v,(t - k) - c2k[iD0(h) - \Do(2h)]uAt)

where D0(nh)vXt) = (lnh)~\vv+n(t) - D ,_„(*)]. Let X = k/h. For v = I, N - 1, N,

we use the following 0(h3 + k2) approximations:

i?,(f + k) = i?,(< — *) — cX/3

(2.2) • { -2ü,_1(0 - f Mí + k) + v,(t - k)] + 6v,+1(t) - v,+i(t)\

for    v = 1,

d,(/ + A;) = D,(i - A:) - cX/3

(2.3) • Íd,_2(í) - 6^_,(0 + f [ü,(í + A) + uF(< - *)] + 2d,+1(0}

for    v = N — 1,

i?,(< + *) = u,(r - A;) - cX/3

(2.4) • {-2v,-3(t) + 9v,-t(t) - ISv.-At) + ¥[«,(( + *) + v,(t - k)]\

for    v =  N.

Corresponding to (1.2), we use

(2.5) d,(0) = ffyh),       v = 0, 1, • •• , N,

and, corresponding to (1.3), we use

(2.6) v0(t) = g(t),       t = 0, k, Ik, • • • .

In order to uniquely determine the solution to our difference equations, we assume

that we have a sufficiently accurate approximation to the solution u(x, t) at t = k,

say w(x), and set

(2.7) vy(k) = wiyh),        v = 0, 1. • • • , N,

assuming the compatibility relation w(0) = g(k);

We now investigate the stability of the method defined by (2.1) (2.7). We use the

stability Definition 3.3 of Gustafsson et al. [6]. In [6], it is established (Theorem 5.4)

that the stability of two related quarter-plane problems is equivalent to stability for

the two-boundary problem for the Definition 3.3. These two problems are simply

obtained by removing one or the other of the boundaries and extending the domain

to ± oo, as is appropriate.
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The related right quarter-plane problem consists of Eqs. (2.2), (2.6) and (2.1) for

v = 1,3, ■ • ■ and (2.5), (2.7) for v = 0,1,2, • • • . For convenience, we replace the related

left quarter-plane problem by an equivalent right quarter-plane problem. We consider

c < 0 and use (2.1) for v = 2, 3, • • • , (2.7) for v - 0, 1, 2, •• • , (2.5),

v,(t + k) = vr(t — k) — cX/3

(2.8) •{-¥&>,(* + A:) + vv't - k)} + l°u„+1(t) - 9vr+2(t) + 2^+3(i)l

for    v = 0,

and (2.2) for v = 1. This completes the definition of the two related problems. We

will refer to the first of these as the inflow problem and to the second as the outflow

problem.

Hereafter, we always make the

Assumption 2.1. The mesh ratio X is taken to be positive and such that (2.1)

is stable for the Cauchy problem, i.e., 0 < \c\ X < \c\ Xmax œ 0.7287.

In [6], it is shown that stability for the quarter-plane problem is equivalent to

certain properties of a determinental equation. We now derive these determinantal

equations for our two quarter-plane problems.

Corresponding to Eq. (2.1), there is the resolvent equation

(2.1r) zß,_2 — 8zß,_! + 6/cX-(z2 — l)v, + 8zß„+1 — zt?„+2 = 0

with characteristic equation

(2.1c) P(k) = z - 8zk + 6/cX-(z2 - l)/c2 + Szk   - zk .

Equation (2.8) has resolvent and characteristic equations

(2 8r) 3/cX-Kl + llcX/6) - (1 - 1 lcX/6)z2]¡3,

- 18zß,+1 + 9zCy+2 - 2zC,+3 = 0,

(2.8c)        Oito = 3/cX-[(l + llcX/6) - (1 - llcX/6)z2] - 18zk + 9zk2 - 2zk3,

and for Eq. (2.2) we have the resolvent and characteristic equations

(2.2r)        2zß,_! + 3/cX-[(l + cX/2) - (1 - cX/2)z2]ß, - 6zß,+1 +zß,+2 = 0,

(2.2c)        ß2(/c) = 2z + 3/cX-[(l + cX/2) - (1 - c\/2)z2]k - 6zk2 + zk .

To continue, we need

Lemma 2.1. Let z be a complex number. For \z\ ^ 1, the roots of Eq. (2.1c)

split into two groups Mx = [ki(z), k2(z)] and M2 = [k3(z), Kt(z)] such that

(a) |Kl(z)| g 1, |k2(z)| g 1,

(b) |«300| ̂  1, k(z)| ^ 1,
where the k¿,í - 1, • ■ • ,4, are continuous functions ofz. Both the inequalities of (a) and

of(h) can be taken strictly iff \z\ > 1 or, for z = e'1 and a = [6 sin(ô)/cX], the in-

equality a2 > 9 + 24 \/6 holds. Furthermore, at least one of the inequalities in (a)

and in (b) can always be taken strictly.

Proof. This lemma has been proven for \z\ > 1 in [6]. Let z = el>. We can then

equivalently write P(k) = 0 as

P,(/t) =  1 - 8k + /(12/cX)sin 6k2 + 8k   - k4 = 0.
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It then is easily verified that P,(k) = 0 => Pi(k_1) = 0, i.e., the roots of P^k) are

symmetric in the unit circle. The lemma then follows from a lengthy but straight-

forward computation based on a theorem of Cohn (see Marden [10, Theorem 45.2])

and Theorem 5.1 of Miller [11].

Lemma 2.2. The elements of Mx are distinct for \z\ ^ 1, except for the single

value za which is the root ofz2 — cX 6(—36 + 96 \/6)I/2 z — 1 = 0, such that \z0\ > 1.

Proof.   We can equivalently examine the roots of

P2(k) = 1 - 8k + ßK  + 8k  - K

where ß = (z2 - 1) (6c \z)~\ Let R[P2(k), P2'(k)] be the Bézout resultant of P2(k)

and P2'(k). It is then necessary that R vanish at multiple roots of P2(k) (Theorem 5 of

Collins [1]). We have computed R utilizing the algorithm of Collins ([1], [2]):

R = -ß* - llß2 + 54000

which has roots

ft = (-36 4-96 V6)I/2,

ft = -(-36 + 96 V6)1/2,

\l/2ft = /'(36 + 96 V6Y

ft = -i(36 + 96 \/6)1/2.

If we then examine the associated roots k, of the quartic P2 and the associated roots z

of the quadratic defining ft we find that ft yields k, = k2,\k,\ < 1; ft yields k3 = k4,

|(c3| > 1, /ci ̂  <c2; ft yields |<c,| < 1, *, » k3, \k2\ = 1, |k4| > 1 and ft yields |k,| < 1,

«2 = "3. I «21 = 1, I «41 > 1. (Liberty has been taken to number these roots somewhat

arbitrarily.) It therefore follows that it is only ft which leads to k, = k2. The quadratic

for z has one root inside and one root outside the unit circle. The lemma follows.

Let z be a fixed complex number, \z\ ^ 1, and k¡ and k2 the two roots of (2.1c)

belonging to Mlt on the unit disk. We first consider the case z ?¿ z0 and hence «i ^ «2.

The general solution for either the inflow or outflow problem is then of the form

v, = pi«/ + P2K2'. Then the determinantal equation (see Eq. (10.3) of [6]) associated

with our inflow problem is

(2.9a) Di'z) = det
1 1

and that associated with our outflow problem is

- o2(«2) - g2(ki) = 0

(2.10a)        D2(z) = det

\Q»(Kl)      ß2fe)J

= Gi0ci)e2(K2) - ßlfe)ß2(tl) = 0.

For z =  Zo, we have «t  =   k2 and thus the general form of the solutions is

p. = (pi + vp2)n\". Let

ß,W = -18z/c + 18zk2 - 6zk     and

0,(<c) = (3/cX)[(l + cX/2) - (l - cX/2)z2]k - 12zk2 + 3zk .

The determinantal equation associated with the inflow problem is then, at z = z0,

1 0

lCï(«i)   £?*(«. )J
(2.9b) DM = det Q¿k.) = 0
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and that associated with the outflow problem is

(2.10b) D2(z„) m det QlM    QÁKl)    = COcXM«,) - Q&ÙQAk,) = 0.

ß.(*l)      Qt(K,).

Z), and D2 are now defined for all z such that \z\ 2: 1.

It is shown in [6] that a necessary and sufficient condition for stability is that the

associated determinantal equation has no roots z with \z\ 2: 1.

Let i?[5i(xi, • • • , x„), B2(xu ••• , xn)] be the Bézout resultant of the polynomials

ft and ft in the n complex variables xu • • • , xn, with respect to the variable x„.

Since Ki(z) and k2(z) are roots of P[k(z)], we form resultant systems with P, D¡

and D2. P, D¡ and D2 are polynomials in the variables X, z, k, and k2. The resultant

system for the inflow problem is

(2.11) ft(X,z) = R{P(\,z,k,),R[P(\,z,k2), D,(\, z, Kl, k8)]}

and that for the outflow problem is

(2.12) ft(X,z) = R{P(K,z,k,), R[P(\,z,k2), D2(K, z, ku k2)]\ .

We can now state

Theorem (2.1). Let X be fixed. Then, for this X, the inflow or outflow problem is

stable by Definition 3.3 of [6] if for the associated ft given by (2.11) or (2.12) we have

*,-(X,z) = 0=>

(a) \z\ < 1, or

(b) |z| ^ 1 and not both k;*, i = 1, 2, belong to M¡ where the k¡* are the two roots

common to P(z) and D^z).

Proof. Theorem 5 of Collins [1] implies that conditions (a) and (b) imply A(z) ^ 0

for \z\ £t 1. The theorem then follows from Chapter 13 of [6].

The equations P, Di and D2 can be written as polynomials with integer coefficients

and, consequently, the ft can be computed exactly on a digital computer using, e.g.,

the algorithm of Collins ([1], [2]). This is quite important since these polynomials are

of quite high order and hand computation is out of the question.

We were unable to verify the conditions (a) and (b) of Theorem 2.1 directly and

were forced to verify them computationally. We proceeded in the following manner.

First, we computed the roots of the ft(X) obtained using the A defined by (2.9a) and

(2.10a), z,,(X), for fixed X. Then, for each root |z,,(X)| ^ 1, we computed the

k,[z, ,( X)], / = 1,2, and then verified the fact that they did not satisfy Dt by substitution.

For the case z = z0, we solved for k, = k2 and verified that ft ^ 0 by substitution. This

process was carried out for a distribution of X values for 0 < \c\\ < |c|Xm„. The

algorithm of Jenkins and Traub [7] was used for all of the root-finding problems.

Within the underlying computational uncertainties of the computational verifica-

tion of (a) and (b) of Theorem 2.1, we can state

Result 2.1.   The difference approximation given by Eqs. (2.1)—(2.7) is stable.

Kreiss [8] has shown that consistent extrapolation techniques at the time level t

at the outflow boundary (x = b in our example) are unstable when used with leap-frog

time differencing and the usual 0(h2 + k2) leap-frog scheme in the interior. It is

easily seen that the same result is also true here. If uncentered, second, third, or

fourth order approximations are used instead of (2.3) and (2.4) without the time

average at the point vy(t) the necessary condition for stability given in Lemma 10.3
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of [6] is violated at the point z = 1. This is easily seen since the characteristic equation

(2.1c) of (2.1) has the root k = 1 at z = 1 and the coefficients of the consistent un-

entered operators sum to 0. Therefore, the time averages in (2.3) and (2.4) are essen-

tial. We have done test calculations which indicate that the time average in the right-

hand side of (2.2) used on the inflow boundary is not necessary. However, it is con-

venient to be able to use the same formula at the point next to the boundary for

both inflow and outflow. This is particularly true for certain vector equations when

it can reduce the number of operators that need to be coded. For this reason we have

not made an extensive study of the use of the formula obtained by eliminating the

time average in (2.2).

It should also be noted that we are sacrificing one order of accuracy at the bound-

aries. Recent convergence results of Gustafsson [5] establish that it is often possible

to use approximations of one order lower accuracy on the boundary and still retain

the convergence rate of the more accurate interior approximation. The fact that

Di(z) ¿¿ 0 for \z\ ^ 1 fulfills the hypotheses of Gustafsson's Theorem 2.1 [5] and

hence establishes that the two quarter-plane problems associated with this method

have 0(h4) convergence rates. Our experiments in Section 3 agree with this convergence

result. These experiments also show that the use of 0(h2) approximations at the

boundary yields significantly larger errors and indicates loss of the 0(h*) convergence

rate.

3. Computational Results. In our first set of computations, we compute

approximate solutions to the problem (1.1)—(1.3) with a = 0, b = 1, c = 1, f(x), the

initial data, defined by

f{x) = sin(4ir.*)

and the boundary data

g{t) = /(-<)•

This problem has the solution

u(x, t) = f{x - t)

which is 1-periodic in both x and t. Thus, we can equivalently solve (1.1) with initial

data (1.2) and replace the boundary condition (1.3) by the periodicity condition

m(0, t) = k(1, t).

We can compute a solution to this periodic boundary problem by approximating

(1.1) by (2.1) in the net points v = 0,1, ■ ■ ■ , N — I, using vN(t) = v0(t), Eq. (2.7), and

extrapolating outside the interval [0, 1] by the periodicity relation v,(t) = vv+N(t).

We should hope that the extrapolation method given by (2.1)-(2.7) would, for small t,

yield as accurate results as we obtain from the calculation of the equivalent periodic

boundary problem. For large t, we should expect our extrapolation procedure to

yield more accurate results since there should be less accumulated error. We have

performed these computations with N = 20, X = \, and using the solution u(xv, k) =

f(x, — k) = vv(k) for (2.7). We have chosen X = \ so that the 0(A4) and 0(k2) error

terms are approximately of the same magnitude. The errors in these and subsequent

computations of this same problem are given in Table 3.1. This periodic boundary
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Table 3.1

Method

Cl
C2
C3
C4
C5

Cl

C2
C3
C4
C5

".

7.07-1
7.12-1
7.12-1
6.98-1
6.98-1

7.07-1
6.96-1
7.14-1
6.25-1
7.33-1

t = 0.5

4.00-3
9.69-3
1.01-2
8.35-2
2.42-1

t = 2.0

1.60-2
1.30-2
2.73-2
1.88-1
4.44-1

\e,

5.40-3
2.34-2
2.24-2
1.49-1
4.25-1

2.16-2
2.04-2
4.18-2
3.31-1
9.68-1

p.

7.07-1
7.08-1
7.16-1
6.76-1
6.94-1

7.07-1
6.96-1
7.13-1
6.16-1
6.90-1

t = 1.0

8.01-3
1.34-2
1.94-2
1.28-1

3.87-1

t = 4.0

3.20-2
1.25-2
2.72-2
1.75-1
4.80-1

\e.\

1.08-2
2.51-2
4.37-2
2.24-1
8.28-1

4.32-2
2.28-2
4.33-2
3.02-1
1.05

computation is called Cl and the computation using the uncentered difference equa-

tions (I.ly-(1A) is called C2. These results confirm our expectations.

We next compare our 0(h3 + k2) equations at the boundary with an 0(h4 + k2)

method. We replace Eqs. (I.ly-(1A) by

(3.1)

v,(t + k) = vy(t — k)

- (X/12)[-fo,_1(i) 2<to,(0 + 36o,+1(0

(3.2)

(3.3)

12u,+2(i) + 2»,+,(0]

at v = 1.

Vy(t       +     X)       =       Vy(t       -       k)

- (X/12){-2o,_g(0+ 12»,_2(0

- 36i>,_,(0 + 10[D,(i + k)+ vy(t - k)] + 6vy+1(t)\

&tv = N — I,

Vy(t      +     k)      =      Vy't      —      k)

- (X/12){6i>,_4(0 - 32d,_8(í)

+ 72i;,_,(0 - 96p,_,(0 + 25[p,(< + *) + vr(t - k)]\

at v =  Af.

We call this computation C3. We only have experimental evidence for the stability

of this method. Because of obvious drawbacks, further investigation did not seem

worthwhile. We see that there is no loss in accuracy resulting from the use of the 0(h3)

equations at the boundaries. It should be noted that Eq. (3.1) does not have v,(f)

replaced by a time average as in (2.2) but that (3.2) and (3.3) do have v,(t) replaced by

a time average. This is essential. If vy(t) is replaced by [v,(t + k) + vy(t — k)]/l

in (3.1), the resulting method is unstable. This has been found to be true by means
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of test computations of the problem now being discussed. We commented earlier

on (3.2) and (3.3). Thus, using 0(h*) approximations at the boundary, we must use

different operators at the first point inside the boundary for inflow and outflow

boundaries. This is contrary to the case where we use 0(h3) approximations and is a

definite disadvantage.

We next examine the effect of replacing (2.2)-(2.5) by lower order approximations.

We use the 0(h2 + k2) approximation

(3.4) Vy(t + k) = v,(t - k) - X[u,+1(r) - v,.,(t)]

for v = 1, N — 1 and the 0(h + k2) approximation

(3.5) V,(t       +      k)       =      Vy{t       -      k)       -        2\{[Vy(t       +      k)       +     Vy(t       ~       k)]/l       ~      Vy.^t)]

for v = N. We call this computation C4. The fact that (3.5) is only first order in h

instead of second order seems to have no effect, as we have verified by other experi-

ments using 0(h2) extrapolations at the boundary point. We choose to use (3.5),

which is due to Arne Sundström, since it seems to be the best extrapolation to use

with (3.4).
For comparison purposes, we also include an 0(h2 + A;2) computation. We use

the method due to Sundström and shown to be stable in Elvius and Sundström [3].

This method uses (3.4) for v — I, 2, • • • , JV — 1 and (3.5) for v = N. We call this

computation C5.

Let e,(f) = u(x„ t) — v,(t), v = 0, 1, • • • , N, be the error at the vth grid point.

Define norms by

N

I MOI I? = h £ MOI2    and    I MOI I- - max MOI •

In our tables we nótate x-10" by x + n. For the initial function we have

lk(0)||2 = 0.707.

We next test the 0(h3) boundary approximations for a problem with reflective

boundary conditions. We use two scalar equations coupled at the boundaries. Let

w(x, t) = [u(x, t), v(x, /)]'. This problem is given by

1   ol
(3.6) 05^1,(^0,

0    U

with initial data w(x, 0) = \j(x), 0]' where

f(x) = 1 - (20/3)ft    if d < 0.15,

= 0, if d ^ 0.15,

for d = \x — i| and boundary conditions

(3.7) «(0,0 = v(0, t),   v(l,t) = «(1,0-

We approximate (3.6) by (2.1) for 2 ^ v g N — 2. We approximate u, = —ux at

v = 1, N — I, N by (1.1), (2.3) and (2.4), respectively. We approximate v, = vx at

v = 1, 2, N — 1 by (2.8), (2.2) and (2.3), respectively. If we denote the solutions of our

difference approximation by W,(t) = [Uy(t), V,(t)]', the boundary conditions (3.7)
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become

Uo(t) =  V0(t),    VN(t) =  UN(t).

We complete the approximating equations by setting

[/(*, - *)1W,(k) =

0

The results of this computation are given in Table 3.2. We used N = 50 and X = f.

We define

and

| w,(t)\2 = |i/,(0l2+|K,(0|2

\e,(i)\2 = \tix„ t) - U,(t)\2 + \*x„ t) - K,(0|2

We conclude with two computations in two space dimensions. We have no proof

of stability for these methods but stability is indicated. There is evidence that some

two-dimensional computations are unstable when methods analogous to those used

here are used. In these cases, the algorithms can often be stabilized by adding one-

dimensional dissipative operators acting on the coordinate tangential to the boundary.

We first consider

(3.8)    w, =
-1    0

0    lj

Wy     "F
-1      0

0    -1
wx, 0^Jtál,0g>^ l.fèO,

where w(x, y, t) = [u(x, y, t), v(x, y, t)]'. The initial data

\f(x, y)}
w(x, y, 0) =

0

where

(3.9)
f(x, y) = 1 - (20/3)ft    if d < .15,

= 0, if d è  .15,

and d = [(x - J)2 -f (y - \)2]1'2. The boundary conditions are

u(x, 0, 0 = v(x, 0, 0.    0 g x g 1,    u(\,y, t) = «(0, y,t),    0Í;Í1,
(3.10)

v(x, 1,0 - v(x, 0, 0,    Oá^l,    v(l,y, t) = u(0, y, t),    0 ¡á y á 1.

Table 3.2

1^(0111, kXOIIIs k,(0lll.

0.0
1.0
2.0
3.0
4.0

3.18-1
3.18-1
3.18-1
3.19-1
3.20-1

0.0
3.40-2
3.31-2
3.61-2
4.93-2

0.0
1.04-1
6.81-2
8.48-2
1.24-1
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Table 3.3

t I w.. ¿Olli. k,«(0lll2 K „(01II.

0.0
1.0
2.0
3.0
4.0

1.09-1
1.09-1
1.09-1
1.09-1
1.10-1

0.0
1.12-2
1.47-2
1.88-2
2.40-2

0.0
1.43-1
1.35-1
1.29-1
1.64-1

Table 3.4

t \W

0.0
1.0
2.0
3.0
4.0

1.09-1
1.11-1
1.12-1
1.12-1
1.13-1

Thus, we have reflective boundary conditions in the y-direction and periodic boundary

conditions in the x-direction. We use equal grid intervals in the x- and ^-coordinates,

h = I/TV, iV = 50 and take X = \. We again use an 0(h* + k2) approximation in the

interior and 0(h3 + k2) approximations near the boundaries y = 0 and y = 1. We

approximate the ft operator here exactly as we approximated the ft operator in

our last example and the ft operator here is approximated with our usual centered

0(h*) approximation and the periodicity condition in the x-coordinate in the neigh-

borhoods of the boundaries x — 0 and x = 1. We use the solution w(x, y, k) =

\J(x — k,y — k), 0]' as our approximation at time t = k. Results of this computation

are given in Table 3.3.

Let Wr.lt) = [Ur.Xt), V,,¿t)], U,.£t) = U(vh, ph, t), K,.M(0 = V(vh, ph, t)
be the solution to the difference approximation and define \W,,ß\2 and |e^,„|2 as

before. Define norms for a scalar grid function by

»». = *!ZI k.J K„ max      |ü,i(1|
lÉ,íiV;lái7£iV

For our last computation, we computed an approximate solution of the equation

-1    0

I 0      U
Wy      -f

0 1

1 0

0^|l,0g>il,le0,

with the same initial and boundary conditions as in the previous example. We used the

same grid and analogous difference approximations. We give mw»,,,!!^ for this

computation in Table 3.4.
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