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We investigate the role played by fourth-order dispersion on the modulation instability process in dispersion
oscillating fibers. It not only leads to the appearance of instability sidebands in the normal dispersion regime
(as in uniform fibers), but also to a new class of large detuned instability peaks that we ascribe to the variation
of dispersion. All these theoretical predictions are experimentally confirmed. © 2013 Optical Society of America
OCIS codes: (060.4370) Nonlinear optics, fibers; (190.4380) Nonlinear optics, four-wave mixing; (190.4410) Nonlinear

optics, parametric processes.
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The modulation instability (MI) process in optical fibers
involves the nonlinear interaction between an intense
pump wave and a weak perturbation that grows expo-
nentially. This phenomenon is conveniently described
as a four-wave mixing process ruled by energy and
momentum conservations. The latter condition requires
phase matching, i.e., a compensation between linear and
nonlinear phase mismatches due to group velocity
dispersion (GVD) and Kerr nonlinearity, respectively.
Only a negative contribution from dispersive effects per-
mits compensation for the Kerr nonlinear phase mis-
match always being positive in glass fibers. In single
mode optical fibers, limiting our investigations to a scalar
configuration, it seems natural to launch the pump field
in the anomalous dispersion region in order to obtain a
perfect phase matching. However, MI can also occur in
the normal GVD regime, due to negative fourth-order
dispersion (FOD) in uniform fibers [1,2], to periodic
boundary conditions in fiber cavities [3], or to a periodic
variation of the wave vector mismatch. The latter process
can be obtained from periodically varying power [4,5] or
dispersion [6–8] causing the appearance of a virtual
grating, the wave vector of which contributes to the
phase matching relation. This has been widely theoreti-
cally investigated in the context of long-haul telecommu-
nication networks [4–7,9] because this effect is highly
detrimental in such settings. In fact, due to the spatial
scale (in the order of a hundred kilometer) involved in
these systems, MI sidebands are spectrally generated
in the tens of GHz range, that typically corresponds to
the bit rate of modern telecommunication systems and
then leads to signal distortions.
Very recently, technical progress in the manufacturing

of photonic crystal fiber (PCF) has allowed for the fab-
rication of periodically tapered PCFs with periods in the
meter range [8,10]. In such dispersion oscillating fibers
(DOFs), MI sidebands are generated in the THz range.
While previous work did not reveal any significant impact
of higher-order dispersion on the MI process in DOFs,
it is expected to play an important role under specific
conditions, e.g., in the proximity of zero-dispersion

wavelength (ZDW) at high input power, as in uniform
fibers [1,2]. In this work, we investigate the impact of
FOD on the MI process in DOFs. We show that the
combined effect of this higher-order dispersion term
and of axially periodic dispersion leads to the appear-
ance of new MI peaks that are experimentally observed.

The MI process in optical fiber systems with longi-
tudinal periodicity can be described using the Floquet
theory [11–13] or, more simply, using quasi-phase-
matching (QPM) arguments [5,7,11,14], in analogy with
QPM in poled second-order nonlinear materials. Consid-
ering dispersion terms up to the fourth-order, the use of
Floquet theory and the method of averaging results in
the following parametric resonance condition [13,15]:
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where m is a non-negative integer, Ωk is the pulsation
detuning from the pump, β̄2 and β̄4 are the average
second-order and FOD terms, γ is the average nonlinear
coefficient of the fiber, and P is the pump peak power. It
is worth noting that if the period of oscillation of the GVD
is short compared to the nonlinear length �LNL � �γP�−1�,
or at least of the same order, i.e., Z < πLNL, we can use
the approximate QPM relation, which provides a clearer
picture of the physical mechanisms. In all this work this
condition is fulfilled (LNL � 0.33 m and Z � 1 m), so we
will then use the QPM approach. We remind that, in peri-
odic fiber systems, QPM is achieved if the phase mis-
match integrated over one period is an integer
multiple of 2π [11,14], i.e.,

β̄2Ω2
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Z
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where k is a positive or negative integer. Equation (2) is
strictly rigorous for k � 0, while it is an approximation
otherwise. Interestingly, for each parametric resonance
order m in Eq. (1), there is a one-to-one correspondence
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between the exact and the approximated relations, i.e.,
for each m � jkj ≠ 0 we can find a solution of the
QPM condition.
From Eq. (2), it is straightforward to show that QPM is

achieved for pulsations:
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In the following, we will focus our attention on negative
FOD, i.e., β̄4 < 0, as occurs in most optical fibers with
a single zero dispersion wavelength. Figure 1 shows
QPM curves obtained from Eq. (3), with Z � 1 m,
β̄4 � −1.1× 10−7 ps4∕m, P � 40 W and γ�7.5W−1 ·km−1.
Note that these parameters correspond to the ones of
the experiment described below. Solid blue lines have
been plotted by taking the β̄4 term of Eq. (3) into account,
while this term has been neglected for the red dashed
lines. In this graph, k � 0 lines correspond to solutions
that would be obtained in a uniform fiber, while k ≠ 0
solutions directly arise from the oscillating nature of
dispersion. For the sake of clarity, we limit our represen-
tation to k � �1 since they summarize the new dynamics
of the process, and other k values lead to similar behav-
iors. Two main features related to the inclusion of the
FOD term in the QPM relation can be observed from
Fig. 1. First, for k ≤ 0, solutions are found in both the nor-
mal and anomalous dispersion regimes, while they only
exist in anomalous dispersion when β̄4 is neglected. This
phenomenon is analogous to the MI process assisted by
FOD in uniform fibers (i.e., for k � 0) in which the neg-
ative FOD term contributes to the linear phase mismatch
to compensate for the positive nonlinear one [1,2]. Sec-
ond, QPM curves obtained for k > 0 values exhibit two
branches, i.e., two solutions are found for a fixed β̄2,
while only one is expected when β̄4 is neglected. The sol-
ution with the largest shift from the pump on each branch
is directly linked to the presence of the β̄4 term and only
exits for β̄2 values larger than

�������������������������������������������������
�β̄4∕3��2γP − �2πk∕Z��

p
.

Before attempting an experimental demonstration of
FOD-mediated MI, we investigated the impact of the
modulation period on the process in order to understand
why these specific features were not observed in our pre-
vious experiments performed with a modulation period
of 10 m [8,10]. Figure 2(a) shows the evolution of the gain
spectrum versus modulation period Z. These numerical
simulations have been obtained by using the method de-
scribed in [16] for β̄2 � �0.49 ps2∕km. Other parameters
are similar to those used in this work. This figure shows
that the gain of the second branch (with the largest de-
tuning) indeed strongly depends on the modulation
period. For the sake of clarity, Fig. 2(b) shows a close-
up on the k � 1MI sideband which has furthermore been
recentered around its central frequency given by Eq. (3).
First of all, we see that the gain oscillates versus the
modulation period. This behavior has already been de-
scribed in [10] and more details on these dynamics
can be found in this reference. However, what we would
like to show with these figures is the decrease of both the
gain band and the maximum gain for increasing modula-
tion periods. For instance, with Z � 1 m the gain is
25 dB, while it falls down to 4 dB for Z � 10 m. It is thus
likely that in our previous experiments performed for a
modulation period of 10 m, the gain of this second
solution was too low and it was furthermore affected
by detrimental longitudinal fluctuations, which are
known to strongly reduce the efficiency of the parametric
processes in optical fibers [17].

In order to experimentally highlight the role played by
FOD, we therefore fabricated a DOF with a shorter longi-
tudinal modulation period than the one used in our
previous experiments (1 m versus 10 m). The dispersion
map has a sine shape and a modulation amplitude of
�6%, which corresponds to total variations of the zero
dispersion wavelength of about 10 nm. At 1059 nm, β̄2 �
0 and β2 oscillates between �1.1 ps2∕km, the group
birefringence is 1.3 × 10−4 so that the DOF can be

-60 0 60
Frequency shift (THz)

-40 -20 4020

With β4 Without β4

k= 0

k=-1

k=
+1

-1

-0.5

0

0.5

1

β 2 a
ve

ra
ge

 (
ps

²/
km

)

Fig. 1. Quasi-phase matching curves calculated from Eq. (3)
with and without the β̄4 term (blue solid and red dashed
lines, respectively) as a function of average GVD for a period
Z � 1 m.
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frequency for every Z. The whole spectrum is in the inset on
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considered as polarization maintaining (PM), and the lin-
ear attenuation is 8 dB∕km. The experimental setup is
schematized in Fig. 3(a). The pump system is made of
a continuous-wave tunable laser (TL) diode that is sent
into an intensity modulator (MOD) in order to shape 2 ns
square pulses at 1 MHz repetition rate. They are amplified
by two Ytterbium-doped fiber amplifiers (YDFAs) at the
output of which two successive tunable filters are in-
serted to remove the excess amplified spontaneous emis-
sion (ASE) around the pump. It is finally launched into
the PCF with a 99∕1 coupler. All of these components
are PM so that the linear polarization state can be aligned
to a principal axis of the DOF in order to limit our inves-
tigations to a scalar MI process. Additionally, 1% of the
input pump beam is sent to a photodiode (PD) whose
output electrical signal is amplified and used to drive a
second intensity modulator in order to remove residual
ASE between the 2 ns pump pulses. The synchronization
of the modulator to the pulse train is done with
an optical delay line (ODL) made of a standard
optical fiber with an optimized length. This improvement
of the detection leads to a lowering of the noise back-
ground by about 8 dB on the optical spectrum analyzer,
which proved to be critical to experimentally observe β̄4
mediated MI sidebands.
Experiments were performed in the DOF described

above, the outer diameter evolution of which is repre-
sented in Fig. 3(b) (longitudinal period of 1 m) for a fixed
pump peak power of 40 W and total fiber length of 35 m.
The adjustment of the β̄2 value was simply done by tuning
the wavelength of the pump laser. By doing so in the nor-
mal dispersion region, we were able to unambiguously
observe MI sidebands for k values ranging from −2 to
2. Measured MI peaks are depicted by markers in Fig. 4
and are in excellent agreement with the QPM curves ob-
tained from Eq. (3). This equation predicts the position
of phase matched frequencies but does not provide
any information about their gain. Thus, a perfect phase
matching can exist without an amplification process
occurring. This could explain why we were not able to
observe experimentally all the solutions predicted
by Eq. (3), such as the second branch of solutions for
k � �2 for instance (see Fig. 4).
Typical spectra are displayed in Figs. 5(a) and 5(b).

The pump component has been cut in order to clearly
see the MI sidebands whose intensity is 50 dB or more
below the pump. Figure 5(a) focuses on k ≤ 0 values.

It shows the MI spectrum obtained for a 1057.7 nm pump,
corresponding to a β̄2 value of 0.13 ps2∕km (normal aver-
age dispersion). It highlights the generation of k � 0; −1;
−2 sideband pairs, respectively, in orange, green, and
purple lines. Orange peaks correspond to k � 0 and
therefore originate from the FOD term alone. They
correspond to the same MI solutions as the one observed
in uniform fibers [1,2].

MI sidebands displayed in green and purple (corre-
sponding to k values of −1 and −2, respectively) arise
from a combination of the FOD and of the periodic
dispersion map. Indeed, the β̄4 term allows for these
higher-order MI modes (k < 0) to exist while pumping
in the normal dispersion region, similarly to the k � 0
case. Note that the peaks depicted in black correspond
to Stokes and anti-Stokes stimulated Raman scattering
(SRS) bands. Figure 5(b) focuses on k > 0 values. It
shows the simultaneous generation of two sideband pairs
(in red lines, with arrows pointing to them) by increasing
the β̄2 value to 0.49 ps2∕km (corresponding to a
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Fig. 3. (a) Scheme of the experimental setup and (b) longi-
tudinal evolution of the outer diameter.

1052

1054

1056

1058

1060

1062

1064

1066

-50 0 50

-1

-0.5

0

0.5

1

Frequency shift (THz)

β 2 a
ve

ra
ge

 (
ps

²/
km

)

Anomalous Dispersion

k =1
k =2

k = -1k =0
k = -2

λ
P
=1054.5 nm

λ
P
=1057.7 nm

P
um

p w
avelength (nm

)

Fig. 4. QPM curves calculated from Eq. (2) (solid line) and
measurement of MI sideband frequencies done by tuning the
pump wavelength (markers). Crosses highlight frequencies
appearing in the experimental spectra shown in Figs. 5(a)
and 5(b).

-30 -20 -10 0 10 20 30

λ
P
=1054.5 nm

Frequency shift (THz)

(b)

λ
P
=1057.7 nm (a)

SRS
Stokes

SRS
Anti-Stokes

SRS
Stokes

SRS
Anti-Stokes

k=0

k=-1

k=-2

k=1

P
ow

er
 (

2 
dB

/d
iv

)
P

ow
er

 (
10

 d
B

/d
iv

)

β
2
= 0.13 ps/km

β
2
= 0.49 ps/km

Fig. 5. Experimental spectra corresponding, respectively, to
1057.7 and 1054.5 nm pump wavelengths.

3466 OPTICS LETTERS / Vol. 38, No. 17 / September 1, 2013



1054.5 nm pump wavelength). This feature is slightly dif-
ferent from the previous one in the sense that it is respon-
sible for the generation of a second set of solutions for a
given average dispersion (the ones with the largest
frequency shifts from the pump, see Fig. 4). As a conse-
quence, this new family of unstable MI frequencies is a
unique feature of DOFs when higher-order dispersion
terms are accounted for.
In summary, we have demonstrated that FOD can play

an important role on the MI process in DOFs. This addi-
tional term leads to two different behaviors, one similar
to the one observed in uniform fibers leading to the gen-
eration of MI sidelobes, whatever the sign of dispersion
(provided β̄4 < 0), and a second one that is specific to
DOFs. It corresponds to the generation of a new family
of MI frequencies arising from a combination of FOD
and longitudinal periodic dispersion. Our experimental
results are confirmed by a relatively simple theoretical
analysis based on a QPM process.

This work was partially supported by the French
Ministry of Higher Education and Research, the
Nord-Pas de Calais Regional Council, and FEDER
through the “Contrat de Projets Etat Région (CPER)
2007–2013,” and the “Campus Intelligence Ambiante”
(CIA). A. A. and F. B. acknowledge the support of the
German Max Planck Society for the Advancement of
Science.

References

1. S. Pitois and G. Millot, Opt. Commun. 226, 415 (2003).

2. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C.
Knight, W. J. Wadsworth, and P. St. J. Russell, Opt. Lett.
28, 2225 (2003).

3. S. Coen and M. Haelterman, Phys. Rev. Lett. 79, 4139
(1997).

4. F. Matera, A. Mecozzi, M. Romagnoli, and M. Settembre,
Opt. Lett. 18, 1499 (1993).

5. K. Kikuchi, C. Lorattanasane, F. Futami, and S. Kaneko,
IEEE Photon. Techol. Lett. 7, 1378 (1995).

6. N. J. Smith and N. J. Doran, Opt. Lett. 21, 570 (1996).
7. P. Kaewplung, T. Angkaew, and K. Kikuchi, IEEE J.

Lightwave Technol. 20, 1895 (2002).
8. M. Droques, A. Kudlinski, G. Bouwmans, G. Martinelli, and

A. Mussot, Opt. Lett. 37, 4832 (2012).
9. S. Ambomo, C. M. Ngabireng, P. T. Dinda, A. Labruyere, K.

Porsezian, and B. Kalithasan, J. Opt. Soc. Am. B 25, 425
(2008).

10. M. Droques, A. Kudlinski, G. Bouwmans, G. Martinelli, and
A. Mussot, Phys. Rev. A 87, 013813 (2013).

11. S. G. Murdoch, R. Leonhardt, J. D. Harvey, and T. A. B.
Kennedy, J. Opt. Soc. Am. B 14, 1816 (1997).

12. F. K. Abdullaev and J. Garnier, Phys. Rev. E 60, 1042
(1999).

13. A. Armaroli and F. Biancalana, Opt. Express 20, 25096
(2012).

14. S. G. Murdoch, M. D. Thomson, R. Leonhardt, and J. D.
Harvey, Opt. Lett. 22, 682 (1997).

15. J. A. Sanders, F. Verhulst, and J. Murdock, Averaging
Methods in Nonlinear Dynamical Systems (Springer,
2010).

16. M. E. Marhic and F. S. Yang, J. Lightwave Technol. 17, 210
(1999).

17. M. Farahmand and M. de Sterke, Opt. Express 12, 136
(2004).

September 1, 2013 / Vol. 38, No. 17 / OPTICS LETTERS 3467


