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ABSTRACT 

I describe the properties of a fourth-order accurate 

space, second-order accurate time two-dimensional 

P-Sk’ finite-difference scheme based on the Madariaga- 

Virieux staggered-grid formulation. The numerical 

scheme is developed from the first-order system of hy- 

perbolic elastic equations of motion and constitutive 

laws expressed in particle velocities and stresses. The 

Madariaga-Virieux staggered-grid scheme has the desir- 

able quality that it can correctly model any variation in 

material properties, including both large and small 

Poisson’s ratio materials, with minimal numerical dis- 

persion and numerical anisotropy. Dispersion analysis 

indicates that the shortest wavelengths in the model 

need to be sampled at 5 gridpoints/wavelength. The 

scheme can be used to accurately simulate wave propa- 

gation in mixed acoustic-elastic media, making it ideal 

for modeling marine problems. Explicitly calculating 

both velocities and stresses makes it relatively simple to 

initiate a source at the free-surface or within a layer and 

to satisfy free-surface boundary conditions. Benchmark 

comparisons of finite-difference and analytical solutions 

to Lamb’s problem are almost identical, as are compari- 

sons of finite-difference and reflectivity solutions for 

elastic-elastic and acoustic-elastic layered models. 

INTRODUCTION 

Explicit finite-difference methods have assumed a promi- 

nent role in forward modeling in computational seismology 

because of their ability to accurately model wave propagation 

in laterally heterogeneous media. Unfortunately, explicit 

schemes are computationally expensive, requiring large 

amounts of computer memory to model exploration-scale 

problems. Currently only two-dimensional (2-D) and small 

three-dimensional (3-D) problems are feasible. A means of re- 

ducing computation time and memory requirements in finite- 

difference schemes is to use higher order finite-difference ap- 

proximations to spatial and temporal derivatives (Dablain, 

1986). While higher order finite-difference spatial operators 

can reduce computation costs for P-Sk’ modeling, the devel- 

opment of higher order spatial operators which are stable and 

accurate for high Poisson’s ratio materials and for mixed 

acoustic and elastic media has proven to be difficult (see 

Bayliss et al., 1986, for one example). 

Madariaga (1976) developed a staggered-grid, finite- 

difference scheme based on the first-order coupled elastic 

equations of motion and constitutive laws expressed in parti- 

cle velocities and stresses, which he used to model an ex- 

panding circular crack in an elastic space. Virieux (1984, 1986) 

adapted this scheme to general forward modeling of SH and 

P-ST/ waves in a 2-D Cartesian system. Both Madariaga’s 

finite-difference operators and those of Virieux were second- 

order accurate in the time increment At and the space in- 

crement h. These are referred to as O(At’, h’) schemes. To 

minimize grid dispersion and grid anisotropy, the spatial sam- 

pling required is at least 10 gridpoints/wavelength. The 

@AL’, h2) P-SV staggered-grid scheme has several desirable 

qualities which are important for seismic exploration mod- 

eling. In particular, (1) the staggered-grid scheme is stable for 

all values of Poisson’s ratio, making it ideal for modeling 

marine exploration problems or problems with high Poisson’s 

ratio materials; (2) grid dispersion and grid anisotropy are 

small and relatively insensitive to Poisson’s ratio; (3) surface 

or buried sources can easily be initiated; and (4) free-surface 

boundary conditions are easily satisfied. Some or all of these 

features are usually lacking from finite-difference schemes de- 

veloped from the second-order coupled elastic equations ex- 

pressed in displacements (e.g., Kelly et al., 1976). 

In this paper I describe a second-order accurate time

fourth-order accurate space, O(At’, h4), formulation of the 2-D 

Madariaga-Virieux staggered-grid scheme, investigate its dis- 

persion properties, and describe benchmark tests of the finite- 

difference scheme. The use of fourth-order or higher-order ac- 

curate finite-difference approximations to spatial derivatives is 

an established means of reducing the spatial sampling re- 

quired to accurately simulate wave propagation in finite- 

difference schemes (Alford et al., 1974; Dablain, 1986). In 2-D 

finite-difference modeling, the mesh size necessary to solve a 
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given model is proportional to the square of the maximum 

frequency desired in the solution. For constant bandwidth, a 

linear reduction in spatial sampling resulting from use of a 

higher order operator provides a geometric savings in com- 

puter memory (Dablain, 1986). The computational savings are 

somewhat less than geometrical because the reduction in 

nodes and the larger time step are balanced against the in- 

creased operator length. 

the P-Sk’ equations of-motion are 

du, Jr,, dr,, 
oY$=dx+x 

and 

aw, I%,, ar,, 
o,t=,x+,; 

OZ 

FORMULATION 
and the constitutive laws for an isotropic medium are 

In a 2-D Cartesian system with the x axis horizontal and 

positive to the right, and the .z axis positive down (Figure l), 

Velocity 

ut (m,n) & 

stencils 

wt(m+1/2,n+1/2) 

+x 

and 

a 
,n+l) 

horizontal velocity, density 

vertical velocity, density 

normal stresses, Lame’ parameters 

shear stress, rigidity 

FIG. 1. Staggered finite-difference grid and spatial stencils for 
the velocity update. The gray square has area h’. The corners 
of the square are at the grid points (m, n), (m + 1, n), 
(m + 1, n + I), and (m, n + 1). For the stencils of the single 
node in Figures 1 and 2, the horizontal velocity is defined at 
(m, n), vertical velocity at the half indices (m + l/2, n + l/2), 
normal stresses at (m + l/2, n), and shear stress at (m, n + l/2). 
Velocity components are defined on the time levels t - l/2 
and / + l/2, whereas stress components are defined on the 
levels / and / + 1. The spatial stencil for horizontal velocity is 
shown as a thin solid line with the stress nodes used in the 
update. The spatial stencil for the vertical velocity is shown as 
a thin hachured fine with the stress nodes used in the update. 

(1) 

Stress stencils 

Txx(m+l/2,n), Tzz(m+1/2,n) &Zxz(m,n+1/2) 

horizontal velocity, density 

vertical velocity, density 

normal stresses, Lame’ parameters 

shear stress, rigidity 

FIG. 2. Staggered finite-difference grid and spatial stencils for 
the stress update (see Figure 1). The spatial stencil for shear 
stress is shown as a hachured line with the velocity nodes used 
in the update. The spatial stencil for the normal stresses is 
shown as a thin solid line with the velocity nodes used in the 
update. 
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where IA and w are the displacement components in x and 

z, u, and w, are the particle velocities, rij are the stresses, h 

and u are the Lame’ parameters with u the rigidity, and p 

is the density. The compressional velocity is iven by a = 
/g J[(h + 2u)/p] and the shear velocity by a = ,, (u/p). 

Equations (1) and (2) are linear first-order coupled equa- 

tions for particle displacement and velocity, and stress. Taking 

the first time derivative of equation (2) and substituting parti- 

cle velocity for displacement provide a first-order system of 

equations in velocity and stress which can be solved numeri- 

cally. The difference equations are given in Appendix A. The 

finite-difference grid is staggered in space as shown in Figures 

1 and 2, with velocity components being defined across one 

diagonal in any given finite-difference cell and stress compo- 

nents being defined across the other. The horizontal velocity 

component and density are defined at the discrete location (~1, 

n); the vertical component and density are at (m + l/Z, 

M + l/2); the normal stresses and Lame’ parameters are at 

(m + l/2, M); and the tangential stress and rigidity are at (m, 

n + l/2). The grid is staggered in both space and time with 

the results that for each update the spatial derivatives are 

centered in space about the variable being updated, and the 

temporal derivative is centered about the time level of the 

spatial derivatives. In the scheme I am describing, the time

operator is a two point difference of order Ar’, and the spatial 

operators are four point differences of order h“ (see Appendix 

A). Unlike difference schemes based on the second-order cou- 

pled displacement equations, the system has no terms contain- 

ing spatial derivatives of the material properties. The material 

properties are always defined at the locations of the quantities 

they scale. The spatial derivatives can be approximated with 

an operator of any order accuracy with no difficulty; however, 

the competing effects of phase advance due to the temporal 

discretization and phase delay due to the spatial discretization 

are not well balanced with extremely high-order spatial oper- 

ators (Dablain, 1986). The numerical boundary conditions 

become more difficult to solve for long spatial operators as 

well. 

dispersion relations are functions of both material velocities 

when the second term of the radical is nonvanishing, whereas 

for the continuous system, the second term under the radical is 

identically zero. The dispersion relations for the O(At*, h4) 

scheme arc given in Appendix B. The stability criterion is 

given by 

To analyze stability and dispersion properties, we assume a 

uniform infinite medium which supports a plane wave: 

u, (x. t) = (u, , w,) exp (k . x - wt) (4) 

Taking the difference of the finite-difference solutions for the 

velocity components at times f + 1 and f and substituting the 

constitutive laws into the equation of motion provide a 

second-order system of U(At*, h4) difference equations in ve- 

locities only. We can write this system as a matrix equation 

using the appropriate finite-difference operators D,, , D,?, D,, , 

and D,,; 

Q= 
(a*L + P’D,J - D,, (a* - P*P,, 

(a2 - P2)D,, (P’D,, +a*D,,) - D,, 1 
u,. (5) 

The determinant of the matrix is quadratic in D,, and provides 

the dispersion relations for the numerical scheme. The two 

roots give the compressional and shear-wave dispersion rela- 

tions ; 

DlI=i(a2 + P2)(D,, + Dzz) 

f )(a’ - P’)J[(D,, + D,;)’ -4(D,, DZ, - D,; o,,)l. (61 

Note that the numerical system compressional and shear wave 

h 
At< 

or 

At < 0.606 h/a, 

(7) 

where c, and cZ are the inner and outer coefficients of the 

fourth-order approximation to the first derivative (see Appen- 

dix A). The Af of relation (7) is smaller than the corresponding 

stability limit for the second-order staggered-grid scheme by 

the reciprocal sum of the difference coefficients (see Virieux, 

1986). It is also less than the stability limit for the O(Af’, !-I~) 

approximation to the acoustic wave equation by about 1 per- 

cent (see Alford et al., 1974). 

The dispersion relations for this scheme are plotted in 

Figure 3 for different values of Poisson’s ratio and for different 

directions of propagation on the finite-difference grid. Figure 4 

shows the sensitivity of the dispersion relation to the choice of 

time step. From Figures 3 and 4, we see that (1) the shortest 

shear wavelength on the grid must be sampled at 5 grid- 

points/wavelength to minimize the effects of grid dispersion 

and grid anisotropy. (2) grid dispersion and grid anisotropy 

are very weakly dependent on Poisson’s ratio, (3) grid disper- 

sion is strongest for waves traveling along one of the coordi- 

nate directions (0 = 0 degrees), and (4) the scheme can be run 

at a large fraction of the stability limit to tune the dispersion 

relation. For example, by running the scheme between 50 per- 

cent and 7.5 percent of the maximum allowed time step (the 

bottom two curves in Figure 4) we can avoid the unphysically 

high P-wave phase velocities for sampling less than 13 grid 

points/wavelength (normalized phase velocity exceeds unity in 

Figure 4) which result if the scheme is run near the stability 

limit. Five gridpointjwavelength sampling is an improvement 

by a factor of two over that required for O(At’, !r’) P-Sf’ 

schemes (Virieux, 1984; Kelly et al., 1976). 

b-or modeling a semiinfinite space, we satisfy the free-surface 

condition boundary conditions at the z = 0 surface 

and 

The horizontal derivatives pose no problem. If we assume 

appropriate symmetry for the stress components about z = 0 

and extend the grid two nodes above z = 0, we can use the 

boundary conditions to solve for the vertical derivatives and 

satisfy the free-surface condition. The other boundaries at the 

grid periphery are coded to satisfy the Clayton-Engquist Al 

(1977) absorbing condition. 

A spatially localized source is initiated by specifying the 

appropriate stress components and using the source insertion 

principle of Alterman and Karal (1968). Either a surface or a 
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FIG. 3. Numerical dispersion of compressional and shear waves for different values of Poisson’s ratio u, for the 
finite-difference scheme run at 75 percent of the maximum allowed time step. Each plot has the dispersion curves for 
propagation at angles of 0 = 0, 15, 30, and 45 degrees to the grid, to demonstrate grid anisotropy. The abscissa is 
plotted in reciprocal sampling (wavelengths/mesh spacing), with the sampling for compressional waves consistent with 
that for shear waves. On the left are plots of the P-wave dispersion for a Poisson’s solid (top, a/P = 1.73), and a high 
Poisson’s ratio material (bottom, a/P - 5.0). Minimum shear-wave sampling to simulate wave propagation in a 
continuous medium is 5 gridpoints/wavelength. 
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FIG. 4. Dependence of P and S dispersion on fraction of stability limit. The three dispersion curves shown in each plot 
are for 99 percent (top), 75 percent, and 50 percent (bottom) of the maximum allowed time step, for waves propagating 
in one of the coordinate directions in a Poisson solid (see Figure 3). Running the scheme at 50 to 75 percent of the 
stability limit minimizes the effects of unphysically high phase velocities in P and S waves near 8.5 and 5 gridpoints/ 
wavelength, respectively. 
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buried source can be inserted within a small homogeneous 

region of the grid around the source point. 

BENCHMARK TESTS 

To examine the fidelity of solutions generated with the 

0(At2, h4) staggered-grid scheme, I compare finite-difference 

solutions for Lamb’s problem with an exact solution and 

finite-difference solutions for layered model problems with re- 

flectivity synthetics. The tests are designed to assess the accu- 

racy of (1) waves from a source applied at the free surface, (2) 

Source 
Free Surface 1 t 
TF 

+x 

a/B = 1.73 

!J 

a = 3000.0 m/s 

I ‘R 
+2 

waves propagating in mixed acoustic-elastic media, and (3) 

waves propagating in low and high Poisson’s ratio materials. 

Lamb’s problem results from the application of a point 

force in a uniform elastic half-space. In this first finite- 

difference simulation, I applied- a vertical point force to the 

free surface. The analytical solutions were generated by using 

Sherwood’s (1958) 2-D solution and then convolving the 

Green’s functions with the derivative of the finite-difference 

source pulse. The geometry is shown in Figure 5. Horizontal 

and vertical motion seismograms from a Poisson solid are 

shown in Figures 5 through 7. The finite-difference scheme 

R = 1OOOm (100) 

\1erti_cai- 

e= 0” 

- FD 
__- Exact 

I I 

0 0.5 1.0 
time (s) 

FE. 5. Lamb’s problem geometry (left, model 1 in Table 1) and solution (right). A band-limited vertical point force is 
applied directly to the free surface of a Poisson solid. The vertical component of motion measured directly below the 
source (polar angle 0 = 0 degrees) is shown. The finite-difference solution is shown as a solid line, the exact solution as 
a dashed line. The vertical component of motion was observed 1 km (la0 grid points) below the free surface. The 
horizontal component of motion is vanishing at this polar angle. The scheme was run at 75 percent of the stability 
limit; the 10 percent power level in the source corresponds to 5 gridpoint!wavelength S-wave sampling. 
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FE. 6. Lamb’s problem solution measured at a polar angle of 
45 degrees at a range of 1 km. 
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FIG. 7. Lambs problem solution measured at a polar angle of 
90 degrees, along the free surface, at a range of 1 km. On the 
horizontal component of motion, note the slight timing mis- 
match in the Rayleigh and P-wave arrivals between the two 
solutions, and the precursor leading the finite-difference Ray- 
leigh wave. 
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was run at 75 percent of the stability limit and the source 

pulse was band-limited with the 10 percent power level set for 

5 gridpoints per shear wavelength. (For the sake of brevity, I 

will henceforth refer to 5 gridpoint/wavelength sampling as 

minimum sampling.) Computational parameters and model 

material properties for all simulations are given in Table 1. 

Minor differences in the timing of the P and S waves or the 

P and Rayleigh waves can be seen between the finite-difference 

and analytical solutions. On the synthetics made at the free 

surface (a polar angle of 90 degrees, Figure 7), a small precur- 

sory event leads the Rayleigh wave. I attribute the precursor 

to grid dispersion. Note that the numerical phase velocities of 

both P waves sampled with 13 gridpoints/wavelength and 

shear waves sampled at 8 gridpoints/wavelength exceed unity 

for waves traveling in a coordinate direction (Figure 4). (The 

normalized shear-wave velocity only slightly exceeds unity 

and is not apparent in Figure 4.) For all polar angles, the 

finite-difference solutions to Lamb’s problem are in excellent 

agreement with the exact solutions, suggesting both that the 

insertion of the source at the surface is accurate and that the 

free-surface condition is accurate. 

Next I compare finite-difference and reflectivity synthetics 

from several layered model simulations to examine the accu- 

racy of reflections, wide-angle reflections, head waves, and 

converted waves. The reflectivity code, Sherwood et al.% (1983) 

SOLID program, uses a 2-D line source. After convolving the 

finite-difference source pulse with the reflectivity Green’s func- 

tions, the reflectivity and finite-difference synthetics can be 

compared directly. 

The second model is a low-velocity elastic layer over an 

elastic half-space (model 2 in Table 1). Both materials are 

Poisson solids, with a velocity contrast between layer and half 

space of 1: 2 and no density contrast. This example is designed 

to test the accuracy of the finite-difference scheme for the 

simplest possible layered medium. The layer is 195 m thick 

with a free surface at I’ = 0. A compressive source was initiat- 

ed in the layer at a depth of 100 m. The 10 percent power level 

for properly band-limiting shear waves in the low-velocity 

layer is at 17.3 Hz. Shot records of the vertical component of 

velocity for offsets from 0 to 2250 m are compared in Figure 8. 

The agreement between the two sections is very good. Individ- 

ual traces at several offsets are compared in Figure 9. The 

finite-difference and reflectivity seismograms are very similar. 

Minor difl‘erences in high-frequency detail are attributable to 

grid dispersion and to the ripple caused by a wavenumber 

filter applied to the reflectivity synthetics to reduce wrap- 

around. Note that the finite-difference synthetics faithfully re- 

product features at both short and long offsets: i.e., normal 

incidence reflections and multiples, converted shear waves, 

head waves and reflected head waves, and Rayleigh waves. 

The third model has a water surface layer overlying a Pois- 

son solid half-space. This example is used to demonstrate the 

ability of the finite-difrerence scheme to accurately model a 

mixed acoustic-elastic medium. The layer thickness is again 

195 m, with the source at 100 m depth. The water velocity is 

the lowest nonzero velocity in the model, putting the mini- 

mum sampling frequency at 30.0 Hz. The reflectivity and 

finite-difrerencc vertical velocity shot records are compared in 

Figure 10. Individual traces at several offsets are displayed in 

Figure 11. (Although it would be more natural in this example 

to show pressure seismograms, I have chosen to show the 

same quantity for all of the simulations.) The agreement be- 

tween the reflectivity and the finite-difference synthetics is 

almost exact for every arrival. Note that the records contain a 

long train of water-bottom multiples, a head wave, and multi- 

ply reflected head waves. Very low-amplitude, high-frequency 

ringing caused by grid dispersion is apparent in the finite- 

difference synthetics. 

Table I. Model material properties and computational parameters. 

Model 
Thickness a P P At 

Layer (m) (m/s) (m/s) 0 (g/cm? (li (ms) 
~-~ ~~ 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

Lamb 

Elastic/elastic 

Acoustic/elastic 

Transition 

(Low/high 
Poisson’s ratios) 

(Free surface 
stability) 

(Perturbed 
acoustic/elastic) 

1 

1 
2 

half-space 

195 
half-space 

195 
half-space 

195 
200 

half-space 

198 
half-space 

125$ 
half-space 

1009 
half-space 

3000 

1500 
3000 

1500 
3000 

1500 
2250 
3000 

4000 
6000 

1730 

865 
1730 

0 

1730 

0 
750 

1730 

800 
3460 

600 
2000 

0.25 2.5 10 

0.25 
0.25 

0.50 
0.25 

0.50 
0.438 
0.25 

0.479 
0.25 

0.365 
0.258 

0.50 
0.25 

2.5 10 
2.5 

1.0 10 
2.5 

1.0 10 
1.75 
2.5 

2.5 7.62 
2.5 

1.0 25 
2.6 

1.0 10 
2.5 

3.281 4.8 

*First simulation 
*Second simulation same model 
ZExtended 2000 m horizontally 
$Mean layer thickness 
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FIG. 8. Free-surface vertical component of motion comparing finite-difference (left) and SOLID reflectivity (right) shot 
records for a simple low-velocity elastic layer and high-velocity half-space model (model 2, Table 1). Both the layer and 
the half-soace are Poisson solids. The source was buried at a depth of 100 m in a 195 m thick layer. Note that the 
direct wa;e is clipped. The polarity of the plots was reversed to enhance the first arrivals. The s&&t ripple in the 
reflectivity solutions (seen most easily on the head waves) is the result of a low-pass wavenumber filter used to suppress 
wraparound. 
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FIG. 9. Comparison of individual traces from the shot records 
in Figure 8, shown for different offsets. Each pair of traces is 
normalized independently. In these and subsequent plots the 
finite-difference seismograms are shown as the dashed lines. 
The magnitude of the ripple caused by the wavenumber filter 
on the reflectivity synthetics can be seen as the motion ieading 
the head wave on the trace at 2000 m offset. 

The fourth model includes a low Poisson’s ratio material 

sandwiched between a water surface layer and an elastic half- 

space (see Table 1). This model is designed to test the stability 

of the finite-difference scheme for low shear velocities similar 

to the water bottom in a marine survey. The transition layer 

compressional velocity is the average of that of the water layer 

and the half-space; the shear velocity was one-third of the 

compressional velocity. (Poisson’s ratio in the transition layer 

is 0.438.) The transition layer was 200 m thick and the source 

was in the water layer at a depth of 100 m. A maximum 

frequency in the source pulse of 15 Hz corresponds to the 

minimum sampling of shear waves in the transition layer. 

Agreement between the vertical-component reflectivity and 

finite-difference traces is very good (Figure 12). In this model 

the maximum frequency for proper shear-wave sampling is 

controlled by the low shear velocity in the transition layer, 

which is often the case in modeling marine problems. To test 

the stability of the scheme for undersampled shear waves, the 

model was rerun with a 30 Hz source. In this second simula- 

tion, high-frequency converted shear waves in the transition 

zone were sampled at 2.5 gridpoints/wavelength. Figure 13 

compares the finite-difference traces with the reflectivity syn- 

thetics. The traces are different for PSP arrivals which propa- 

gated in the transition region (offset of 1000 m at 1.25 s). This 
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FIG. 10. Free-surface vertical component of motion comparing finite-difference and SOLID reflectivity shot records for 
an acoustic layer and elastic half-space model (model 3, Table 1). Note that the direct wave, the reflection, and several 
multiples are clipped. The polarity of the plots was reversed to enhance the first arrivals. The edge effect at long offsets 
in the reflectivity synthetics is wraparound. 
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FIG. 11. Comparison of individual traces from the shot records 
in Figure 10. Each pair of traces is normalized independently. 

0 

E 5oo 
g 1000 

v) 

8 
1500 

2000 

/ - 

I- 

--- FD 

- Refl 

O 0.25 0.50 0.75 1.0 1.25 1.50 

time (s) 

FIG. 12. Comparison of vertical component traces from shot 
records of high Poisson’s ratio transition region model (model 
4). The surface layer is water, the transition layer has an a/j3 
ratio of 3; and the half-space is a Poisson solid. The source 
has been band-limited so that converted shear waves in the 
transition region are sampled at 5 gridpoints/wavelength. 
Each trace is normalized independently. 
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simulation indicates (1) that the finite-difference scheme is 

stable even if the shear waves in a low shear velocity, high 

Poisson’s ratio material are severely undersampled, and (2) 

that compressional waves are accurately modeled even if the 

shear waves are not. 

The last layered model (mode1 5) tested the accuracy of the 

free-surface condition for a high Poisson’s ratio surface layer. 

The-layer is 20&m- thick, with a source at 100 m depth. Pois- 

son’s ratio in the surface layer is 0.479, corresponding to a 

- Refl 

2000 

I I I I I 

0 0.25 0.50 0.75 1.0 1.25 1.50 

time (s) 

FIG. 13. Comparison of vertical component traces from shot 
records of a high Poisson’s ratio transition region model in 
which high frequency in the source was doubled relative to the 
previous figure (mode1 4, second simulation). These synthetics 
demonstrate that the finite-difference scheme is stable and ac- 
curately models P-wave propagation even if the shear waves 
are grossly undersampled. In the transition region the convert- 
ed shear waves are sampled at 2.5 gridpoints/wavelength. Mis- 
matched arrivals at x = 1000 m at t = 1.25 s correspond to 
P SP reflections. Each trace is normalized independently. 
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compressional-to-shear velocity ratio of 5 : 1. Individual traces 

of horizontal and vertical velocity are compared to the reflec- 

tivity synthetics in Figure 14. The horizontal-motion synthet- 

ics are in good agreement at all offsets. The vertical-motion 

finite-difference synthetics agree in low-frequency character 

with the reflectivity synthetics but differ in high-frequency 

character at the arrivals of a critically refracted PS!? free- 

surface wave. This arrival can be seen on the vertical compo- 

nent lagging the direct wave by about 0.25 s, and traveling 

with a speed near that of the compressional velocity of the 

surface layer (4000 m/s). The PSP wave is entire!% a free- 

surface effect, which results in evanescent decay of the convert- 

ed P wave away from the boundary and angle-dependent 

phase shifts in both P and S reflected waves. The discrepancy 

between the finite-difference and reflectivity solutions is at- 

tributable to two causes: (1) the manner in which the z = 0 

boundary condition is satisfied and (2) shear-wave phase ve- 

locity error due to coarse sampling. In the reflectivity code, 

the vacuum is modeled as a half-space with very low compres- 

sional and shear velocities and density, whereas the finite- 

difference code satisfies the vanishing stress conditions 

explicitly. The higher frequencies in the finite-difference simu- 

lation are minimally sampled (at 5 gridpoints/wavelength) 

when propagating as converted shear waves in the layer. The 

phase error along the shear wave path may be an eighth to a 

quarter cycle for the longer wavelength. 

LATERALLY HETEROGENEOUS MODELS 

To test the stability of the numerical free-surface boundary 

condition in the presence of lateral inhomogeneity, I replicated 

a model experiment by Vidale and Clayton (1986). They com- 

pared the stability of different numerical formulations of the 

free-surface boundary conditions for P-W displacement equa- 

tion schemes. The geometry and computational parameters 

which I used (model 6 in Table 1) were as close as possible to 

those used by Vidale and Clayton (1986). Seismograms from 

i 
” 

I , I , i 

0 0.25 0.50 0.75 1.0 1.25 

time (s) 

FIG. 14. Horizontal and vertical component traces from high Poisson’s ratio surface layer model (model 5). The surface 
layer a/p = 5.0. The low frequency character of the reflectivity synthetics is well matched by the finite-difference 
synthetics. The detail in the vertical component of motion is different at the time of the PSP arrival (see text). Each 
trace is normalized independently. 
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FIG. 15. Test of the free-surface condition in the presence of a 
laterally heterogeneous surface structure (model 6). The filled 
notch at the free-surface has a compressional velocity of 1.3 
km/s, a shear velocity of 0.6 km/s, a density of 1.0 g/cm3, and 
a thickness of 0.10 km. The half-space has velocities of 3.5 and 
2.0 km/s and a density of 2.6 g/cm3. Compare to Figure 3 in 
Vidale and Clayton (1986). The dominant frequency in this 
simulation is about 20 percent lower than that of Vidale and 
Clayton’s simulation. True amplitude traces are shown. 

1 Km 

the test are shown in Figure 15. They are similar to those 

calculated by Vidale and Clayton using both their implicit 

approximation to the free-surface boundary condition and the 

often-used one-sided approximation to the free-surface con- 

dition (Han et al., 1975). The test indicates that the free-surface 

formulation is robust for models having laterally heterogen- 

eity at and near the free-surface. 

A seventh model consists of a water layer with an irregular 

boundary. The model and synthetic shot record are shown in 

Figure 16. To the left of the shotpoint, the model is identical 

to that used in the plane-layered acoustic-elastic test (Figure 

IO), while to the right of the shotpoint, the water-elastic inter- 

face has a cosine irregularity which is 100 m in amplitude and 

extends 1 km. The shot record shows the deformation of the 

head wave and a complicated series of reflections and diffrac- 

tions caused by the irregularity. In this simulation, the irregu- 

lar surface is not aligned uniformly along one of the coordi- 

nate directions; the results demonstrate that the scheme is 

stable for modeling arbitrarily oriented interfaces separating 

acoustic and elastic media. The staggered-grid scheme allows 

for arbitrarily oriented interfaces at abrupt acoustic-elastic 

interfaces without the need for specialized code for boundary 

conditions (Stephen, 1983, 1984). 

0 
Shot * water 

200 

0 

-1.5 
FIG. 16. Vertical component shot record measured at z = 0 for model 7, in which the water layer has an irregular 
bottom. Note the disruption of the head wave and the reflection and multiples from the steep slope of the perturbed 
interface. The model to the left of the shotpoint is identical to the plane-layered acoustic-elastic model, simulations 
from which are shown in Figure 10. 
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DISCUSSION AND CONCLUSIONS 

The Madariaga-Virieux staggered-grid scheme is easily 

written with higher order approximations to the spatial de- 

rivatives, making it more efficient than other schemes for most 

modeling problems. Comparisons of finite-difference and re- 

flectivity synthetics from models with acoustic and elastic 

layers, and from models with low Poisson ratio layers, show 

that the finite-difference scheme is stable and accurate for a 

wide range of compressional to shear velocity ratios. The re- 

sults from models with near-surface lateral heterogeneity and 

with laterally heterogeneous acoustic layers suggest that the 

scheme is suitable for modeling a broad class of problems 

found in exploration seismology. 

To calculate the same bandwidth, the 2-D fourth-order ac- 

curate scheme requires one-quarter as many nodes as second- 

order P-SF methods. In a fixed memory machine this scheme 

can generate twice the bandwidth with the same number of 

nodes as a second-order scheme. It is difficult to compare 

rigorously different types of tinite-difference schemes because 

storage and calculations per node can vary significantly de- 

pending on the formulation. This 2-D fourth-order staggered- 

grid, velocity-stress P-SF scheme requires 14 percent more 

storage and approximately the same computation time as 2-D 

fourth-order schemes written in displacements. The advan- 

tages of the staggered-grid scheme lie in its stability and accu- 

racy for modeling large Poisson’s ratio materials and mixed 

acoustic-elastic media, and in the ease with which sources can 

be inserted at and near the free-surface. This code should be 

particularly useful for modeling near-surface problems, and for 

amplitude-offset studies in laterally varying media. 
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APPENDIX A 

FINITE-DIFFERENCE EQUATIONS 

First discretize the x, Z, and r coordinates and the field variables, letting x = mh or x = (m f I/Z)h, z = nh or z = (n + 1/2)/r, and 

t = /At or t = (f t 1/2)At; h is the finite-difference grid spacing and At is the finite-difference time sample. The field variables are 

defined at the locations shown in Figures I and 2. The difference equations are given by 

D: u&u. n, / - l/2) = l/&n, n)[D;~,,(m + l/2, n, /) + Dz-r,,(m, n + l/2, r)], 

D,’ w,tm + l/2, 11 + t/2, / - lj2) = l/p(m + l/2, n + 1/2)[0;T,,(WZ, n + l/2, /) + D;T,,(wI + l/2, FZ, d)], 

D:z,,(m + l/2. n, C) = [k(m + l/2, n) + 2u(m + l/2, n)]DJu, (m, n, Y + l/2) 
(A-t) 

+ h(m + l/2, n)D;w,(m + l/2, n + l/2, t + l/2), 

D:Txz(m, n + l/2, /) = p(m, n + 1/2)[D’u,(m, n, / + l/2) + D;w,(m + l/2, n + l/2, k + l/2)], 

and 

D:Tzr(nr + f/2, tt, f) = Ch(m + l/2, n) + 2p(m + l/2, n)]D_w,(m + l/2, n + i/2, / + J/2) 

+ h(m + l/2, n)D:u, (m, n, / + l/2), 
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where Dt’ is the forward difference operator in time and 0,’ and 0,’ are the forward or reverse difference operators in space, with 

the sign chosen to center the difference operator about the quantity being updated. For example, the spatial derivative of the 

normal stress component used in the update for particle velocity is given by 

D:7,,(m+t/2, % t)=-cz ~(m+3/2, n, e)-r,,(m-312, n, /) 1 [ fc, z,,(m+1/2, n, e)-7,,(m-f/2, u, 8) 1 , 64-2) 
where c1 and c2 are the inner and outer difference coefficients for the fourth-order approximation to the first derivative, 9/8 and 

l/24, respectively. 

APPENDIX B 

FINITE-DIFFERENCE DISPERSION RELATION 

The dispersion relation for the 0(At2, h4) scheme is developed by substituting the difference coefficients into equation (6) and 

evaluating the expression 

sin2 (wAt/2) = @j$ [+(I + f3’/a2){L c ci + 2c,c, [l ~ 4 ~0s’ (k, h/2)] 1 sin’ (k,h/2) + &3k,h/2) 
c A 

+ [cf + 2c,c, 
L 

1 - 4 cos2 (k,h/2) 
1 

] sin2 (k,h/2) + c: sin2 (3k,h/2)} 

+ i(l - p2/a2)[([c: + 2c,c, 
[ 

1 - 4 cos2 (k,h/2) 1 ] sin’ (k,h/2) + ci sin’ (3k, h/2) 

+ [cf + 2c,c, 
[ 

1 - 4 cos2 (k,h/2) 
I 

] sin2 (k,h/2) + cz sin’ (3k,h/2))2 

- ‘+i + 2C,Cz[ 1 - 4 cos’ (k,h/2) ] ] sin’ (k,h/2) + c: sin* (3k,h/2) 

x(cc:+2c,c2[ ] 1 - 4 cos2 (k,h/2) ] sin2 (k, h/2) + ct sin’ (3k,h/2) 

- c:(cos ((k, + k,)h/2) - ~0s ((k, - k,)h/2) + c:(cos (3(k, + k,)h/2) - cos (3(k, - k&/2)) 

+ crcz(cos ((3k, - k,)k/2) - cos ((3k, + k,)h/2) + cos ((3k, - k,)h/2) - cos ((3k, + k,)h/2)) . 

(B-1) 

The positive sign on the radical gives the dispersion relation for compressional waves, and the negative sign gives the dispersion 

relation for shear waves. The stability criterion is established by demanding that w be real and by examining the magnitude of the 

right-hand side. The stability criterion is about 1 percent lower than that for the fourth-order acoustic wave, finite-difference 

scheme described in Alford et al. (1974). See equation (7) in the text. 


