
6th Workshop on Membrane Computing and
Biologically Inspired Process Calculi

MeCBIC 2012

Newcastle, UK

8th September 2012

Editors: BOGDAN AMAN

GABRIEL CIOBANU

Table of Contents

MeCBIC 2012: Biologically Inspired Formalisms . 1

Gabriel Ciobanu

Invited Talks

Coarse-graining the Dynamics of Ideal Branched Polymers . 5

Vincent Danos

Petri Net Synthesis and Membrane Systems . 7

Jetty Kleijn, Maciej Koutny, Marta Pietkiewicz-Koutny, Grzegorz Rozenberg

Regular Papers

A Process Calculus for Spatially-explicit Ecological Models . 11

Margarita Antonaki, Anna Philippou

GUBS, a Behavior-based Language for Open System Dedicated to Synthetic Biology 27

Adrien Basso-Blandin, Franck Delaplace

Combining Insertion and Deletion in RNA-editing Preserves Regularity . 49

Erik De Vink, Hans Zantema, Dragan Bosnacki

Towards Modular Verification of Pathways: Fairness and Assumptions . 65

Peter Drábik, Andrea Maggiolo Schettini, Paolo Milazzo

Implementing the Stochastics Brane Calculus in a Generic Stochastic Abstract Machine 83

Marino Miculan, Ilaria Sambarino

Work-in-Progress

Parallel BioScape: A Stochastic and Parallel Language for Mobile and Spatial Interactions .105

Adriana Compagnoni, Mariangiola Dezani-Ciancaglini, Paola Giannini,

Karin Sauer, Vishakha Sharma, Angelo Troina

RNA Interference and Register Machines .123

Masahiro Hamano

Pre-Proceedings of 6th Workshop on Membrane

Computing and Biologically Inspired Process Calculi

MeCBIC 2012, Pages 1–2.

c© Gabriel Ciobanu

All the rights to the paper remain with the authors.

MeCBIC 2012: Biologically Inspired Formalisms

Gabriel Ciobanu

Romanian Academy, Institute of Computer Science
Iaşi, Romania

gabriel@info.uaic.ro

This volume contains the papers presented at the 6th MeCBIC (Membrane Computing and Bio-

logically Inspired Process Calculi), a satellite workshop of the 23rd International Conference on

Concurrency Theory (CONCUR 2012) held on 8th September 2012 in Newcastle upon Tyne.

The modelling and the analysis of biological systems has attracted the interest of several research

communities. The notion of compartments appears in rule-based formalisms as membrane computing,

and in several process calculi (bio-ambients, brane calculi, etc.). Multiset rewriting appears both in

membrane computing and Petri nets. A cross fertilization of various research areas leads to deeper in-

vestigations of the relations between these related formalisms, trying also to understand their similarities

and differences. MeCBIC started as an workshop devoted to membrane computing and biologically in-

spired process calculi. In the last years, it also attracted papers dealing with (bio-inspired) Petri nets,

emphasizing the links between Petri nets and membrane systems. Membrane computing deals with the

computational properties, making use of automata, formal languages, and complexity results. Petri nets

are used to model and analyse several biological systems by using advanced software tools. Certain pro-

cess calculi, such as mobile ambients and brane calculi, describe the compartments and their interactions,

emphasizing on behaviour equivalences and stochastic aspects.

The main aim of the workshop is to bring together researchers working in these biologically inspired

formalisms (membrane systems, Petri nets, ambient and brane calculi, various stochastic approaches) in

order to present their recent results and to discuss new ideas concerning these formalisms, their properties

and relationships. Topics presented at MeCBIC include (but are not limited to):

• Biologically inspired models and calculi;

• Biologically inspired systems and their applications;

• Analysis of properties of biologically inspired models and languages;

• Theoretical links and comparison between different models/systems.

The submitted papers describe biologically inspired models and languages, as well as various properties

and links between different models. They include various stochastic approaches, spatial interactions,

modular verification of pathways, behaviour-based language in synthetic biology, and RNA-induced

transcriptional aspects. The papers were reviewed by at least three referees. We thank very much to the

members of the Programme Committee:

Bogdan Aman Roberto Barbuti Luca Cardelli Gabriel Ciobanu (chair)

Erik de Vink Jean-Louis Giavitto Jane Hillston Jetty Kleijn

Jean Krivine Emanuela Merelli Paolo Milazzo Gethin Norman

G. Michele Pinna Franck Pommereau Jason Steggles Angelo Troina.

We express our gratitude to the invited speakers Maciej Koutny and Vincent Danos for their interesting

talks. Maciej Koutny presents the automated synthesis from behavioural specifications for a number of

Petri net models relevant from the point of view of membrane systems. Vincent Danos defines a class

of local stochastic rewrite rules on directed site trees, giving a compact presentation of coarse-grained

differential systems describing the dynamics of these rules.

Many thanks to Bogdan Aman for his work in preparing this volume, and to Jason Steggles, Emilio

Tuosto and local organizers for their help.

2

Invited Talks

Pre-Proceedings of 6th Workshop on Membrane

Computing and Biologically Inspired Process Calculi

MeCBIC 2012, Page 5.

c© V. Danos

All the rights to the paper remain with the authors.

Coarse-graining the Dynamics

of Ideal Branched Polymers

Vincent Danos

University of Edinburgh

vincent.danos@gmail.com

We define a class of local stochastic rewrite rules on di-
rected site trees. We give a compact presentation of (of-
ten countably infinite) coarse-grained differential sys-
tems describing the dynamics of these rules in the de-
terministic limit, and study in a simple case finite ap-
proximations based on truncations to a certain size. We
show an application to the modelling of the dynamics
of sugar polymers.

Pre-Proceedings of 6th Workshop on Membrane

Computing and Biologically Inspired Process Calculi

MeCBIC 2012, Pages 7–8.

c© J. Kleijn, M. Koutny, M. Pietkiewicz-Koutny and G. Rozenberg

All the rights to the paper remain with the authors.

Petri Net Synthesis and Membrane Systems

Jetty Kleijn

LIACS
Leiden University

Leiden, The Netherlands

kleijn@liacs.nl

Maciej Koutny

School of Computing Science
Newcastle University

Newcastle upon Tyne, UK

maciej.koutny@ncl.ac.uk

Marta Pietkiewicz-Koutny

School of Computing Science
Newcastle University

Newcastle upon Tyne, UK

marta.koutny@ncl.ac.uk

Grzegorz Rozenberg

LIACS, Leiden University
Leiden, The Netherlands

and
Department of Computer Science
University of Colorado at Boulder

Boulder, Colorado, USA

rozenber@liacs.nl

Membrane systems are a computational model inspired by the functioning of living cells and their

architecture, in particular the way chemical reactions take place in cells divided by membranes into com-

partments. Petri nets are a well-established general model for distributed computation with an extensive

range of tools and methods for construction, analysis, and verification of concurrent systems. There are

intrinsic similarities between Petri nets and membrane systems. In particular, there is a canonical way

of translating membrane systems into Petri nets. This translation is faithful in the sense that it relates

computation steps at the lowest level and induces in a natural way (sometimes new) extensions and in-

terpretations of Petri net structure and behaviour (e.g., inhibitor arcs, localities, maximal concurrency).

This strong semantical link between the two models invites to extend where necessary existing Petri net

techniques and bring them to the domain of membrane systems. An example is the process semantics

of Petri nets that, on the one hand, could help to understand the dynamics and causality in the biologi-

cal evolutions represented by membrane systems and, on the other hand, poses new challenges for Petri

nets with localities. In this talk we focus on the synthesis problem, that is, the problem of automated

construction of a system from a specification of its (observed or desired) behaviour.

Automated synthesis from behavioural specifications is an attractive and powerful way of construct-

ing correct concurrent systems. We start from the problem of synthesising a Petri net from a behavioural

specification given in the form of a transition system which specifies the desired state space of the Petri

net to be constructed. We will discuss solutions to this problem based on the notion of region of a transi-

tion system. Intuitively, a region captures a place of the net through essential behavioural characteristics

as encoded in the transition system, including marking information and connectivity with all the transi-

tions. Since places represent objects in compartments, transitions chemical reactions, and markings the

configurations of a membrane system, such synthesis procedure paves the way for automated synthesis

of membrane systems from state spaces.

We will outline the essence of the general region-based solution to the net synthesis problem in the

setting of so-called τ-nets and corresponding τ-regions. Here the parameter τ is a general and convenient

way of capturing different types of connections (arcs and their combinations) between places and tran-

sitions, removing the need to re-state and re-prove the key results every time a new kind of transitions

or arcs is introduced. Next we review existing solutions to the synthesis problem for a number of Petri

net models relevant from the point of view of membrane systems, including place/transition nets, nets

with inhibitor and activator arcs (modelling inhibitors and promoters in reaction systems), and nets with

localities (compartments in membrane systems). To deal with nets with localities, we extend the synthe-

sis to include also firing policies (such as maximal concurrency). Finally, we will discuss two recently

introduced Petri net classes, viz. SET-nets (with qualitative rather than quantitative resource manage-

ment, motivated by reaction systems) and nets with a/sync connections (which could provide a novel

way of interpreting the interplay between different, simultaneously occurring reactions). There will also

be some brief comments on automated synthesis from behavioural specifications other than state spaces,

such as sets of sample executions.

The presentation is essentially self-contained; in particular, all the necessary details concerning Petri

nets synthesis will be provided.

References

[1] E.Badouel, P.Darondeau. Theory of Regions. In [16], 529-586, 1998.

[2] P.Darondeau, M.Koutny, M.Pietkiewicz-Koutny, A.Yakovlev. Synthesis of Nets with Step Firing Policies.

Fundamenta Informaticae 94, 275-303, 2009.

[3] J.Desel, W.Reisig. The Synthesis Problem of Petri Nets. Acta Informatica 33, 297-315, 1996.

[4] J.Desel, A.Yakovlev (eds.). Applications of Region Theory 2011. Proc. of the Workshop Applications of

Region Theory 2011 (ART-2011), CEUR-WS 725, 2011. http://ceur-ws.org/Vol-725/

[5] A.Ehrenfeucht, G.Rozenberg. Partial 2-structures; Part I: Basic Notions and the Representation Problem, and

Part II: State Spaces of Concurrent Systems. Acta Informatica 27, 315-368, 1990.

[6] A.Ehrenfeucht, G.Rozenberg. Reaction Systems. Fundamenta Informaticae 75, 1-18, 2007.

[7] J.Kleijn, M.Koutny. Petri Nets and Membrane Computing. In [15], 389-412, 2009.

[8] J.Kleijn, M.Koutny. Membrane Systems with Qualitative Evolution Rules. Fundamenta Informaticae, 110,

217-230, 2011.

[9] J.Kleijn, M.Koutny, M.Pietkiewicz-Koutny. Regions of Petri Nets with a/sync Connections. Theoretical Com-

puter Science 454, 189-198, 2012.

[10] J.Kleijn, M.Koutny, M.Pietkiewicz-Koutny, G.Rozenberg. Classifying Boolean Nets for Region-based Syn-

thesis. In [4], 5-21, 2011.

[11] J.Kleijn, M.Koutny, M.Pietkiewicz-Koutny, G.Rozenberg. Step Semantics of Boolean Nets Acta Informatica

(to appear).

[12] J.Kleijn, M.Koutny, G.Rozenberg. Process Semantics for Membrane Systems. Journal of Automata, Lan-

guages and Combinatorics 11, 321-340, 2006.

[13] J.Kleijn, M.Koutny, G.Rozenberg. Petri Nets for Biologically Motivated Computing. Scientific Annals of

Computer Science 21, 199-225, 2011.

[14] M.Koutny, M.Pietkiewicz-Koutny. Synthesis of Petri Nets with Localities. Scientific Annals of Computer

Science 19, 1-23, 2009.

[15] G.Păun, G.Rozenberg, A.Salomaa. The Oxford Handbook of Membrane Computing. Oxford University

Press, 2009.

[16] W.Reisig, G.Rozenberg (eds.) Lectures on Petri Nets I and II. Lecture Notes in Computer Science 1491 and

1492. Springer-Verlag, 1998.

8

Regular Papers

Pre-Proceedings of 6th Workshop on Membrane

Computing and Biologically Inspired Process Calculi

MeCBIC 2012, Pages 11–25.

c© M. Antonaki and A. Philippou

All the rights to the paper remain with the authors.

A Process Calculus for Spatially-explicit Ecological Models

Margarita Antonaki Anna Philippou

Department of Computer Science
University of Cyprus

cs05ma@cs.ucy.ac.cy annap@cs.ucy.ac.cy

We propose PALPS, a Process Algebra with Locations for Population Systems. PALPS allows us to

produce spatially-explicit, individual-based models and to reason about their behavior. Our calculus

has two levels: at the first level we may define the behavior of an individual of a population while,

at the second level, we may specify a system as the collection of individuals of various species

located in space, moving through their life cycle while changing their location, if they so wish, and

interacting with each other in various ways such as preying on each other. Furthermore, we propose

a probabilistic temporal logic for reasoning about the behavior of PALPS processes. We illustrate

our framework via models of dispersal in metapopulations.

1 Introduction

During the last decade we have witnessed an increasing trend towards the use of formal frameworks for

reasoning about biological as well as ecological systems including process algebras [29, 28, 9, 23, 13],

Membrane Systems [27, 11] and cellular automata [16]. Process algebras, first proposed in [24, 19] to aid

the understanding and reasoning about communication and concurrency, provide a number of features

that make them suitable for capturing biological processes. In particular, process algebras are especially

suited towards the so-called “individual-based” approach of modeling populations, as they enable one to

describe the evolution of each individual of the population as a process and, subsequently, to compose a

set of individuals (as well as their environment) into a complete ecological system. Features such as time,

probability and stochastic behavior, which have been extensively studied within the context of process

algebras, can be exploited to provide more accurate models, while associated analysis tools can be used

to analyze and predict their behavior.

In this work, our aim is to introduce a process-algebraic framework to enable spatially-explicit mod-

eling of ecological systems. Such modeling [14, 3] has been of special interest to conservation scientists

and practitioners who have employed it in order to predict how species will respond to specific man-

agement schemes and guide the selection of reservation sites and reintroduction efforts, e.g. [18, 26].

The use of spatially-explicit, individual-based modeling requires the description of the environment as

well as each individual residing in it, including a description of each individual’s interaction with other

individuals as well as the environment. As far as the environment is concerned, these models typically

involve the use of patches or a lattice to represent the habitat. Individuals are then placed on specific

locations of the modeled landscape and their behavior, including events such as birth, mortality, and

dispersal, is simulated at the individual or population level and analyzed.

In order to capture this type of behavior our process algebra, PALPS, associates processes with

information about their location and their species. The habitat is defined as a graph consisting of a set

of locations and a neighborhood relation. Movement of located processes is then modeled as the change

in the location of a process, with the restriction that the originating and the destination locations are

neighboring locations. In addition to moving between locations, located processes may communicate

with each other by exchanging messages upon channels. Communication may take place only between

processes which reside at the same location while special channels allow processes to engage in preying

and reproduction. Furthermore, PALPS may model probabilistic events, with the aid of a probabilistic

choice operator, and uses a discrete treatment of time. Finally, in PALPS, each location may be associated

with a set of attributes capturing relevant information such as the capacity or the quality of the location.

These attributes form the basis of a set of expressions that refer to the state of the environment and are

employed within models to enable the enunciation of location-dependent behavior.

The operational semantics of our calculus is given in terms of a labeled transition system on which

we may check properties expressed in an instantiation of the PCTL temporal logic. We illustrate the

expressiveness of PALPS by constructing spatially-explicit individual-based models for metapopulation

dispersal.

There exists a variety of previous proposals which introduces locations or compartments into formal

frameworks, e.g. [2, 10, 12, 2, 21, 4, 7], while work has been carried out to employ these frameworks

for modeling and analyzing population systems [5]. PALPS is to a large extent influenced by such

works. However, it departs from these works in that it is the first process-algebraic framework developed

specifically for reasoning about ecological models as well as in its treatment of a state and its capability

of expressing state-dependent behavior. In particular, it can be considered as an extension of WSCCS

of [29] with locations and location attributes, while it shares a similar treatment of locations with process

algebras developed for reasoning about mobile ad hoc networks, e.g. [22, 17]. As such, PALPS considers

a two-dimensional space where locations and their interconnections are modeled as a graph upon which

individuals may move as computation proceeds. The main feature that distinguishes PALPS from exist-

ing formal frameworks is the fact that it associates locations with a set of attributes that model special

characteristics of locations that may be of interest when modeling a system and the ability to express

behavior of individuals that is conditional on the values of these attributes. Examples of attributes that

can be observed by individuals is the number of individuals a location can support as well the current

number of individuals present at a location.

In the remainder of the paper we present the syntax and the semantics of PALPS in Section 2, while

in Section 3 we provide models of metapopulation dispersal. In Section 4 we conclude with a discussion

on future work.

2 The Process Calculus

In our calculus, PALPS (Process Algebra with Locations for Population Systems), we consider a system

as a set of individuals operating in space, each possessing a species and a location identifier. Movement

in the calculus is modeled via a specialized action whose effect is to change the location of an individual,

with the restriction that the originating and the destination locations are neighboring locations. The

notion of neighborhood is implemented via a relation Nb where (ℓ,ℓ′) ∈ Nb exactly when locations ℓ
and ℓ′ are neighbors. We also use Nb as a function and write Nb(ℓ) for the set of all neighbors of ℓ.

2.1 The Syntax

We continue to formalize the syntax of PALPS. We begin by describing the basic entities of the calculus.

• We assume a set of special labels S corresponding to the species under consideration, ranged over

by s, s′.

12

• Furthermore, we assume a set of channels Ch, ranged over by lower-case strings. This set contains

the special channels reps and preys, s ∈ S, which are channels used to model reproduction of

species s and preying on species s.

• Finally, we assume a set of locations Loc ranged over by ℓ, ℓ′. Locations can be associated with

a set of attributes that model special characteristics of locations of interest within a system. We

write ψ for attributes and ψℓ for the value of attribute ψ at location ℓ.

Our calculus also employs two sets of expressions: logical expressions ranged over by e and arith-

metic expressions, ranged over by w. One of our main aims being to facilitate reasoning about spatially-

dependent behavior, these expressions are intended to capture environmental (location-relevant) situa-

tions which may affect the behavior of individuals. Expressions e and w, are constructed as follows:

e ::= true | ¬e | e1 ∧ e2 | w ⊲⊳ c

w ::= c | ψ@ℓ⋆ | s@ℓ⋆ | @ℓ⋆ | op1(w) | op2(w1,w2)

where c is a natural number, ⊲⊳∈ {=,≤,≥} and ℓ⋆ ∈ Loc∪{myloc}. Let us informally consider the

introduced expressions. To begin with logical expressions are built using the propositional calculus

connectives as well as comparisons between an arithmetic expression w and a constant c, i,e. w ⊲⊳
c. Moving on to arithmetic expressions, these include three special expressions interpreted as follows:

Expression ψ@ℓ⋆ is equal to the value of attribute ψ at location ℓ⋆. Expression (s@ℓ⋆) is equal to

the number of individuals of species s at location ℓ⋆ and expression @ℓ⋆ denotes the total number of

individuals of all species at location ℓ⋆. As specified above, ℓ⋆ can be an arbitrary location or the special

location myloc. This label is employed to bestow individuals the ability to express conditions on the

status of their current location no matter where that might be as computation proceeds. Specifically,

myloc refers to the actual location of the individual in which the expression appears and it is instantiated

to this location when the condition needs to be evaluated (see rule (Cond) in Table 3).

Thus, arithmetic expressions are the set of all expressions formed by arbitrary constants c, quantities

ψ@ℓ⋆, s@ℓ⋆, @ℓ⋆and the usual unary and binary arithmetic operations (op1 and op2) on the real num-

bers. Logical expressions and arithmetic expressions are evaluated within a system environment. The

precise definition of the evaluation function is postponed to Tables 1 and 2.

We may now move on to the syntax of PALPS which is given at three levels: (1) the individual level

(ranged over by P), (2) the species level (ranged over by R) and (3) the system level (ranged over by S).

Their syntax is defined via the following BNF’s:

P ::= 0 | η .P | ∑
i∈I

wi : Pi | cond (e1 ✄P1, . . . ,en ✄Pn) | C

R ::= !rep.P

S ::= 0 | P:[[s, ℓ]] | R:[[s]] | S1 |S2 | S\L

where a ∈ Ch, L ⊆ Ch, C ranges over a set of process constants C , each with an associated definition of

the form C
def
= P, where the node P may contain occurrences of C, as well as other constants, and

η ::= a | a | go ℓ | √ .

Beginning with the individual level P, process 0 represents the inactive individual, that is, an indi-

vidual who has ceased to exist. η .P describes the individual who first engages in activity η and then

behaves as P. Activity η can be an input action on a channel a, written simply as a, a complementary

13

output action on a channel a, written as a, a movement action with destination ℓ, goℓ, or the time-passing

action,
√

. Actions of the form a, and a, a ∈ Ch, are used to model arbitrary activities performed by an

individual e.g. eating, preying, observing the environment as well as reproduction. Thus, for example,

the actions preys and preys are executed by a prey of population s and a predator who is preying on

individuals of population s. The tick action
√

measures a tick on a global clock and is used to separate

the phases/rounds of an individual’s behavior. Essentially, the intention is that in any given time unit all

individuals perform their available actions possibly synchronizing as necessary until they synchronize

on their next
√

action and proceed to their next round.

∑i∈I wi : Pi represents the probabilistic choice between processes Pi, i ∈ I. Each alternative is asso-

ciated with a probability of appearance, which is the value to which the expression wi evaluates. The

conditional process cond (e1✄P1, . . . ,en✄Pn) presents the conditional choice between a set of processes:

it behaves as Pi, where i is the smallest integer for which ei evaluates to true. Finally, process constants

provide a mechanism for including recursion in the calculus.

Moving on to the notion of reproduction, to capture the creation of new individuals, we employ the

special species processes R. R, defined as !rep.P, are replicated processes which may continuously re-

ceive input through channel rep and creating new instances of process P, where P is a new individual of

species R. Such inputs will be provided by individuals in the phase of reproduction via the complemen-

tary action rep.

Finally, population systems are built by composing in parallel located individuals, P:[[s, ℓ]], where s

and ℓ are the species and the location of the individual, and species R:[[s]], where s is the name of the

species. Finally, S\L models the restriction of the use of channels in set L within S.

As an example, we consider the model described in [8] where a set of individuals live on an n× n

lattice of resource sites and go through phases of reproduction and dispersal. Specifically, the studied

model considers a population where individuals disperse in space while competing for a location site

during their reproduction phase. They produce an offspring only if they have exclusive use of a location.

After reproduction the offspring disperse and continue indefinitely with the same behavior. In PALPS,

we may model the described species s as R
def
=!rep.P, where

P
def
= ∑

ℓ∈Neigh(myloc)

1

4
: goℓ.

√
.cond (s@myloc= 1✄P1; true✄

√
.P)

P1
def
= p : rep.

√
.P1 +(1− p) : rep.rep.

√
.P1

We point out that the conditional construct allows us to determine the exclusive use of a location by an

individual. The special label myloc is used to illustrate that the location of interest is the actual location

of an individual once the individual is placed in a context within a system definition. Furthermore, note

that P1 models the probabilistic production of one or two offspring of the species. During the dispersal

phase, an individual moves to a neighboring location which is chosen probabilistically among the four

neighboring locations on the lattice of the individual. Then a system containing of two individuals at a

location ℓ and one in location ℓ′ can be modeled as

System
def
= (P:[[ℓ,s]]|P:[[ℓ,s]]|P:[[ℓ′,s]]|(!rep.P):[[s]])\{rep}.

To model a competing species s′ which preys on s, we may define the process R′ def
=!rep′.Q, where

14

Q
def
= cond (s@myloc> 1✄ preys.

√
.Q1,true✄

√
.Q2)

Q1
def
= rep′.

√
.Q

Q2
def
= cond (s@myloc> 1✄ preys.

√
.Q1,true✄

√
.0)

An individual of this species looks for a prey. If it succeeds in locating one, then it produces an offspring.

If it fails for two consecutive time units it dies.

2.2 The Semantics

The semantics of PALPS is defined in terms of a structural operational semantics given at the level

of configurations of the form (E,S), where E is an environment and S is a population system. The

environment E is an entity which captures how the various locations of the system are populated. More

precisely, E ⊂Loc×S×N, where each pair ℓ and s is represented in E at most once and where (ℓ,s,m)∈
E denotes the existence of m individuals of species s at location ℓ. The environment E plays a central role

in defining the semantics of the calculus and, in particular, for evaluating expressions. The satisfaction

relation for logical expression |= is defined inductively on the structure of a logical expression as shown

in Table 2.

Table 1: The satisfaction relation for logical expressions

E|=true always

E |= ¬e if and only if ¬(E |= e)

E |= e1 ∧ e2 if and only if E |= e1 ∧E |= e2

E |= w ⊲⊳ e if and only if val (E,w) ⊲⊳ e

The relation |= is straightforward and depends on the evaluation function for arithmetic expressions

val (E,w) defined in Table 2.

Table 2: The evaluation relation for arithmetic expressions

val (E,c) = c

val (E,ψ@ℓ) = ψℓ

val (E,s@ℓ) = num(E, ℓ,s)
val (E,@ℓ) = num′(E, ℓ)
val (E,op1(w)) = op1(val (E,w))
val (E,op2(w1,w2)) = op2(val (E,w1),val (E,w2))

The auxiliary functions num(E, ℓ,s) and num′(E, ℓ) compute the number of individuals at location ℓ
in environment E of a specific species s (num(E, ℓ,s)) or for all species (num′(E, ℓ)) and are defined by

num(E, ℓ,s) = n where (ℓ,s,n) ∈ E and num′(E, ℓ) = ∑s∈S num(E,s, ℓ).
Before we proceed to the semantics we define some additional operations on environments that we

will use in the sequel:

15

Definition 1. Consider environment E location ℓ and species s.

• E ⊕ (s, ℓ) increases the count of individuals of species s at location ℓ in environment E by 1:

E ⊕ (s, ℓ) =

{

E ′∪{(ℓ,s,m+1)} if E = E ′∪{(ℓ,s,m)} for some m

E ∪{(ℓ,s,1)} otherwise

• E ⊖ (s, ℓ) decreases the count of individuals of species s at location ℓ in environment E by 1:

E ⊖ (s, ℓ) =







E ′∪{(ℓ,s,m−1)} if E = E ′∪{(ℓ,s,m)},m > 1

E ′ if E = E ′∪{(ℓ,s,1)}
⊥ otherwise

We may now define the semantics of PALPS, presented in Tables 3 and 4, and given in terms of two

transition relations, the nondeterministic relation −→n and the probabilistic relation −→p. A transition of

the form (E,S)
µ−→n (E

′,S′) signifies that configuration (E,S) may execute action µ and become (E ′,S′)
whereas a transition of the form (E,S)

w−→p (E
′,S′) signifies that configuration (E,S) may evolve into

configuration (E ′,S′) with probability w. Whenever the type of the transition is irrelevant to the context

we write (E,S)
α−→ (E ′,S′) to denote that either (E,S)

µ−→n (E ′,S′) or (E,S)
w−→p (E ′,S′). Action µ

appearing in the nondeterministic relation may have one of the following forms:

• a@ℓ and a@ℓ denote the execution of actions a and a respectively at location ℓ.

• τ denotes the internal action. This may arise when two complementary actions take place at the

same location or when a move or a prey action take place. We are not interested in the precise

location of internal actions, thus, this information is omitted.

• √
denotes the time passing action.

The rules of Table 3 prescribe the semantics of located individuals in isolation. The first four axioms

define nondeterministic transitions, the fifth axiom defines a probabilistic transition, and the last two

rules refer to both the nondeterministic and the probabilistic case. All rules are concerned with the

evolution of the individual in question and the effect of this evolution to the system’s environment. A

key issue in the enunciation of the rules is to preserve the compatibility of P and E as transitions are

executed. We consider each of the rules separately. Axiom (Tick) specifies that a
√

-prefixed process

will execute the time consuming action
√

and then proceed as P. The state of the new environment

depends on the state of P: if P = 0 then the individual has terminated its computation and, therefore, it

is removed from E (see the definition of EP) whereas, if P 6= 0 then, obviously, E remains unchanged.

Axiom (Act) specifies that η .P executes action η @ℓ and evolves to P. Note that the action is decorated

by the location of the individual executing the transition to enable synchronization of the action with

complementary actions taking place at the same location (see rule (Par2), Table 4). This axiom excludes

the case of η = goℓ which is treated separately in the next axiom. Specifically, according to Axiom

(Go), an individual may change its location. This gives rise to action τ and has the expected effect

on the environment E . Moving on to Axiom (Prey), this describes that any individual can become

the victim of a preying action. This may happen at any point during the lifetime of the individual

giving rise to the action preys@ℓ and causing the individual to terminate with the appropriate changes

to the state of the environment. Rule (PSum) expresses the semantics of probabilistic choice: once the

probability expressions are evaluated within the environment, the probabilistic action is taken leading to

the appropriate continuation: if the resulting state of the individual, namely Pi, is equal to 0, then the

16

Table 3: Transition rules for individuals

(Tick) (E,
√
.P:[[s, ℓ]])

√
−→n (E

P,P:[[s, ℓ]])

(Act) (E,η .P:[[s, ℓ]]
η@ℓ−→n (E

P,P:[[s, ℓ]]) η 6= goℓ′

(Go) (E,goℓ′.P:[[s, ℓ]])
τ−→n ((E ⊖ (s, ℓ))⊕ (s, ℓ′),P:[[s, ℓ′]]) (ℓ,ℓ′) ∈ Nb

(Prey) (E,P:[[s, ℓ]])
preys@ℓ−→ n (E ⊖ (s, ℓ),0:[[s, ℓ]])

(PSum) (E,∑i∈I wi : Pi:[[s, ℓ]])
val (E,wi@ℓ)−→ p (E

Pi ,Pi:[[s, ℓ]])

(Const) (E,P:[[s, ℓ]])
α−→ (E ′,P′:[[s, ℓ]])

(E,C:[[s, ℓ]])
α−→ (E ′,P′:[[s, ℓ]])

C
def
= P:[[s, ℓ]]

(Cond)
(E,Pi:[[s, ℓ]])

α−→ (E ′,P′
i :[[s, ℓ′]]),E|=ei@ℓ,E 6 |=e j@ℓ, j < i

(E,cond (e1 ✄P1, . . . ,en ✄Pn))
α−→ (E ′,P′

i :[[s, ℓ′]])

where EP =

{

E ⊖ (s, ℓ) if P = 0

E otherwise

individual is removed from the environment E . Note that we write w@ℓ for the expression w with all

occurrences of myloc substituted by location ℓ: w@ℓ= w[ℓ/myloc]. Next (Const) express the semantics

of process constants in the expected way. Finally, rule (Cond) stipulates that a conditional process may

perform an action of continuation Pi assuming that ei@ℓ evaluates to true and all e j@ℓ, j < i evaluate to

false. Similarly to w@ℓ, e@ℓ is the expression e with all occurrences of myloc substituted by location ℓ.
We may now move on to Table 4 which defines the semantics of system-level operators. The first rule

defines the semantics for the replication operator, the next five rules define the semantics of the parallel

composition operator, and the last rule deals with the restriction relation.

Thus, according to axiom (Rep), a species process may execute action reps@ℓ for any location ℓ and

create a new individual P of species s at location ℓ. Next, rules (Par1) - (Par4) specify how the actions

of the components of a parallel composition may be combined. Note that the symmetric versions of

these rules are omitted. According to (Par1), if a component may execute a nondeterministic transition

and no probabilistic transition is enabled by the other component (denoted by (E,S2) 6−→p), then the

transition may take place. If the parallel components may execute complementary actions, then they

may synchronize with each other producing action τ (rule (Par2)). If both components may execute

probabilistic transitions then they may proceed together with probability the product of the two distinct

probabilities (rule (Par3)) and, finally, if exactly one of them enables a probabilistic transition then this

transition takes precedence over any nondeterministic transitions of the other component (rule (Par4)).
Note that in case that the components proceed simultaneously then the environment of the resulting

configuration should take into account the changes applied in both of the constituent transitions (rules

17

Table 4: Transition rules for systems

(Rep)
R =!reps.P:[[s]], ℓ ∈ Loc

(E,R)
reps@ℓ−→ n (E ⊕ (s, ℓ),P:[[s, ℓ]]|R)

(Par1)
(E,S1)

µ−→n (E
′,S′1),(E,S2) 6−→p

(E,S1|S2)
µ−→n (E

′,S′1|S2)

(Par2)
(E,S1)

a@ℓ−→n (E1,S
′
1),(E,S2)

a@ℓ−→n (E2,S
′
2)

(E,S1|S2)
τ−→n (E ⊗ (E1,E2),S

′
1|S′2)

(Par3)
(E,S1)

w1−→p (E1,S
′
1),(E,S2)

w2−→p (E2,S
′
2)

(E,S1|S2)
w1·w2−→ p (E ⊗ (E1,E2),S

′
1|S′2)

(Par4)
(E,S1)

w−→p (E,S
′
1),(E,S2) 6−→p

(E,S1|S2)
w−→p (E,S

′
1|S2)

(Time)
(E,S1)

√
−→n (E,S

′
1),(E,S2)

√
−→n (E,S

′
2)

(E,S1|S2)
√
−→n (E,S

′
1|S′2)

(Res)
(E,S)

α−→ (E ′,S′),α 6∈ {a@ℓ,a@ℓ|a ∈ L}
(E,S\L)

α−→ (E ′,S′)\L

(Par2) and (Par4). This is implemented by E ⊗ (E1,E2) as follows:

E ⊗ (E1,E2) = {(ℓ,s,m) | (ℓ,s,m) ∈ E ∩E1 ∩E2}
∪ {(ℓ,s,m) | (ℓ,s,m) ∈ E,(ℓ,s,m−1) ∈ E1,(ℓ,s,m+1) ∈ E2}
∪ {(ℓ,s,m−1) | (ℓ,s,m) ∈ E ∩Ei,(ℓ,s,m−1) ∈ E3−i, i ∈ {1,2}}
∪ {(ℓ,s,m−2) | (ℓ,s,m) ∈ E(ℓ,s,m−1) ∈ E1 ∩E2}
∪ {(ℓ,s,m+1) | (ℓ,s,m) ∈ E ∩Ei,(ℓ,s,m+1) ∈ E3−i, i ∈ {1,2}}

Next, rule (Time) defines that parallel processes must synchronize on
√

actions, thus allowing one tick

of time to pass and all processes to proceed to their next round. Finally, rule (Res) defines the semantics

of the restriction operator in the usual way.

As a final note, we observe that given a system S, the semantical rules are applied to the initial

configuration (E,S) where (ℓ,s,m)∈E if and only if S contains exactly m individuals of species s located

at ℓ. In general, we say that E is compatible with S whenever (ℓ,s,m)∈E if any only if S contains exactly

m individuals of species s located at ℓ. It is possible to prove the following lemma by structural induction

on S [1].

Lemma 1. Whenever (E,S)
α−→ (E ′,S′) and E is compatible with S, then E ′ is also compatible with S′.

2.3 Model Checking PALPS

Model-checking of PALPS processes may be implemented via an instantiation of the PCTL logic [6].

The instantiation involves the adoption of PALPS logical expressions as the atomic propositions of the

18

logic. Specifically, the syntax of the PCTL instantiation that we consider, is given by the following

grammar where Φ and φ range over PCTL state and path formulas, respectively, p ∈ [0,1] and k ∈N.

Φ := true | e | ¬Φ | Φ∧Φ′ | P⊲⊳p[φ]
φ := XΦ | ΦUkΦ | Φ1UΦ

In the syntax above, we distinguish between state formulas Φ and path formulas φ, which are eval-

uated over states and paths, respectively. A state formula is built over PALPS logical expressions and

the construct P⊲⊳p[φ]. Intuitively, a configuration s satisfies property P⊲⊳p[φ] if for any possible execution

beginning at the configuration, the probability of taking a path that satisfies the path formula φ satisfies

the condition ⊲⊳ p. Path formulas include the X (next), Uk (bounded until) and U (until) operators, which

are standard in temporal logics. Intuitively, XΦ is satisfied in a path if the next state satisfies path formula

Φ, Φ1U
kΦ2 is satisfied in a path if Φ1 is satisfied continuously on the path until Φ2 becomes true within

k time units (where time units are measured by
√

events in PALPS) and Φ1UΦ2 is satisfied if Φ2 is

satisfied at some point in the future and Φ1 holds up until then.

The semantics of PCTL are defined over Markov Decision Processes (MDPs), a type of transition

systems that combine probabilistic and nondeterministic behavior. It is not difficult to see that the opera-

tional semantics of PALPS gives rise to transition systems that can easily be translated to MDPs [1]. For

the details of the semantics and the model checking algorithm we refer the reader to [15].

As a final note we observe that in order to check the satisfaction of PCTL properties by PALPS pro-

cesses it is sufficient to restrict our attention to the E component of each configuration (E,S). This is due

to the fact that E is the only information required in order decide the satisfaction of logical expressions

by configurations (see Tables 1 and 2).

3 Examples

During the last few decades, the theory of metapopulations has been an active field of research in Ecol-

ogy and it has been extensively studied by conservation scientists and landscape ecologists to analyze

the behavior of interacting populations and to determine how the topology of fragmented habitats may

influence various aspects of these systems such as local and global population persistence and species

evolution. The notion of a metapopulation refers to a group of distinct populations of the same species

residing on a fragmented habitat or, a so-called set of patches, and cycle in relative independence through

their life cycle while interacting with other populations and colonizing previously unoccupied locations

through dispersal. It has been observed that while populations of a metapopulation may go extinct

as a consequence of demographic stochasticity, the metapopulation as a whole is often stable because

immigrants from another population are likely to re-colonize habitat which has been left open by the

extinction of another population or because immigration to a small population may rescue that popula-

tion from extinction. Indeed the process of dispersal is of vital importance in metapopulations. It affects

the long-term persistence of populations, the coexistence of species and genetic differentiation between

subpopulations and understanding this process is essential for obtaining a good understanding of the be-

havior of metapopulations. The evolution of dispersal has received much attention by scientists and it

has been studied in connection to various parameters such as the connectivity of the habitat on which a

metapopulation exists, patch quality and local dynamics.

In this section, we describe two examples relating to metapopulation dispersal through which we

illustrate how our calculus can be used to construct models of this phenomenon.

19

OffspringsReproductionJuvenileCompetition
DispersalSurviving offsprings DispersingoffspringsNon✘dispersingoffsprings

Adults

Immigrantdispersers
Adults

Figure 1: The sequence of events in the lifetime of a dispersing species

Example 1. The first example we consider is motivated by the spatially-explicit, individual-based model

of [30]. In this work the authors construct a fairly simple model of metapopulation dispersal which

departs from previous works in that, unlike previous models of metapopulation dispersal which tended

to be deterministic and at the level of population densities, the model constructed is both stochastic and

individual-based.

According to this study, a set of genotypes co-exist within a habitat which differ only in their propen-

sity to disperse. The metapopulation is composed of n× n subpopulations inhabiting a set of patches

arranged on a square lattice with cyclic boundaries, so that individuals leaving the “top” or “right-side”

of the world reappear on the “bottom” or “leftside” respectively and vice versa. Each patch is associated

with a so-called patch quality related to the capacity of the patch. The behavior of an individual of the

genotypes under study is illustrated diagrammatically in Figure 1. According to this model, an adult

individual initially produces λ offspring. Subsequently, a phase of competition takes place between the

juveniles of the population of which a fraction survives. Each surviving offspring may disperse accord-

ing to a probability of dispersal distinct to its genotype. In case it disperses, the neighboring patch it

moves to is selected with equal probability among all neighbors. This sequence of events in the behavior

of an individual is presented diagrammatically in Figure 1. We point out that the percentage of offspring

surviving juvenile competition at patch ℓ is given by γℓ = (1+αℓ ·Nℓ)
β , where αℓ is the measure of the

patch quality, Nℓ is the number of individuals residing at patch ℓ and β is a constant that relates to the

degree of competition.

This metapopulation can be modeled in PALPS as follows. We consider the set of of locations (i, j),
1 ≤ i, j ≤ n, where two locations (i, j) and (k, l) are neighbors if they are adjacent on the grid. Finally,

let us consider the location attribute αℓ as a measure of the quality of the patch at ℓ. Then, genotype i

20

with probability of dispersal pi and λ = 3 can be defined as the species process Ri =!repi.Ji, where

Ai
def
= repi.repi.repi.0 Adult Individual

Ji
def
= qi : Si +(1−qi) : 0 Juvenile

Si
def
= pi : Di +(1− pi) :

√
.Ai Surviving Juvenile

Di
def
= ∑ℓ∈Neigh(myloc)

1
4

: goℓ.
√
.Ai Dispersing Juvenile

and qi the probability of survival of juvenile competition is given by qi = (1+αℓ ·@ℓ)β . Then a system

can be modeled as the composition of the various genotypes as well as the individuals of the initial

population under study:

System
def
= [(R1:[[1]] | . . .Rk:[[k]] | ∏

1≤i≤m1

A1:[[ℓ1,1]] | . . .)\{rep1, . . . repk}.

Analysis in this model may focus on the effect that the dispersal rates, the degree of competition

and/or patch quality may have on the degree of population dispersals.

Example 2. As another more complex example, let us consider a model of wood thrush dispersal,

initially proposed in [31] and expanded upon in [25]. This model considers three types of birds: adult

breeders, adult floaters, and juveniles which are birds in their first year of life. According to this model,

adult breeders produce an offspring at a rate dictated by various system parameters such as clutch size,

nest predation and paratisism rates which we denote as rb. Following reproduction, each individual

has a probability of dying before the next time step which is higher in juveniles and adult floaters in

comparison to adult breeders. We write qb, q j and q f for the mortality rates of breeders, juveniles and

floaters, respectively. If following mortality a habitat patch has more birds than its capacity allows,

then dispersal will occur according to a probability determined by the size of the patch and the distance

between neighboring patches. This probability is higher in floaters and juveniles in comparison to adult

breeders who exhibit a high site fidelity. We write pb, p j and p f for the dispersion rates of breeders,

juveniles and floaters, respectively. If a bird reaches a patch with available capacity then it will settle.

If not, then it will either attempt to disperse to another patch or it will become a floater depending

on whether it has reached its maximum number of dispersal events. Once dispersal has occurred, the

juveniles become adults and the model begins another cycle. This sequence of events in the behavior of

the populations is presented diagrammatically in Figure 2.

This metapopulation can be modeled in PALPS as follows. We consider the set of of locations and an

associated predefined neighbor function as well as a distance function that may be instantiated according

to the modeler’s preference to capture Euclidean distance or some other function of interest [25]. We

also assume the existence of a set of probabilities {pi, j}i, j∈Loc where pi, j represents the probability of

dispersal from patch i to patch j. Finally, we introduce the location attribute cℓ as a measure of the

capacity of patch ℓ. Then, wood thrush species can be modeled by the process R =!rep.Juv, where

21

J uvenilesReproduction Mortality
FloatersBreeders

Surviving BreedersJ uveniles and Floaters
Dispersal

Need for dispersalNon✹dispersingj uveniles and breeders Dispersingj uveniles, breedersand floaters
Breeders FloatersNo need for dispersalSurvivingJ uvenilesAnd Breeders No need for dispersal–Surviving FloatersNon✹dispersingfloaters

Need for dispersalNon✹dispersingj uveniles and breeders Dispersingj uveniles, breedersand floaters
No need for dispersal ✹SurvivingJ uvenilesAnd Breeders No need for dispersal ✹Surviving FloatersNon✹dispersingfloatersDispersal

BreedersNo need for dispersal ✹SurvivingJ uvenilesAnd Breeders No need for dispersal ✹Surviving FloatersJ uveniles and FloatersNeed for dispersal
Figure 2: A cycle in the lifetime of the metapopulation

22

Juv
def
= q j : JC0 +(1−q j) : 0 Juvenile survival

JC0
def
= cond (@myloc> cmyloc✄ JD0,true✄

√
.AB) Check patch capacity

JD0
def
= p j : JA1 +(1− p j) :

√
.AB Decide whether to disperse

JA1
def
= ∑ℓ∈Neigh(myloc) pmyloc,ℓ : goℓ.JC1 Dispersal attempt 1

JC1
def
= cond (@myloc> cmyloc✄ JD1,true✄

√
.AB) Check patch capacity

JD1
def
= p j : JA2 +(1− p j) :

√
.AB Decide whether to disperse

JA2
def
= ∑ℓ∈Neigh(myloc) pmyloc,ℓ : goℓ.JC2 Dispersal attempt 2

JC2
def
= cond (@myloc> cmyloc✄

√
.Fl,true✄

√
.AB) Become floater or adult

AB
def
= rb : rbi.BS+(1− rb).BS Breeder reproduction

BS
def
= qb : BC0 +(1−qb) : 0 Breeder survival

BC0
def
= cond (@myloc> cmyloc✄BD0,true✄

√
.AB) Check patch capacity

BD0
def
= pb : BA1 +(1− pb) :

√
.AB Decide whether to disperse

BA1
def
= ∑ℓ∈Neigh(myloc) pmyloc,ℓ : goℓ.BC1 Dispersal attempt 1

BC1
def
= cond (@myloc> cmyloc✄BD1,true✄

√
.AB) Check patch capacity

BD1
def
= pb : BA2 +(1− pb) :

√
.AB Decide whether to disperse

BA2
def
= ∑ℓ∈Neigh(myloc) pmyloc,ℓ : goℓ.BC2 Dispersal attempt 2

BC2
def
= cond (@myloc> cmyloc✄

√
.Fl,true✄

√
.AB) Floater or adult

Fl
def
= q f : FC0 +(1−q f) : 0 Floater survival

FC0
def
= cond (@myloc> cmyloc✄FD0,true✄

√
.Fl) Check patch capacity

FD0
def
= p f : FA1 +(1− p f) :

√
.Fl Decide whether to disperse

FA1
def
= ∑ℓ∈Neigh(myloc) pmyloc,ℓ : goℓ.FC1 Dispersal attempt 1

FC1
def
= cond (@myloc> cmyloc✄FD1,true✄

√
.Fl) Check patch capacity

FD1
def
= p f : FA2 +(1− p f) :

√
.Fl Decide whether to disperse

FA2
def
= ∑ℓ∈Neigh(myloc) pmyloc,ℓ : goℓ.

√
.Fl Dispersal attempt 2

As before, the system can be modeled as the composition of the species as well as the various individuals

that form the study:

System
def
= [(R:[[1]] | ∏

1≤i≤n1
b

AB:[[ℓ1,1]] || ∏
1≤i≤n1

j

Juv:[[ℓ1,1]] | ∏
1≤i≤n1

f

Fl:[[ℓ1,1]] . . .)\{rep1, . . . repk}.

Varying the model parameters, e.g. the habitat topology, patch quality and dispersal distance, may allow

an analysis of the effects of the parameters on patch and metapopulation persistence.

4 Concluding remarks

This paper reports on work in progress towards the development of a process-calculus framework for the

spatially-explicit and individual-based modeling of ecological systems. In related work [1] we have also

implemented a prototype tool and conducted simulations for the spatially-explicit model of [8]. In future

23

work we intend to provide optimizations for our tool via an implementation of a spatial extension of the

Gillespie simulation algorithm [20] and by taking advantage of concepts developed in process-algebraic

frameworks for state-space reduction such as confluence and minimization according to equivalence

relations. At the same time it is our intention to enhance the syntax of PALPS to enable a more succinct

presentation of systems especially in terms of the multiplicity of individuals. Other possible directions for

future work include the adoption of continuous time within the framework as well as the use of dynamic

attributes to allow exploring the system while, e.g. patch quality degrades, temperatures increase, etc.

References

[1] M. Antonaki (2012): A Probabilistic Process Algebra and a Simulator for Modeling Population Systems.

Master’s thesis, University of Cyprus.

[2] R. Barbuti, A. Maggiolo-Schettini, P. Milazzo & G. Pardini (2009): Spatial Calculus of Looping Sequences.

Electronic Notes in Theoretical Computer Science 229(1), pp. 21–39.

[3] L. Berec (2002): Techniques of Spatially Explicit Individual-based Models: Construction, Simulation, and

Mean-field Analysis. Ecological Modeling 150, pp. 55–81.

[4] D. Besozzi, P. Cazzaniga, D. Pescini & G. Mauri (2008): Modelling Metapopulations with Stochastic Mem-

brane Systems. BioSystems 91(3), pp. 499–514.

[5] D. Besozzi, P. Cazzaniga, D. Pescini & G. Mauri (2010): An Analysis on the Influence of Network Topologies

on Local and Global Dynamics of Metapopulation Systems. EPTCS 33, pp. 1–17.

[6] A. Bianco & L. de Alfaro (1995): Model Checking of Probabilistic and Nondeterministic Systems. In:

Proceedings of FSTTCS’95, LNCS 1026, Springer, pp. 499–513.

[7] L. Bioglio, C. Calcagno, M. Coppo, F. Damiani, E. Sciacca, S. Spinella & A. Troina (2011): A Spatial

Calculus of Wrapped Compartments. CoRR abs/1108.3426. Available at http://arxiv.org/abs/
1108.3426.

[8] A. Brännström & D. J. T. Sumpter (2005): Coupled Map Lattice Approximations for Spatially Explicit

Individual-based Models of Ecology. Bulletin of Mathematical Biology 67(4), pp. 663–682.

[9] L. Cardelli (2005): Brane Calculi - Interactions of Biological Membranes. In: Proceedings of CMSB’04,

LNCS 3082, Springer, pp. 257–278.

[10] L. Cardelli & P. Gardner (2010): Processes in Space. In: Proceedings of CiE’10, LNCS 6158, Springer, pp.

78–87.

[11] M. Cardona, M. Colomer, A. Margalida, I. Pérez-Hurtado, M. J. Pérez-Jiménez & D. Sanuy (2010): A P

System Based Model of an Ecosystem of the Scavenger Birds. In: Proceedings of WMC’09, LNCS 5957,

Springer, pp. 182–195.

[12] F. Ciocchetta & M. L. Guerriero (2009): Modelling Biological Compartments in Bio-PEPA. Electronic Notes

in Theoretical Computer Science 227, pp. 77–95.

[13] F. Ciocchetta & J. Hillston (2009): Bio-PEPA: a Framework for the Modelling and Analysis of Biochemical

Networks. Theoretical Computer Science 410(33-34), pp. 3065–3084.

[14] J. B. Dunning, D. J. Stewart, B. J. Danielson, B. R. Noon, T. L. Root, R. H. Lamberson & E. E. Stevens

(1995): Spatially Explicit Population Models: Current Forms and Future Uses. Ecological Applications 5,

pp. 3–11.

[15] V. Forejt, M. Kwiatkowska, G. Norman & D. Parker (2009): Automated Verification Techniques for Proba-

bilistic Systems. In: Proceedings of SFM’11, LNCS 6659, Springer, pp. 53–113.

[16] S. C. Fu & G. Milne (2004): A Flexible Automata Model for Disease Simulation. In: Proceedings of ACRI’04,

LNCS 3305, Springer, pp. 642–649.

[17] V. Galpin (2009): Modelling Network Performance with a Spatial Stochastic Process Algebra. In: Proceed-

ings of AINA’09, IEEE Computer Society, pp. 41–49.

24

http://arxiv.org/abs/1108.3426
http://arxiv.org/abs/1108.3426

[18] L. R. Gerber & G. R. VanBlaricom (2001): Implications of Three Viability Models for the Conservation

Status of the Western Population of Steller Sea Lions (Eumetopias Jubatus). Biological Conservation 102,

pp. 261–269.

[19] C. A. R. Hoare (1985): Communicating Sequential Processes. Prentice-Hall.

[20] M. Jeschke, R. Ewald & A. Uhrmacher (2011): Exploring the Performance of Spatial Stochastic Simulation

Algorithms. Journal of Computational Physics 230(7), pp. 2562–2574.

[21] M. John, R. Ewald & A. M. Uhrmacher (2008): A Spatial Extension to the π-Calculus. Electronic Notes in

Theoretical Computer Science 194, pp. 133–148.

[22] D. Kouzapas & A. Philippou (2011): A Process Calculus for Dynamic Networks. In: Proceedings of

FMOODS/FORTE’11, LNCS 6722, Springer, pp. 213–227.

[23] C. McCaig, R. Norman & C. Shankland (2008): Process Algebra Models of Population Dynamics. In:

Proceedings of AB’08, LNCS 5147, Springer, pp. 139–155.

[24] R. Milner (1980): A Calculus of Communicating Systems. Springer.

[25] E. S. Minor, R. I. McDonald, E. A. Treml & D. L. Urban (2008): Uncertainty in Spatially Explicit Population

Models. Biological Conservation 141(4), pp. 956–970.

[26] R. G. Pearson & T. P. Dawson (2005): Long-distance Plant Dispersal and Habitat Fragmentation: Identifying

Conservation Targets for Spatial Landscape Planning Under Climate Change. Biological Conservation 123,

pp. 389–401.

[27] G. Păun (2002): Membrane Computing: An Introduction. Springer-Verlag.

[28] A. Regev, E.M. Panina, W. Silverman, L. Cardelli & E. Shapiro (2004): BioAmbients: an Abstraction for

Biological Compartments. Theoretical Computer Science 325(1), pp. 141–167.

[29] C. Tofts (1994): Processes with Probabilities, Priority and Time. Formal Aspects of Computing 6, pp.

536–564.

[30] J. M. J. Travis & C. Dytham (1998): The Evolution of Disperal in a Metapopulation: a Spatially Explicit,

Individual-based Model. Proceedings: Biological Sciences 265(1390), pp. 17–23.

[31] D. L. Urban & H. H. Shugart (1986): Avian Demography in Mosaic Landscapes: Modeling Paradigm and

Preliminary Results. Wildlife 2000: Modeling Habitat Relationships of Terrestrial Vertebrates, pp. 273–279.

25

Pre-Proceedings of 6th Workshop on Membrane

Computing and Biologically Inspired Process Calculi

MeCBIC 2012, Pages 27–47.

© A. Basso-Blandin and F. Delaplace

All the rights to the paper remain with the authors.

GUBS, a Behavior-based Language for Open System

Dedicated to Synthetic Biology

Adrien Basso-Blandin

IBISC lab.

Evry University

abasso@ibisc.univ-evry.fr

Franck Delaplace

IBISC lab.

Evry University

franck.delaplace@ibisc.univ-evry.fr

In this article, we propose a domain specific language, GUBS (Genomic Unified Behav-

ior Specification), dedicated to the behavioural specification of synthetic biological devices,

viewed as discrete open dynamical systems. GUBS is a rule-based declarative language. By

contrast to a closed system, a program is always a partial description of the behaviour of the

system. The semantics of the language accounts the existence of some hidden non-specified

actions that possibly alter the behaviour of the programmed devices. The compilation frame-

work follows a scheme similar to automatic theorem proving, aiming at improving synthetic

biological design safety.

1 Introduction

Synthetic biology is an emerging scientific field combining the investigative nature of biology with

the constructive nature of engineering [22] to design synthetic biological systems. The issue is

to devise new functionality/behaviour that does not exist in nature. Then, the field of synthetic

biology is looking forward principles and tools to make the biological devices inter-operable and

programmable [19]. Synthetic biology projects were first focusing on the design and the improve-

ment of small genetic devices comparable to logical gates for electronic circuits [23, 11]. Re-

cently, projects have attempted to develop large bio-systems integrating different devices with as

a long-term goal, the design of de-novo synthetic genome [16]. In this endeavour, the computer-

aided-design (CAD) environments play a central role by providing the required features to engineer

systems: specification, analysis, and tuning [4, 20, 25, 12]. Pioneer applications show the valuable

potential of such environments in IGEM competition.

Currently, the design specifies the structural assembly of DNA sequences (biobrick) as in GENO-

CAD [7]. Although this description is indispensable to provide a finalized specification of devices,

the abstraction level seems inappropriate for tackling large bio-systems. The required size of pro-

grams for sequence description likely makes the task error-prone and un-come-at-able. In the same

way as large softwares cannot be programmed in binary, large biological systems cannot be de-

scribed as aDNA sequence assembly. Then, scaling up the complexity of the synthetic biological

systems needs to complete the structural description by an additional abstract programming layout

based on a high-level programming language and harness the automatic conversion of the design

specification into a DNA sequence, like compilers. High level programming language for synthetic

biology is announced as a key milestone for the second wave of synthetic biology to overcome the

complexity of large synthetic system design [22]. Nonetheless, in this domain, language technol-

ogy is still in its infancy and transforming this vision into a concrete reality remains a daunting

challenge.

Such high-level language should describe the devices in term of functionalities, offering the

ability to program the behaviour directly instead of the structure supporting this behaviour. Indeed,

behaviour specification contributes to accurately document the device by adding its behavioural de-

scription, to assess its functionality automatically and formally, notably by generating test-benches

from this specification, and to get a relative independence to technology because different biologi-

cal structures can carry out the same functionality. In this framework, the components are selected

and organized automatically or semi-automatically to generate a structural description of the device

at compile phase whose behaviour complies with the specified function. A such approach has been

already achieved in hardware by using languages as VHDL [1] or VERILOG [24] to overcome the

growing complexity of electronic circuits. However, the major difference in synthetic biology re-

lates to the openness of biological system. Thereby, the issue is to propose a behavioural language

for open systems. More precisely, GUBS is a rule-based declarative language dedicated to the be-

havioural specification of discrete open dynamical systems for synthetic biology interacting with its

environment. GUBS symbolically defines the behaviours to provide a relative independence from

structures by postponing the biological component selection at compile phase. Within this frame-

work, the compiler translates the behavioural specification to a structural description of a device

whose behaviour carries the functional features defined by a program. The proposed compilation

method is inspired by automated theorem proving.

After introducing the main features of GUBS language (Section 2), we define the semantics of

GUBS based on hybrid logic. Then, we detail the proof-based principles governing the compilation

(Section 3) illustrated with a complete example (Section 4). After a survey of the related works,

Section 5, we conclude (Section 6).

2 GUBS language

In this section, we describe the main features of GUBS.

Constant and variables. In GUBS, two kinds of objects are distinguished: the constants and the

variables. The constants designate the pre-defined objects in a corpus of knowledge. In biology,

the constants may refer to proteins or genes of interest. For example, the agent LacZ refers to

LacZ protein or gene. By convention, their name starts with a capital letter. The variables refer

to an abstraction of these pre-defined objects and can be potentially replaced (substituted) by any

constant. By convention, the variable names start with a minuscule letter.

Agents, attributes and states. The agents represent the biological objects. Their different ob-

servable states characterize their different behaviours. The behaviours actually define the different

capacities for actions on the state of the other agents. They are characterized symbolically by a set

of attributes categorizing these different capacities. The real significance of the attributes is a mat-

ter of convention depending on the targeted realization (e.g., protein pathways, gene network) and

28

will be addressed through examples. For instance, the regulatory activity of a gene is observation-

ally related to thresholds of RNA transcripts concentration. At a given threshold, a gene regulates

a given set of genes whereas at another one the regulation applies to another set of genes (See Fig-

ure 1). The different thresholds define the levels of gene activities leading to different regulatory

activities. For a gene G, if we identify three different kinds of regulatory activities, the state of this

gene will be defined by three different attributes ➌Low,Mid,High➑ that characterize symbolically

three possible behaviours. For example, G❼Low➁ expresses the fact that agent G is in state Low and

then ready for the action corresponding to this attribute. In some cases, a single state is sufficient to

qualify the capacity for the action of the agent. Hence, the agent is identified to its capacity. Then,

G means that agent G is available.

By contrast, G❼Low➁ signifies that the state of the agent differs from Low (G when an agent

has a single capacity). It is worth to point out that, not being in a state defined by an attribute, does

not necessarily means that the agent state is in another attribute. Indeed, for open systems the state

of the agents could be of any sort that does not necessarily belong to the pre-defined attributes.

Two kinds of relations on attributes are defined: an order, ❤, meaning “less capacity than” and

an inequality, ⑤, meaning “different capacity than”. Then Low ❤ Mid implies that the capacity for

the action of Mid includes the capacity related to Low. Usually, in gene regulatory model [14],

the set of genes regulated at a given level will also be regulated at a higher level. By contrast,

in signalling pathways, the phosphorylation of a protein induces a conformational change of the

structure leading to a specific signalling potentiality not occurring in the unphosphosrylated con-

formation. Assuming that Phos and UnPhos respectively represents the phosphorylated and the

unphosphorylated conformations of protein P, we have Phos ⑤ UnPhos. Then, P❼Phos➁ implies

P❼UnPhos➁ implicitly. The attributes and the relation between attributes will be declared as fol-

lows: G ✂✂ ➌Low ❤ Mid,Mid ❤ High➑,P ✂✂ ➌Phos ⑤ UnPhos➑. A simple set of attributes replaces the

relations if unknown and no specific relation is set between attributes.

Finally, the description of the agent state is extended to a collection of agent states as follows:

g1 ✔ . . .✔gn, meaning that all the agent states, gi, are observed concomitantly.

Trace, event, and history. A GUBS program describes a behaviour, its interpretation is based on

the observations of designed systems. Then, the issue is to formalize the notion of behaviour ob-

servation. To this end, we focus on the notion of trace that symbolically represents the evolution of

some quantities related to the agents of interest by the evolution of these agent states. A trace can

be obtained from experiments by establishing a correspondence between measurements of some

quantities (e.g., RNA transcript concentration) and attributes of agents. Formally, a trace, ❼Tt➁1❇t❇m,

is a finite sequence of agent state sets where each set contains the agent states at a given instant.

For instance, the evolution of a concentration evolving from Low to High for G may be described

by the following trace of 6 instants: ❼➌G❼Low➁➑,➌G❼Low➁➑,➌G❼Mid➁➑,➌G❼Mid➁➑,➌G❼Mid➁➑,➌G❼High➁➑➁, .

1 2 3 4 5 6 7

However, all the events in a trace are not necessarily relevant with regards to the behaviour descrip-

tion. For example, if we focus on the evolution from Low to High for G , only three events are

relevant for the behaviour description: G❼Low➁,G❼Mid➁,G❼High➁; without accounting the inter-

29

mediary evolution stages occurring between. Then, the behaviour recognition always emphasizes

the key events in a trace entailing its contraction to show their succession. Such a contracted series

is called a consistent history of the expected behaviour. Generally speaking, an history is related to

a chronological division of a trace into periods where the events of a period represent all the agent

states occurring at each instant. Then, an history is a sequence of these event sets. Given a trace

❼Tt➁0❇t❇m, and a chronological division, ❼di➁1❇i❇n, corresponding to a sequence of the starting dates

for each period, the history is a sequence of agent states occurring in each period, ❼Hi➁1❇i❅n, such

that each Hi �✣di❇t❅di✔1
Tt . Hence, a consistent history is purposely made to point the characteristic

event steps of a behaviour description out.

In the previous example, a chronological division1 of the trace leading to an history consistent

with the expected evolution from Low to High for G is ❼1,3,6,7➁ which corresponds to following

discrete time-intervals ❼�1,2✆,�3,5✆,�6,6✆). The resulting history is: ❼➌G❼Low➁➑,➌G❼Mid➁➑,➌G❼High➁➑➁.

Notice that ❼1,2,4,7➁ also fits. However, the chronological division ❼1,3,7➁ leads to an incon-

sistent history because the level Mid is not seen as an intermediary event in the history (See also

Figure 1 depicting the trace and consistent history of the dependences). The formal definition of

the consistency in the scope of the semantics will be given in Section 2.1.

Behavioral dependence and observation spot. A behavioural dependence identifies a relation

between behaviours as a causal relation on events. Basically, the dependences should define the

control of agents on another. However, the definition of the causality also needs to tackle the

openness of a system by adapting it to this context. A seminal definition of the causality, proposed

by Hume [17], is formulated in terms of regularity on events: “[we may define] a cause to be an

object, followed by another, and where all the objects similar to the first are followed by objects

similar to the second”. Although this definition appropriately characterizes the notion of control,

the openness of the system implies to account the environment actions that possibly alter the causal

dependence chain. For example, a programmed activation G1
✔
Ð� G2 may be contradicted by an

existing inhibition G3
✏
Ð�G2 addressing the same target gene G2. Hence, while G1 is active, it may

appear that G2 will not be active because the regulatory strength of G3 is greater than the regulatory

strength of G1, contradicting the expected activation by a hidden inhibition. Hence, pushed to

the limit, this consideration prevents the ability to describe any behaviour causally because any

programmed action can be unexpectedly preempted by an external one.

However, by assuming that the design always describes a new functionality which is not ob-

served naturally, the effect becomes the event indicating the effectiveness of a causal relation. As

no cause external to the description can trigger the effect, the over-determination by unknown

causes is prevented, then insuring that the program is the sole device entailing the expected effect

in the biological system. Hence, the definition of the causal dependence will be governed by the

effect leading to the following definition of the dependence: “if effect e would occur then c oc-

curs”. Moreover, the scope of future (resp. past) is narrowed to a closest future (resp. past) period,

representing the fact that a response is always expected in a given delay. Notice that, the proposed

1Step 7 is inserted as an extra step to comply with the definition of the chronological division.

30

time

q.

T

H

❣ ❣ ➌c➑ ➌c➑ ❣ ❣ ➌e➑ ➌e➑ ❣ ❣ ❣

c❩� e

c

e

❣ ➌c➑ ➌e➑ ❣

time

q.

T

H

❣ ❣ ➌c➑ ➌c,e➑ ➌c,e➑ ➌e➑ ❣ ❣ ❣ ❣ ❣

c❜� e

c

e

❣ ➌c➑ ➌c,e➑ ❣

time

q.

T

H

❣ ❣ ➌c➑ ➌c➑ ❣ ❣ ❣ ➌e➑ ➌e➑ ➌e➑ ➌e➑

c❵� e

c

e

❣ ➌c➑ ➌e➑ ➌e➑

Figure 1: The curves represent the typical behaviours of the causal dependences based on the time

evolution of a quantity (q) related to agents c and e (e.g., RNA transcript for gene regulation). The

symbolic agent states c and e are here both associated to the maximal threshold of the quantity.

The symbolic trace (T) is issued from a periodic sampling of the evolution by identifying whether

c or e occur. A consistent history (H) complying to a causal dependence definition is represented

below the trace. The first graphic illustrates the normal causality: c❩� e, the second the persistent:

c❜� e and the third the remanent one: c❵� e.

definition circumvents the afore mentioned problem illustrated by the hidden inhibition because if

the effect does not occur the question of the existence of a cause is meaningless. This definition

is somehow equivalent to the causal claims proposed by Lewis [18] in terms of counter-factual

conditionals, i.e., “If c had not occurred, e would not have occurred”.

Three behavioural dependences are defined in GUBS: the normal denoted by ❩�, persistent

by ❜�, and remanent by ❵�. Informally, for normal dependence the cause precedes the effect

providing the effect is observed; for persistent dependence the cause still precedes the effect but it

is maintained while the effect is observed; and for remanent dependence, the effect is maintained

despite the cause has disappeared. These dependences symbolize common biological interactions.

For instance, in genetic engineering, the recombination enables the emergence of a regulated gene

or an hereditary trait permanently. A such mechanism typifies the remanent dependence in biology.

The relations between gene expression at steady state are symbolized by persistent dependence.

The behavioural dependences are defined as follows (see Section 2.1 for their formalization):

• c❩� e: if e occurs then c occurs in the closest past.

• c❜� e: if e occurs then c occurs in the closest past and also currently.

31

• c❵� e: if e occurs then, either e occurs in the closest past or the dependence complies to the

property of the normal dependence.

Figure 1 exemplifies the correspondence between experimental traces, symbolic traces and the

history for the causal dependences. All the dependences are extended to a set of causes and a

set of consequences, i.e., c1 ✔ . . .✔ cn ❩� e1 ✔ . . .✔ em. For example, let us define the activation

and the inhibition as follows: g1
✔
Ð� g2 ✁ g1 ❜� g2,g1 ❩� g2 and g1

✏
Ð� g2 ✁ g1 ❜� g2,g1 ❩� g2,

the program depicting a negative regulatory circuit with two genes, i.e., g1
✔
Ð� g2,g2

✏
Ð� g1, is:

➌g1 ❜� g2,g1 ❩� g2,g2 ❜� g1,g2 ❩� g1➑.
The observation spots describe the set of observations expected in a trace. For instance, ob-

serving that gene G is at level high is written Obs::G❼High➁. As the activation of a dependence lies

on the observation of the effect, the observation spot is used to determine which effects must be

necessarily observed. For example, in the negative regulatory circuit, the characteristic observation

spots are: obs1::g1✔g2,obs2::g1✔g2.

Compartment & Context. A compartment encloses a set of dependences making them local to

the compartment. For instance, C➌g1 ❩� g2➑ describes a normal dependence occurring in com-

partment C. The compartments are hierarchically organized and all the compartments are included

in another except for the outermost one. Although the compartments directly refer to the compart-

mentalized cellular organization (e.g., nucleus, mitochondria), they are also used to emphasize the

isolation of some interactions by syntactically enclosing the dependences into a compartment. C.s

refers to an agent state in compartment C.

A context refers to a stimulus acting on the system, as environmental conditions or external

signalling. The application of a context c to a set of dependences b is written �c✆b where c is either a

variable or a constant. This means that dependences of b are triggered when the context c is present.

For instance, recently Ye et al. [26] explore the opto-genetics signalling to control the expression of

target transgenes. The blue-light induces the expression of transgene (tg) via a signalling cascade

leading to the binding of NFAT transcription factor to a specific promoter (PNFAT). The following

program using a context summarizes the process: �BlueLight✆➌NFAT ❜� tg➑. A context can be

decomposed to several contexts, �k1, . . . ,kn✆b, meaning that all the conditions must be met to trigger

the dependences of b. The interpretation is equivalent to a context cascading, �k1✆�k2✆ . . .�kn✆b.

Moreover, the observation spots and the attribute definition are context insensitive.

2.1 Semantics of GUBS

The interpretation of GUBS is a formula such that the set of all the models validating it defines

all the possible histories complying to the programmed behaviour. The interpretation is based on

multi-modal hybrid logic with the “Always” operator,❍❼A,@➁.

Hybrid logic. In what follows, we recall the formal syntax and semantics of hybrid logic. The

hybdrid logic [5, 6] offers the possibility to denominate worlds by new symbols called nominals.

32

They will be used in satisfaction modal operators @a; the formula @aφ asserts that φ is satisfied

at the unique point named by the nominal a identifying a particular truth values of a formula at this

point. Given a set of propositional symbol, PROP, a set of relational symbol REL, and a set of nom-

inal NOM disjoint to PROP, a set of well formed formula in the signature of ❵PROP,NOM,REL❡
is defined as follows:

φ ✂✂� ➋ ❙ p ❙ a ❙ ✥φ ❙ φ ✱φ ❙ @aφ ❙ ❵k❡φ ❙ ❵k❡✏φ ❙ Aφ .

with p ❃ PROP,a ❃NOM and k ❃ REL. Moreover, the syntax is extended to other logical operators

classically 2: ➊,✲,�,�k✆,E.

The interpretation is carried out using the Kripke model satisfaction definition (Table 2.1).

▼,w è φ is interpreted as the satisfaction of a formula φ by a model▼ at world w where è

stands for the realizability relation (i.e., “is a model of”). A model validates a formula, denoted by

▼è φ , if and only if it is satisfied for all the worlds of the model (i.e., ➛w ❃ Dom▼ ✂▼,wè φ).

Definition 1 (Kripke model). A Kripke model is a structure ▼ � ❵W,❼Rk➁k❃τ ,V ❡ where W �

Dom▼ is a non-empty set of worlds, τ ❜ REL a subset of relational symbols denoting the modal-

ities, Rk ❜W ✕W,k ❃ τ a relation of accessibility, V ✂ ❼PROP✽NOM➁� 2
W an interpretation at-

tributing to each nominal and propositional variable a set of worlds such that any nominal ad-

dresses one world at most (i.e., ➛a ❃NOM ✂ ❙V❼a➁❙ ❇ 1).

By convention, R stands for the union of the accessibility relation, R � ❼✣k❃τ Rk➁.

A modal theory of a model▼ regarding to a set of formulas F , THF❼▼➁, is the set of formulas

of F validated by▼, i.e., THF❼▼➁ � ➌φ ❃ F ❙▼ è φ➑. KS❼φ➁ denotes the set of all models

validating φ , i.e., KS❼φ➁ � ➌▼ ❙▼è φ➑.

▼,wè ➋ iff true

▼,wè a iff w ❃V❼a➁, a ❃NOM✽PROP

▼,wè ✥φ iff ▼,wè φ

▼,wè φ1✱φ2 iff ▼,wè φ1 and▼,wè φ2

▼,wè@aφ iff ➜w➐
❃W ✂▼,w➐

è φ and ➌w➐➑ �V❼a➁
▼,wè ❵k❡φ iff ➜w➐

❃W ✂▼,w➐
è φ and wRkw➐

▼,wè ❵k❡✏φ iff ➜w➐
❃W ✂▼,w➐

è φ and w➐Rkw

▼,wèAφ iff ➛w➐
❃W ✂▼,w➐

è φ

Table 1: Hybrid logic interpretation.

Semantics. A GUBS program is interpreted by a hybrid logic formula where the modal operators

characterize here the temporal observations on an history: � ✆ means “observed in all the closest

futures” and ❵ ❡ means “observed in a possible closest future at least” (resp. ❵ ❡✏,� ✆✏ for the

closest past). Moreover, we assume that the accessibility relations, ❼Rk➁k❃τ , are indexed by the non

empty parts of the set of all the contexts of a program P, denoted by KP (i.e., τ � 2KP ✓➌❣➑). Then,

a non-empty set of contexts ,❣ ❵ K ❜ KP, is a modality, i.e., ❵K❡,�K✆ with ❵ ❡ � ❵❣❡ by convention.

2
➊ � ✥➋,ψ ✲φ � ✥❼✥ψ ✱✥φ➁,ψ � φ � ✥❼ψ ✱✥φ➁,�k✆φ � ✥❵k❡✥φ ,Eφ � ✥A✥φ .

33

Let ❵W,❨,Λ❡ be the set of words W with the concatenation operation and the neutral element, the

empty word Λ and F❍ the set of well-formed formulas of ❍❼A,@➁, the semantics is defined by

four functions: ❇.● ✂ P� F❍,❇.●P ✂ P�W� 2W � F❍,❇.●B ✂ B�W� F❍,❇.●R ✂ R�W� F❍,

where P,B,R respectively stand for the set of GUBS programs, the set of agent state set and the

set of relations on attributes. ❇.● initiates the interpretation. Table 2.1 defines these functions. For

❇➌b➑● � A❽❇b●P ❼Λ➁❼❣➁➂

❇ε●P ❼C➁❼K➁ � ➋

❇b1,b2●P ❼C➁❼K➁ � ❇b1●P ❼C➁❼K➁✱❇b2●P ❼C➁❼K➁
❇s1 ❩� s2●P ❼C➁❼K➁ � ❇s2●B ❼C➁� ❵K❡✏ ❽❇s1●B ❼C➁➂
❇s1 ❜� s2●P ❼C➁❼K➁ � ❇s2●B ❼C➁� ❽❇s1●B ❼C➁✱ ❵K❡✏ ❽❇s1●B ❼C➁➂➂
❇s1 ❵� s2●P ❼C➁❼K➁ � ❇s2●B ❼C➁� ❽❼❵ ❡✏ ❇s2●B ❼C➁➁✲❼❵K❡✏ ❇s1●B ❼C➁➁➂
❇g1,✆,gn ✂ ➌r1,✆,rm➑●P ❼C➁❼K➁ �☎n

i�1☎
m
j�1 ❈r j❍R

❼C.gi➁
❇l::s●P ❼C➁❼K➁ �@l ❇s●B ❼C➁
❈C➐➌b➑❍

P
❼C➁❼K➁ � ❇b●P ❼C.C➐➁❼K➁

❇�K✆➌b➑●P ❼C➁❼K➐➁ � ❇b●P ❼C➁❼K✽K➐➁

❇s1✔ . . .✔ sn●B ❼C➁ �☎
n
i�1 ❇si●B ❼C➁

❈C➐
.s❍

B
❼C➁ � ❇s●B ❼C.C➐➁

❇g❼a➁●B ❼C➁ �C.ga

❇g❼a➁●B ❼C➁ � ✥C.ga

❇g●B ❼C➁ �C.g

❇g●B ❼C➁ � ✥C.g

❇a1 ❤ a2●R ❼g➁ � ga2 � ga1

❇a1 ⑤ a2●R ❼g➁ � ga1 � ✥ga2 ✱ga2 � ✥ga1

❇a●R ❼g➁ � ➋

Table 2: Semantics of GUBS. In the definition, a represents an attribute, b a behaviour, g an agent, s

a set of agent states or an agent state, r a relation on attributes, C a compartment, K a set of contexts

and b a set of behaviours (i.e., contexts, compartments, dependences, attributes, observation spots).

instance, the program of the negative regulatory network, ➌g1 ❜� g2,g1 ❩� g2,g1 ❜� g2,g1 ❩�

g2,obs1 ✂✂ g1✔g2,obs2 ✂✂ g1✔g2➑, is translated into the following formula:

A❼ g2� ❼❼❵ ❡✏g1➁✱g1➁✱✥g2� ❼❵ ❡✏✥g1➁✱g2� ❼❼❵ ❡✏✥g1➁✱✥g1➁✱✥g2� ❼❵ ❡✏g1➁✱
@obs1

❼g1✱✥g2➁✱@obs2
❼✥g1✱g2➁

Consistent history. Now, we formally define the consistency of the history with regards to mod-

els. An history is assimilated to a path in a model ending by a world labelled with an observa-

tion spot label. The set of Kripke-models validating the interpretation of a program P, KS❼❇P●➁,

not only contains all the consistent histories, but also the possible histories corresponding to be-

havioural alterations due to external perturbations. Thus, the compilation generates a device such

that all the models validating its interpretation integrate all the observations related to the program,

including the consistent and the inconsistent ones.

34

More precisely, the consistency lies on the identification of the largest number of “relevant”

events characterizing a complete causal chain described in a program. As an history is also a

model, a consistent history should validate the interpretation of the complete causal chain. The

dependence formula set FP of a program P corresponds to a set of formulas where each formula is

the interpretation of a dependence taken separately with the attributes related to the involved agents.

By definition of the semantics, any model validating the interpretation of a program also validates

each formula of this set. The consistency of an history is then based on the validated formulas of

this set by this history. An history▼H is consistent for P if and only if no other modal theory of

histories based on FP (i.e., THFP
❼▼➁ with▼ as an history), ending with the same labelled world

includes the modal theory of this history (i.e., THFP
❼▼H➁ Ú THFP

❼▼➁).

3 Compilation

At compile phase, a program is transformed to a structure (e.g., a DNA sequence) while inserted in

a vector cell, should behave according to the programmed specification. The structure will result

to an assembly of several devices stored in a library of components (e.g., parts registry). As the

design relates here to a behavioural/functional description, we need to bridge the gap between

structural and functional description. This stage is called the functional synthesis. The issue is to

select a set of components whose assembly preserves the behaviour of the program. To achieve

this goal, a GUBS program is associated to each component to describe its behaviour. Thereby, the

component assembly corresponds to a program assembly preserving the behaviour of the compiled

program. Preserving a behaviour is laid on a property called the behavioural inclusion formalizing

the fact that the characteristic observational traits of the specified function must be recognized in

traces related to the device experiments. In other words, we can exhibit histories consistent with

the programmed behaviour from histories consistent with the device behaviour description. The

behavioural inclusion is defined from the interpretation of the programs, as a logical consequence

(Definition 2).

Definition 2 (Behavioral inclusion). A program Q behaviourally includes another program P, if

and only if the interpretation of the latter is a logical consequence of the interpretation of the

former:

P ❫Q ❁ ➛▼ ✂▼è ❇Q● Ô✟ ▼è ❇P● .

The behavioural inclusion is a pre-order3 such that the empty program, denoted by ε , is a

minimum, meaning that a program with no behaviour can be observed in all traces. And a program

whose interpretation equals ➊, is a maximum. Figure 2 illustrates the behavioural inclusion on a

particular model.

Observability. It may arise that no history will be consistent with a programmed behaviour. For

example, the program ➌Obs ✂✂ g,g❜� g➑ is not observable in a trace. Indeed, its interpretation yields

3A reflexive and transitive relation.

35

P Q

➌g1 ❩� g3, ➌�k1✆➌g0 ❩� g1➑,
�k3✆➌g3 ❩� g4➑, �k2✆➌g0 ❩� g2➑,
�k4✆➌g3 ❩� g5➑, g1 ❩� g3,

�k6✆➌g8 ❩� g9➑, g2 ❩� g5,

�k7✆➌g8 ❩� g10➑, �k3✆➌g3 ❩� g4➑,
g9 ❩� g11, �k4✆➌g3 ❩� g5➑,
g10 ❩� g11, g6 ❩� g8,

a ✂✂ g4➑ �k5✆➌g6 ❩� g7➑,
�k6✆➌g8 ❩� g9➑,
�k7✆➌g8 ❩� g10➑,
g9 ❩� g11,

g10 ❩� g11,

a ✂✂ g4,b ✂✂ g5,c ✂ g11➑
a : b :

g0

g1

g2

g3

g4 g5

g6

g7

c :

g8

g9 g10

g11

k1

k2

k3 k4

k5

k6 k7

Figure 2: Behavioral inclusion example. Consistent histories of P necessary contains worlds

coloured in gray.

to the following formula: A❼❼@Obsg➁✱❼g� ❼❼❵ ❡✏✥g➁✱✥g➁➁➁, false in all models because world

Obs must both satisfies g and ✥g by definition of the persistent dependence. A GUBS program is

said observable if and only if the formula resulting from its interpretation is validated by one model

at least. Hence, the interpretation of an unobservable program is an antilogy. An unobservable

program can be assimilated to a programming error. The detection of such errors can be carried out

at compile-phase by using tableaux method [9] that automatically determines whether a formula is

satisfiable in a model. Indeed GUBS uses fragment of HL(@) logic which is decidable. Notice that

an observable program always behaviourally includes an observable program (Proposition 1).

Proposition 1. A program behaviourally included in an observable program is observable: ➛P,Q ❃

P ✂ obsQ✱P ❫ Q Ô✟ obsP.

3.1 Functional synthesis

The functional synthesis is the operation whereby biological components of a library are selected

and assembled to generate a device behaviourally including the designed function. The behaviour

of each component is described by a GUBS program. At its simplest, the functional synthesis could

be considered as a proper substitution of variables by constants. For example, in the following

activation ➌G1
✔
Ð� g2➑, g2 will be substituted by gene G2, providing that component Q describes the

activation ➌G1
✔
Ð�G2➑. However, more complex situations may arise during component selection.

For example, if the activation G1
✔
Ð� G2 occurs with another regulation only i.e., Q � ➌G1

✔
Ð�

G2,G3
✔
Ð�G4➑ then the selection of Q adds a supplementary regulation.

Formally, a finite substitution is a set of mappings, σ � ➌vi⑦bi➑i, on variables and constants such

that a variable can be substituted by a variable or a constant, and a constant can only substituted

36

by itself4. For instance, we have: ➌Obs::G❼l➁✔b2,b1 ❩� G❼l➁➑�➌b1 ✭ B1,b2 ✭ B2, l ✭ Low➑✆ �
➌Obs::G❼Low➁✔B2,B1 ❩�G❼Low➁➑.

Functional synthesis rules. The functional synthesis is defined by rules (Table 3) governing the

component assembly. Only the dependences and the attributes will be functionally synthesize. The

observation spots are considered as annotations used for the compilation process. To insure the

correctness, each transform must preserved the seminal behaviour. Hence, each program resulting

from the application of a rule must behaviourally includes the previous one. Formally, the func-

tional synthesis is modelled by a relation on programs denoted by ❶, i.e., Q❶σ P where P is the

initial program and Q the transformed one, such that each rule insures that: Q ❶σ P is correct

with regards to a substitution σ , that is P�σ✆ ❫ Q�σ✆ and Q�σ✆ is observable. Also notice that the

behavioural inclusion is preserved by substitution (Proposition 2).

Proposition 2. For all substitutions σ , we have: P ❫Q Ô✟ P�σ✆ ❫Q�σ✆.

Table 3 describes the functional synthesis rules5. Γ is a set of components representing the li-

brary. P ❜Asm Q denotes the fact that program Q corresponds to an assembly including P i.e.,

Q � ❼Q1,P,Q2➁ where Q1 or Q2 may be an empty program. Rule (Inst.) describes the fact that an

- INSTANTIATION -

Q�σ✆ ❜Asm P�σ✆ obs❼Q�σ✆➁ Q ❃ Γ
(Inst.)

Q❶σ P

- COMMUTATIVITY, CONTRACTION -

Q❶σ P,P➐

(Com.)
Q❶σ P➐

,P

Q❶σ P
(Cont.)

Q❶σ P,P

- ASSEMBLY -

Q❶σ P Q➐
❶σ ➐ P➐ σ ❙VA❼P➁✾VA❼P➐➁ � σ ➐❙VA❼P➁✾VA❼P➐➁ obs❼Q�σ✆,Q➐�σ ➐✆➁

(Asm.)
Q,Q➐

❶σ✽σ ➐ P,P➐

Table 3: Functional synthesis rules

observable instance of a part of a component in the library is functionally synthesized. Rule (Com.)

expresses the commutativity of the assembly. Rule (Cont.) contracts the redundant formulation of

programs. Finally, Rule (Asm.) details the conditions for an assembly of two components, each

representing a functional synthesis of a part of the designed function. A detailed example of their

use on a real case is given in Section 4.

Theorem 1. The functional synthesis rules (Table 3) are correct.

4 Pσ or P�σ✆ represents its application on program P and identity substitutions are omitted.

5Rules are of the form:
hypothesis

conclusion
.

37

- DEPENDENCES -

Q❶σ S1 ❜� S2,S2 ❜� S3,∆
(Trans.)

Q❶σ S1 ❜� S3,∆

Q❶σ S1 ❜� S2,∆
(N2P.)

Q❶σ S1 ❩� S2,∆

Q❶σ S1 ❩� S2,∆
(R2N.)

Q❶σ S1 ❵� S2,∆

- AGENT STATES -

S1✔S2
(SCom.)

S2✔S1

S✔ s
(SCont.)

S✔ s✔ s

S✔ s
(Incl.)

S

Table 4: Rules for the dependences and the agent states. Si stands for a collection, s1✔ . . .✔ sn, of

agent states, including negation, and ∆ stands for the rest of the program.

Another set of rules, more specifically devoted to dependences (Table 4), defines the alternate

possibilities to express similar behaviours. The table also includes the rules for agent sets. Rule

(Trans.) expands the chain of the persistent dependences by adding intermediary dependence to

refine a pathway. Rule (N2P.) transforms a normal dependence to a persistent one since the latter

is a normal dependence with an additional property. And Rule (R2N.) transforms a remanent

dependence to a normal dependence, since normal dependence is also remanent dependence with

a repetition of the effect restricted to one step. According to these rules, all the dependence chains

can be implemented with persistent dependences.

A possible algorithm for the assembly could be based on a combinatorial application of the

rules. However, such algorithm may reveal inefficient in practice. The conditions for an efficient

algorithm of compilation should be based on an internal representation of a program, as a set of

contextualized dependences with attributes, ➌➌A,�K✆S1 ❢� S2➑➑, such that A,K,S1,S2 are respec-

tively: a set of attributes specification related to the agent involved in the dependency, a set of

contexts and sets of agent states. Any program can be encoded under this representation from a

normal form of the program (not detailed here). Accordingly, the problem solved by the compila-

tion algorithm can be defined as follows (Definition 3):

Definition 3 (Functional Synthesis Problem). Let Γ � ➌Qi➑1❇i❇n be set where each Qi is a set

of contextualized dependences with attributes and P a set of contextualized dependences with

attribute, can we find the smallest observable subset of components C ❜ Γ, such that there ex-

ists a substitution σ so that its application on the components of C form a cover of P�σ✆,i.e.,

➜σ ✂ P�σ✆ ❜✣Q j❃C Q j�σ✆✱obsC.

As the set cover problem is reducible to this problem, the problem is NP-complete. Then, the

resolution is oriented towards a heuristic algorithm.

4 Example

The compilation process is here exemplified in a real case by the design of the Band Detector

proposed in [2]. This example explains how from a simple abstract definition of the functionality a

complex design can be synthesized. Accordingly, GUBS may be used to describe a behaviour with

a high-level of programming well as a low-level, detailing the components involved in the process.

38

Tetr LuxR

AHL

LuxR LaclM1

Cl Lacl

GFP
✔

✔ ✔
✔

✔

✏

✏

✏

Figure 3: The band detector regulatory circuit.

Although, the functional synthesis is not yet performed automatically, it is worth to point out that

the different transforms of the high-level program to obtain the final design complies to rules of

Tables 3, 4, insuring its correctness and so, its functional safety in the context of open system.

The design aims at forming patterns of different colours in a population of bacteria exploit-

ing the quorum sensing phenomenon by staining with fluorescent protein (GFP). The amount of

molecules of interest that receives a cell depends on its relative position to the cell diffusing the

molecule of interest controlled by an external event: more the cell is far from the source, the fewer

is the amount of molecules received. The activation or inhibition of the fluorescent protein due

to the concentration will distinguish the bands surrounding the source. In the original design, the

protein does not fluoresce in an intermediary band.

From a computing standpoint, we can assimilate the design to a message transmission coupled

to a sensor/actuator responsible for fluorescence, then leading to a concise GUBS program pre-

sented below: the diffusive molecule is AHL which production is controlled by a context and the

observation is applied on GFP. Two categories of cells are defined: the Sender and the Receiver.

Therefore, two GUBS programs identify the two cell types.

Sender �➌ AHL:➌low ⑤ mid ⑤ high➑,�Light✆➌detect ❩�AHL❼low➁,detect ❩�AHL❼mid➁,detect ❩�AHL❼high➁➑➑

Receiver�➌ AHL❼low➁❩�GFP,AHL❼mid➁❩�GFP,AHL❼high➁❩�GFP,obs1::GFP,obs2::GFP➑

Figure 3 describes the original genetic circuit used in the article. The diffusible molecule

is the constant AHL. The gene LuxR has three activation thresholds: at Level 2, it activates both

LaclM1 and Cl, at level 1, the amount of AHL only allows activation of Cl, and finally, at level

0, none are activated. We show that from the sender-receiver program, we obtain the original

design by applying the afore mentioned rules with an appropriate selection of components. The

regulations of Figure 3 are described in GUBS program (Table 5) translating in term of dependences

and relations on their attributes their regulatory action. We focus here on some illustrative steps

of the sender program compilation. The complete functional synthesis is given in Appendix. The

compilation consists in finding the appropriate components whose assembly behaviourally includes

the sender-receiver program, with the particularity that the diffusive molecule must be the same in

both programs. To ease compilation follow-up, we label each dependency of the sender-receiver

program (Table 6). Let us consider P11 whose compilation is closed to P12 and P13. Notice that P11

cannot be directly instantiated with any component because, in the one hand, the component Q1

contains a context like P11 but applied on gene Tetr instead of AHL, and on the other hand Q3 has

39

Q1�➌�Light✆➌detect ❩�Tetr➑➑
Q2�➌Tetr

✔

Ð� Luxl➑
Q3�➌AHL:➌low ⑤ mid ⑤ high➑,Luxl ✔

Ð�AHL❼low➁,Luxl ✔

Ð�AHL❼mid➁,Luxl ✔

Ð�AHL❼high➁➑
Q4�➌AHL:➌low ⑤ mid ⑤ high➑,LuxR:➌low ⑤ ➌mid ❤ high➑➑,AHL❼mid➁❩� LuxR❼mid➁,AHL❼high➁❩� LuxR❼high➁➑
Q5�➌LuxR:➌low ⑤ ➌mid ❤ high➑➑,LuxR❼mid➁ ✔

Ð� Cl,LuxR❼high➁ ✔

Ð� Cl✔LaclM1➑
Q6�➌Cl

✏

Ð� Lacl➑
Q7�➌LaclM1

✏

Ð�GFP➑
Q8�➌Lacl

✏

Ð�GFP➑

Table 5: Part of the database dedicated to the Band Detector.

Sender Receiver

P11 � ➌�Light✆➌detect ❩�AHL❼low➁➑➑ P21 � ➌AHL❼low➁❩�GFP➑
P12 � ➌�Light✆➌detect ❩�AHL❼mid➁➑➑ P22 � ➌AHL❼mid➁❩�GFP➑

P13 � ➌�Light✆➌detect ❩�AHL❼high➁➑➑ P23 � ➌AHL❼high➁❩�GFP➑

with ➌AHL:➌low ⑤ mid ⑤ high➑➑ as attributes of AHL.

Table 6: Separation of the dependences.

the AHL molecule but no context is defined. So, to fit P11 with the components Q1, Q2 and Q3, first,

the normal dependence is converted to persistent one (Rule (N2P.)).

Q1,Q2,Q3 ❶σ ➌�light✆➌detect ❜� AHL❼low➁➑➑
(N2P.)

Q1,Q2,Q3 ❶σ P11

Thereby, the resulting dependence can be separated to match the assembly Q1,Q2,Q3 by applying

(Trans.) rule twice. v1 and v2 are fresh variables.

Q1,Q2,Q3 ❶σ P➐

11 � ➌�light✆➌detect ❜� v2,v2 ❜� v1,v1 ❜� AHL❼low➁➑
(Trans.)

Q1,Q2,Q3 ❶σ �light✆➌detect ❜� v1,v1 ❜� AHL❼low➁➑
(Trans.)

Q1,Q2,Q3 ❶σ �light✆➌detect ❜� AHL❼low➁➑

Finally, we obtain a new program program P➐

11 compatible with Q1,Q2,Q3, and each variable is

substituted by a constant (biological element) with the application of Rule (Inst.). For P➐

11 we have:

Q1,Q2,Q3�σ � ➌light⑦Light,v1⑦Tetr,v2⑦Luxl➑✆ ❜Asm P➐

11�σ✆ obs❼Q1,Q2,Q3�σ✆➁
(Inst.)

Q1,Q2,Q3 ❶σ �light✆➌detect ❜� v1,v1 ❜� v2,v2 ❜� AHL❼low➁➑

By following this scheme for P12 and P13, we respectively obtain P➐

12 and P➐

13. The final assembly

corresponds to the functional synthesis of Sender program.

Q1,Q2,Q3 ❶σ P➐

11

✝

Q1,Q2,Q3 ❶σ P11

Q1,Q2,Q3 ❶σ P➐

12

✝

Q1,Q2,Q3 ❶σ ➐ P12

Q1,Q2,Q3 ❶σ P➐

13

✝

Q1,Q2,Q3 ❶σ ➐➐ P13
(Asm.)

Q1,Q2,Q3 ❶σ✽σ ➐✽σ ➐➐ P11,P12,P13

40

In conclusion, the functional synthesis generates the original genetic circuit (Figure 3) from the

sender program. A similar approach can be also applied to obtain the receiver program (see the

complete proof in Appendix 6).

Sender � ➌AHL:➌low ⑤ mid ⑤ high➑,�Light✆➌detect ❩�Tetr➑,

Tetr
✔
Ð� Luxl,Luxl

✔
Ð�AHL❼low➁,Luxl

✔
Ð�AHL❼mid➁,Luxl

✔
Ð�AHL❼high➁➑

5 Related works

Several domain specific languages have been developped to model and simulate biological sys-

tems. Based on process-calculus, seminally used to model process concurrency, several rule-based

languages model protein interactions [21, 13, 10]. Another approach is based on logic, such as

BIOCHAM [8] that formalizes the temporal properties of a biological system. As these languages

are dedicated to simulation, the objective is to close the systems because the simulations need to

integrate all the characteristics of the analysed systems. By comparison, the purpose of GUBS is

different since the issue is to represent the behaviour of a synthetic device in an organism, leading

to translate the notion of the openness of biological systems by the semantics of the language.

In synthetic biology, the structural description languages [12, 20, 4] allow to specify well-

formed genome sequences by grammars modularly and hierarchically. Although the sequence

description is necessary, the programmer must previously anticipate the behaviour of the device to

conceive. Besides, the behavioural design is not included in the program while it initially motivates

it. In GUBS, the design is driven by a behaviour description and sequence selection is postponed

at compile phase. Moreover, the size of the structural description is also subject to a combinatorial

explosion when the complexity of programmed systems increases.

Amorphous programming language has been also investigated to specify the biological de-

vices at the scale of cell colony, here considered as a possible computing medium for amorphous

program. J. Beal [3] demonstrates the proof of concept of this approach in PROTO, showing the

feasibility of an automatic compile chain. In GUBS, the compile chain is based on rewriting rules

whose correctness have been formally proved with regards to a semantics describing the constraints

of an open system.

Developing a language for biological systems actually involves to consider several unknown

due to their openness: lack of knowledge on all the interactions in biological circuits and imprecise

definition of initial conditions. We only know the result of a chain of effects. Then, the major

constraint for programming open system seems to be: how to provide an expressive language to

describe the dynamics of such systems, but simple enough to capture the essence of the biological

questions in a small program in order to allow programming of large biological systems with a

program humanly achievable.

In the future, the design in synthetic biology will certainly require different programming lay-

outs based on different paradigms addressing the integration levels of biological systems. In a

tower of languages, starting from a language with collective operations on cell colony, using an

amorphous programming language as Proto [3] or a language for dynamical systems with dynami-

cal structures as MGS [15], and ending by a structural description programmed in a grammar based

41

language, GUBS language occupies the intermediary level dedicated to cell entity behavioural pro-

gramming.

6 Conclusion

In GUBS language, we propose to characterize a programming paradigm abstracting the molecular

interactions in the context of open system, that differs to an approach dedicated to biological system

modeling. Accordingly, the interactions are symbolized by causal dependences whose interpreta-

tion is driven by effect. We have demonstrated the proof-of-concept of the compilation based on

rewriting rules, and illustrated it on a realistic example. The perspective of this work is to find

an efficient compilation algorithm. Identifying the biological parameters guiding the component

selection should be a key issue in this undertaking.

Acknowledgements. The funding for most of this work is granted by the ANR SYNBIOTIC (ANR

BLAN 0307 01) and we would like to thank the colleagues of this project for their fruitful discus-

sions.

References

[1] PJ Ashenden (2008): The Designer’s Guide to VHDL. Morgan Kaufmann Publishers.

[2] S. Basu, Y. Gerchman, C. H Collins, F. H Arnold & R. Weiss (2005): A Synthetic Multicellular System

for Programmed Pattern Formation. Nature 434(7037), pp. 1130–4.

[3] J. Beal, T. Lu & R. Weiss (2011): Automatic Compilation from High-Level Biologically-Oriented

Programming Language to Genetic Regulatory Networks. PLoS ONE 6(8), p. e22490.

[4] L. Bilitchenko, A. Liu, S. Cheung, E. Weeding, B. Xia, M. Leguia, J C. Anderson & D. Densmore

(2011): Eugene–A Domain Specific Language for Specifying and Constraining Synthetic Biological

Parts, Devices, and Systems. PloS one 6(4), p. e18882.

[5] P. Blackburn, J. F. A. K. van Benthem & F. Wolter (2006): Handbook of Modal Logic, Volume 3

(Studies in Logic and Practical Reasoning). Elsevier Science Inc.

[6] T. Braüner (2010): Hybrid Logic and Its Proof-Theory. Springer.

[7] Y. Cai, M. W Lux, L. Adam & J. Peccoud (2009): Modeling Structure-function Relationships in Syn-

thetic DNA Sequences Using Attribute Grammars. PLoS Computational Biology 5(10).

[8] L. Calzone, F. Fages & S. Soliman (2006): BIOCHAM: An Environment for Modeling Biological

Systems and Formalizing Experimental Knowledge. Bioinformatics (Oxford, England) 22(14), pp.

1805–7.

[9] S. Cerrito & M. C. Mayer (2011): A Tableaux Based Decision Procedure for a Broad Class of Hybrid

Formulae with Binders. In: Proceedings of the 20th International Conference on Automated Reasoning

with Analytic Tableaux and Related Methods, TABLEAUX’11, Springer-Verlag, pp. 104–118.

[10] F. Ciocchetta & J. Hillston (2009): Bio-PEPA: A Framework for the Modelling and Analysis of Bio-

logical Systems. Theoretical Computer Science 410(33-34), pp. 3065–3084.

42

[11] K. Clancy & C. A Voigt (2010): Programming Cells: Towards an Automated Genetic Compiler. Cur-

rent Opinion in Biotechnology 21(4), pp. 581–572.

[12] M. J Czar, Y. Cai & J. Peccoud (2009): Writing DNA with GenoCAD. Nucleic Acids Research 37(Web

Server issue), pp. W40–7.

[13] V. Danos, J. Feret, W. Fontana, R. Harmer & J. Krivine (2007): Rule-Based Modelling of Cellular

Signalling. In: CONCUR, pp. 17–41.

[14] F. Delaplace, H. Klaudel & A. Cartier-Michaud (2010): Discrete Causal ModelView of Biological

Networks. In: Proceedings of the 8th International Conference on Computational Methods in Systems

Biology - CMSB ’10, ACM Press, New York, New York, USA, pp. 4–13.

[15] J.L. Giavitto, O. Michel, J. Cohen & A. Spicher (2005): Computations in Space and Space in Com-

putations. In: Unconventional Programming Paradigms, Lecture Notes in Computer Science 3566,

Springer Berlin / Heidelberg, pp. 97–97.

[16] D.G. Gibson, J.I. Glass, C. Lartigue, V.N. Noskov, R.Y. Chuang, M.A. Algire, G.A. Benders, M.G.

Montague, L. Ma, M.M. Moodie & Others (2010): Creation of a Bacterial Cell Controlled by a Chem-

ically Synthesized Genome. Science 329(5987), p. 52.

[17] D. Hume (1739): A Treatise of Human Nature, Being an Attempt to Introduce the Experimental Method

of Reasoning into Moral Subjects. unknow.

[18] D. Lewis (2000): Causation as Influence. The Journal of Philosophy 97(4), pp. 182–197.

[19] T. K Lu, A. S Khalil & J. J Collins (2009): Next-generation Synthetic Gene Networks. Nature Biotech-

nology 27(12), pp. 1139—-1150.

[20] M. P. Pedersen (2009): Towards Programming Languages for Genetic Engineering of Living Cells.

Journal of the Royal Society, Interface 6 Suppl 4, pp. S437–450.

[21] C. Priami, A. Regev, E. Shapiro & W. Silverman (2001): Application of a Stochastic Name-passing

Calculus to Representation and Simulation of Molecular Processes. Information Processing Letters

80(1), pp. 25–31.

[22] P. E M Purnick & R. Weiss (2009): The Second Wave of Synthetic Biology: From Modules to Systems.

Nature Reviews. Molecular Cell Biology 10(6), pp. 410–22.

[23] S. Regot, J. Macia, N. Conde, K. Furukawa, J. Kjellén, T. Peeters, S. Hohmann, E. de Nadal, F. Posas &

R. Solé (2010): Distributed Biological Computation with Multicellular Engineered Networks. Nature,

pp. 2–6.

[24] D. E. Thomas & P. Moorby (1998): The Verilog Hardware Description Language. Kluwer Academic

Publishers.

[25] P. Umesh, F. Naveen, C.U.M. Rao & S.A. Nair (2010): Programming Languages for Synthetic Biology.

Systems and Synthetic Biology 4(4), pp. 265–269.

[26] H. Ye, M. Daoud-El Baba, R-W. Peng & M. Fussenegger (2011): A Synthetic Optogenetic Transcrip-

tion Device Enhances Blood-glucose Homeostasis in Mice. Science (New York, N.Y.) 332(6037), pp.

1565–8.

43

program ✂✂� ➌behaviour➑
behaviour ✂✂� behaviour,behaviour ❙ behaviour

behaviour ✂✂� compartment ❙ dependence ❙ context ❙ observation ❙ defattributes

compartment ✂✂� varconstant ➌behaviour➑
observation ✂✂� varconstant::worlds

context ✂✂� �varconstants✆ ➌behaviour➑
dependence ✂✂�worlds❩�worlds ❙ worlds❜�worlds ❙ worlds❵�worlds

world ✂✂� attribute ❙ varconstant❼attribute➁ ❙ varconstant.world

worlds ✂✂�worlds✔world ❙ world

attribute ✂✂� varconstant ❙ varconstant

defattribute ✂✂� varconstants ✂ attspec

attspec ✂✂� defspec➌varconstants➑ ❙ ➌attrels➑
defspec ✂✂� exclusion ❙ inclusion
attrels ✂✂� attrels,attrel ❙ attrel

attrel ✂✂� varconstant ❤ varconstant ❙ varconstant ⑤ varconstant ❙ varconstant

varconstant ✂✂�word ❙ Word

varconstants ✂✂� varconstants,varconstant ❙ varconstant

Table 7: Syntax of GUBS program

Appendix

Proofs

Proposition 1. By contradiction, assume that P is unobservable, then there does not exist a model

satisfying the formula. As Q is observable, we deduce that there exists models satisfying Q, but no

restricted model must satisfy P, that contradicts the definition of the behavioural consequence.

Proposition 3. Let ψ ❃F❍ be a formula, let σ ✂ ❼NOM✽PROP✽REL➁� ❼NOM✽PROP✽REL➁ be

a substitution on nominals, variables and relational symbols, let▼ � ❵W,❼Rk➁k❃τ ,V ❡ be a model,

we define the model ▼̃ � ❵W,❼R̃k➁k❃τ̃ ,Ṽ ❡ from▼ as follows:

1. ➛a ❃NOM✽PROP,➛w ❃W ✂ w ❃V❼aσ➁ ✡✟ w ❃ Ṽ❼a➁

2. ➛k ❃ τ̃ ✂ wRkσ w➐
✡✟ wR̃kw➐;

we have:▼,wèψσ ✡✟ ▼̃,wèψ.

Proof. The proof is defined by induction on the formula:

without loss of generality, we assume that ψ is in Negation Normal Form where negation occurs

only immediately before variables only. Recall that every formula can be set in Negation Normal

Form.

• ▼,w è a ✡✟ ▼̃,w è a,a ❃ PROP✽NOM. By (1), we have w ❃ V❼aσ➁ ✡✟ w ❃ Ṽ❼a➁
leading to the equivalence.

44

• ▼,wè ✥a ✡✟ ▼̃,wè ✥a. By definition of the realizability relation, this is equivalent to:

▼̃,wè a ✡✟ ▼̃,wè a. By (1), this equivalence holds.

• ▼,w è ❼ψ1 ✱ψ2➁σ ✡✟ ▼̃,w è ❼ψ1 ✱ψ2➁. By definition of the substitution, we have to

prove: ▼,w è ❼ψ1σ➁✱ ❼ψ2σ➁ ✡✟ ▼̃,w è ❼ψ1 ✱ψ2➁. By definition of the realizability

relation we can formulate the property equivalently as follows:

▼,wè ❼ψ1σ➁✱▼̃,wè ❼ψ2σ➁ ✡✟ ▼̃,wèψ1✱▼̃,wèψ2.

By induction hypothesis, we have: ▼̃,wè ❼ψ1σ➁ ✡✟ ▼̃,wèψ1 and ▼̃,wè ❼ψ2σ➁ ✡✟
▼̃,wèψ2, implying the previous condition.

• ▼,wè ❼ψ1✲ψ2➁σ ✡✟ ▼̃,wè ❼ψ1✲ψ2➁. The proof is similar to the proof of the previous

item (✱).

• ▼,w è ❼@aψ➁σ ✡✟ ▼̃,w è@aψ. By definition of the substitution we have to prove

that:▼,wè ❼@aσ ψσ➁ ✡✟ ▼̃,wè@aψ By definition of the realizability relation, this is

equivalent to:

➜w➐ ❃W ✂w ❃V❼aσ➁✱▼,w➐
èψσ ✡✟ ➜w➐➐ ❃W ✂w➐➐ ❃ Ṽ❼a➁σ ✱▼̃,w➐➐

èψ.

By setting w➐ � w➐➐, from (1) we have: w➐ ❃V❼aσ➁ ✡✟ w➐ ❃V❼a➁. By induction hypothesis,

we have:▼,w➐
èψσ ✡✟ ▼̃,w➐

èψ. The both last properties imply that:

➜w➐ ❃W ✂w ❃V❼aσ➁✱▼,w➐
èψσ ✡✟ ➜w➐ ❃W ✂w➐ ❃ Ṽ❼a➁σ ✱▼̃,w➐➐

èψ,

which implies the initial property.

• ▼,wè ❼❵k❡ψ➁σ ✡✟ ▼̃,wè ❵k❡ψ. By definition of the substitution we prove that:▼,wè

❵kσ❡ψσ ✡✟ ▼̃,wè ❵k❡ψ.

By definition of the realizability relation the condition is equivalent to:

➜w➐ ❃W ✂▼,w➐
èψσ ✱wRkσ w➐

✡✟ ➜w➐➐ ❃W ✂ ▼̃,w➐➐
èψ ✱wR̃kw➐➐

.

By setting w➐ � w➐➐, the following equivalence holds from (2): wRkσ w➐
✡✟ wR̃kw➐. By

induction hypothesis, we have: ▼,w➐
è ψσ ✡✟ ▼̃,w➐

è ψ . The both last properties

imply that:

➜w➐ ❃W ✂▼,w➐
èψσ ✱wRkσ w➐

✡✟ ▼̃,w➐
èψ ✱wR̃kw➐

which implies the initial property.

• ▼,wè ❼�k✆ψ➁σ ✡✟ ▼̃,wè �k✆ψ. The proof is similar to the previous item.

• ▼ è ❼Eψ➁σ ✡✟ ▼̃ è Eψ. By definition of the substitution we prove that: ▼,w è

E❼ψσ➁ ✡✟ ▼̃,wèEψ.

By definition of the realizability relation, we have:

➜w ❃W ✂▼,wè ❼ψσ➁ ✡✟ ▼̃,wèψ,

which is directly verified by induction hypothesis.

45

• ▼è ❼Aψ➁σ ✡✟ ▼̃èAψ. The proof is similar to the previous item.

Proposition 2. First, let us remark that when P Ö Q, the property is trivially verified. Besides,

under the assumption P ❫ Q, if Q�σ✆ is not observable the property is also verified because an

unobservable program includes all programs behaviourally (Definition 2).

In the rest of the proof, we assume that P is behaviourally included in Q and Q�σ✆ is observable

(i.e., P ❫ Q and obsQ�σ✆). Hence, by definition of the observability there exists a model ▼

such that ▼ è ❇Q�σ✆●. By proposition 3, we deduce that there exists a model ▼̃ such that:

▼̃ è ❇Q●. Moreover, as P ❫ Q by hypothesis, there exists S̃ ❜ Dom ▼̃ such that: ▼̃S̃ è ❇P●. By

construction of ▼̃we deduce that there exists a sub model of▼, denoted by▼➐, complying to the

properties, (1) and (2) of Proposition 3 which corresponds to ▼̃S̃. Moreover, we have▼➐
è P�σ✆

by Proposition 3. Then we conclude that: P�σ✆ ❫ Q�σ✆.

Theorem 1. First, let us remark that P ❫Q is true whenever▼èQ by definition of the behavioural

inclusion (Definition 2). Hence, the proof doesn’t consider the trivial verified case but rather the

case where▼èQ.

Inst. Directly from the definition of the behavioural inclusion (Definition 2).

Com. By definition of the semantics ❇P,P➐● � A❼φ ✱φ ➐➁ � A❼φ ➐
✱φ➁ � ❇P➐

,P● with ❇P●P � φ and

❇P➐●P � φ ➐. Thus, for all▼ we have:▼è ❇P,P➐● ✡✟ ▼è ❇P➐
,P●. Hence, if Q ❫ P,P➐ we

conclude that: Q ❫ P➐
,P.

Cont. Similar to the proof of (Com.).

Asm. First let us remark that σ ❙VA❼P➁✾VA❼P➐➁ � σ ➐❙VA❼P➁✾VA❼P➐➁ means that the substitution of the

common variables are the same for σ and σ ➐, leading to, Q�σ ✽σ ➐✆ �Q�σ✆ and Q➐�σ ✽σ ➐✆ �
Q➐�σ ➐✆. Let σ ➐➐ �σ ✽σ ➐. Then, we have the following property by definition of the semantics

(Table 2.1) and σ ➐➐.

➛▼ ❃KS❼❈❼Q,Q➐➁�σ ➐➐✆❍➁ ✂▼è ❇Q�σ✆●✱▼è ❈Q➐�σ ➐✆❍ .

Notice that the set of models, KS❼❇❼Q,Q➐➁�σ ➐➐✆●➁, is not empty since, by hypothesis,

obs❼Q�σ✆,Q➐�σ ➐✆➁ holds. As Q❶σ P and Q➐
❶σ ➐ P➐, any model validating Q (resp. Q➐) also

validates P, (resp. P➐) by definition of the functional synthesis. Then, we deduce that:

➛▼ ❃KS❼❈❼Q,Q➐➁�σ ➐➐✆❍➁ ✂▼è ❇P�σ✆●✱▼è ❈P➐�σ ➐✆❍ .

Then, we conclude that:

➛▼ ❃KS❼❈❼Q,Q➐➁�σ ➐➐✆❍➁ ✂▼è ❈❼P,P➐➁�σ ➐➐✆❍ .

Complete compilation of the Band Detector

46

-
S

E
N

D
E

R
-

Q
1
,
Q

2
,
Q

3
� σ

�
➌

d
et

ec
t⑦

D
et

ec
t,

li
g
h
t⑦

L
ig

h
t,

v 1
⑦T

et
r,

v 2
⑦L

u
x
l➑
✆
❜

A
sm

P
➐ 1
1
� σ

✆
o
b
s❼

Q
1
,
Q

2
,
Q

3
�σ

✆➁
(I

n
st

.)
Q

1
,
Q

2
,
Q

3
❶

σ
P
➐ 1
1
➑

Q
1
,
Q

2
,
Q

3
� σ

➐
�
➌

d
et

ec
t⑦

D
et

ec
t,

li
g
h
t⑦

L
ig

h
t,

v 3
⑦T

et
r,

v 4
⑦L

u
x
l➑
✆
❜

A
sm

P
➐ 1
2
�σ

➐
✆

o
b
s❼

Q
1
,
Q

2
,
Q

3
�σ

➐
✆➁

(I
n
st

.)
Q

1
,
Q

2
,
Q

3
❶

σ
➐

P
➐ 1
2

Q
1
,
Q

2
,
Q

3
� σ

➐
➐
�
➌

d
et

ec
t⑦

D
et

ec
t,

li
g
h
t⑦

L
ig

h
t,

v 5
⑦T

et
r,

v 6
⑦L

u
x
l➑
✆
❜

A
sm

P
➐ 1
3
�σ

➐
➐
✆

o
b
s❼

Q
1
,
Q

2
,
Q

3
�σ

➐
➐
✆➁

(I
n
st

.)
Q

1
,
Q

2
,
Q

3
❶

σ
➐
➐

P
➐ 1
3

P
➐ 1
1
�
�l

ig
h
t✆
➌

d
et

ec
t
❜
�

v 1
,
v 1
❜
�

v 2
,
v 2
❜
�

A
H

L
❼

lo
w
➁
➑

(T
ra

n
s.

)
�l

ig
h
t✆
➌

d
et

ec
t
❜
�

v 1
,
v 1
❜
�

A
H

L
❼

lo
w
➁
➑

(T
ra

n
s.

)
�l

ig
h
t✆
➌

d
et

ec
t
❜
�

A
H

L
❼

lo
w
➁
➑

(N
2
P.

)
P

1
1

P
➐ 1
2
�
�l

ig
h
t✆
➌

d
et

ec
t
❜
�

v 3
,
v 3
❜
�

v 4
,
v 4
❜
�

A
H

L
❼

m
id
➁
➑

(T
ra

n
s.

)
�l

ig
h
t✆
➌

d
et

ec
t
❜
�

v 3
,
v 3
❜
�

A
H

L
❼

m
id
➁
➑

(T
ra

n
s.

)
�l

ig
h
t✆
➌

d
et

ec
t
❜
�

A
H

L
❼

m
id
➁
➑

(N
2
P.

)
P

1
2

P
➐ 1
3
�
�l

ig
h
t✆
➌

d
et

ec
t
❜
�

v 5
,
v 5
❜
�

v 6
,
v 6
❜
�

A
H

L
❼

h
ig

h
➁
➑

(T
ra

n
s.

)
�l

ig
h
t✆
➌

d
et

ec
t
❜
�

v 5
,
v 5
❜
�

A
H

L
❼

h
ig

h
➁
➑

(T
ra

n
s.

)
�l

ig
h
t✆
➌

d
et

ec
t
❜
�

A
H

L
❼

h
ig

h
➁
➑

(N
2
P.

)
P

1
3

Q
1
,
Q

2
,
Q

3
❶

σ
P

1
1

Q
1
,
Q

2
,
Q

3
❶

σ
➐

P
1
2

Q
1
,
Q

2
,
Q

3
❶

σ
➐
➐

P
1
3

(A
sm

.)
Q

1
,
Q

2
,
Q

3
❶

σ
✽

σ
➐
✽

σ
➐
➐

P
1
1
,
P

1
2
,
P

1
3

-
R

E
C

E
IV

E
R

-
Q

4
,
Q

5
,
Q

6
,
Q

8
� σ

�
➌

v 1
⑦L

u
x
R
,
v 2
⑦C

l,
v 3
⑦L

a
cl
➑
✆
❜

A
sm

P
➐ 2
1
�σ

✆
o
b
s❼

Q
4
,
Q

5
,
Q

6
,
Q

8
�σ

✆➁
(I

n
st

.)
Q

4
,
Q

5
,
Q

6
,
Q

8
❶

σ
P
➐ 2
1

Q
4
,
Q

5
,
Q

6
,
Q

8
� σ

➐
�
➌

v 4
⑦L

u
x
R
,
v 5
⑦C

l,
v 6
⑦L

a
cl
➑
✆
❜

A
sm

P
➐ 2
2
�σ

➐
✆

o
b
s❼

Q
4
,
Q

5
,
Q

6
,
Q

8
�σ

➐
✆➁

(I
n
st

.)
Q

4
,
Q

5
,
Q

6
,
Q

8
❶

➐ σ
P
➐ 2
2

Q
4
,
Q

5
,
Q

7
�σ

➐
➐
�
➌

v 7
⑦L

u
x
R
,
v 8
⑦L

a
cM

1
➑
✆
❜

A
sm

P
➐ 2
3
� σ

➐
➐
✆

o
b
s❼

Q
4
,
Q

5
,
Q

7
� σ

➐
➐
✆➁

(I
n
st

.)
Q

4
,
Q

5
,
Q

7
❶

➐
➐ σ

P
➐ 2
3

P
➐ 2
1
�

A
H

L
❼

lo
w
➁
❜
�

v 1
,
v 1
❜
�

v 2
,
v 2
❜
�

v 3
,
v 3
❜
�

G
F

P
(T

ra
n
s.

)
A

H
L
❼

lo
w
➁
❜
�

v 1
,
v 1
❜
�

v 2
,
v 2
❜
�

G
F

P
(T

ra
n
s.

)
A

H
L
❼

lo
w
➁
❜
�

v 1
,
v 1
❜
�

G
F

P
(T

ra
n
s.

)
A

H
L
❼

lo
w
➁
❜
�

G
F

P
(N

2
P.

)
P

2
1

P
➐ 2
2
�

A
H

L
❼

m
id
➁
❜
�

v 4
,
v 4
❜
�

v 5
,
v 5
❜
�

v 6
,
v 6
❜
�

G
F

P
(T

ra
n
s.

)
A

H
L
❼

m
id
➁
❜
�

v 4
,
v 4
❜
�

v 5
,
v 5
❜
�

G
F

P
(T

ra
n
s.

)
A

H
L
❼

m
id
➁
❜
�

v 4
,
v 4
❜
�

G
F

P
(T

ra
n
s.

)
A

H
L
❼

m
id
➁
❜
�

G
F

P
(N

2
P.

)
P

2
2

P
➐ 2
3
�

A
H

L
❼

h
ig

h
➁
❜
�

v 7
,
v 7
❜
�

v 8
,
v 8
❜
�

G
F

P
(T

ra
n
s.

)
A

H
L
❼

h
ig

h
➁
❜
�

v 7
,
v 7
❜
�

G
F

P
(T

ra
n
s.

)
A

H
L
❼

h
ig

h
➁
❜
�

G
F

P
(N

2
P.

)
P

2
3

Q
4
,
Q

5
,
Q

6
,
Q

8
❶

σ
P

2
1

Q
4
,
Q

5
,
Q

6
,
Q

8
❶

σ
➐

P
2
2

Q
4
,
Q

5
,
Q

7
❶

σ
➐
➐

P
2
3

(A
sm

.)
Q

4
,
Q

5
,
Q

6
,
Q

7
,
Q

8
❶

σ
✽

σ
➐
✽

σ
➐
➐

P
2
1
,
P

2
2
,
P

2
3

-
F

IN
A

L
D

E
S

IG
N

-
S

en
d

er
R

ec
ei

ve
r

➌A
H
L
:➌

lo
w
⑤

m
id
⑤

h
ig

h
➑,

�L
ig

h
t✆
➌d

et
ec

t
❩
�

T
e
t
r➑
,

➌A
H
L
:➌

lo
w
⑤

m
id
⑤

h
ig

h
➑,

L
u
x
R
:➌

lo
w
⑤
➌m

id
❤

h
ig

h
➑➑

,

T
e
t
r

✔

Ð
�

L
u
x
L
,

L
u
x
l
✔

Ð
�

A
H
L
❼l

o
w
➁,

A
H
L
❼m

id
➁
❩
�

L
u
x
R
❼m

id
➁,

A
H
L
❼h

ig
h
➁
❩
�

L
u
x
R
❼h

ig
h
➁,

L
u
x
l
✔

Ð
�

A
H
L
❼m

id
➁,

L
u
x
l
✔

Ð
�

A
H
L
❼h

ig
h
➁➑

L
u
x
R
❼m

id
➁

✔

Ð
�

C
l,

L
u
x
R
❼h

ig
h
➁

✔

Ð
�

L
a
c
lM

1
,

C
l
✏

Ð
�

L
a
c
l,

L
a
c
lM

1
✏

Ð
�

G
F
P
,

L
a
c
l
✏

Ð
�

G
F
P
➑

Table 8: Complete band detector compilation.

47

Pre-Proceedings of 6th Workshop on Membrane

Computing and Biologically Inspired Process Calculi

MeCBIC 2012, Pages 49–63.

c© E.P. de Vink, H. Zantema and D. Bošnački

All the rights to the paper remain with the authors.

Combining Insertion and Deletion in RNA-editing

Preserves Regularity

E.P. de Vink∗

Department of Mathematics and Computer Science, Technische Universiteit Eindhoven

Centrum Wiskunde en Informatica, Amsterdam

H. Zantema

Department of Mathematics and Computer Science, Technische Universiteit Eindhoven

Institute for Computing and Information Sciences, Radboud University Nijmegen

D. Bošnački

Department of Biomedical Engineering, Technische Universiteit Eindhoven

Abstract Inspired by RNA-editing as occurs in transcriptional processes in the living cell, we in-

troduce an abstract notion of string adjustment, called guided rewriting. This formalism allows si-

multaneously inserting and deleting elements. We prove that guided rewriting preserves regularity:

for every regular language its closure under guided rewriting is regular too. This contrasts an earlier

abstraction of RNA-editing separating insertion and deletion for which it was proved that regularity

is not preserved. The particular automaton construction here relies on an auxiliary notion of slice

sequence which enables to sweep from left to right through a completed rewrite sequence.

1 Introduction

We study an elementary biologically inspired formalism of string replacement referred to as guided

rewriting. Given a fixed and finite set G of strings, also called guides, a rewriting step amounts to adapting

a substring towards a guide. We consider two versions of guided rewriting: guided insertion/deletion,

which is close to an editing mechanism as encountered in the living cell, and general guided rewriting

based on an adjustment relation, which is mathematically more amenable. For guided insertion/deletion

the guide and the part of the string that is rewritten do not need to be of the same length. They are

required to be equal up to occurrences of a distinguished dummy symbol. For general guided rewriting

the correspondence of the guide and the substring that is rewritten is element-wise. The guide and

substring are equivalent symbol-by-symbol according to a fixed equivalence relation called adjustment.

In both cases, for a finite set of guides G, only a finite set of strings can be obtained by repeatedly

rewriting a given string. Starting from a language L, we may consider the extension Li/d of the language

with all the rewrites obtained by guided insertion/deletion and the extension LG of the language obtained

by adding all the adjustment-based guided rewrites. We address the question if regularity of L implies

regularity of Li/d and of LG. The results of the paper state that in the case of guided insertion/deletion

regularity is preserved if the strings of dummy symbols involved are bounded and that guided rewriting

based on adjustment always preserves regularity.

The motivation for this work stems from transcriptional biology. RNA can be seen as strings over the

alphabet {C,G,A,U}. Replication of the encoded information is one of the most essential mechanisms in

∗Corresponding author, evink@win.tue.nl

life: strands of RNA are faithfully copied by the well-known processes of RNA-transcription. However,

typical for eukaryotic cells, the synthesis of RNA does not yield an exact copy of part of the DNA,

but a modification obtained by post-processing. The class of the underlying adjustment mechanisms is

collectively called RNA-editing.

Abstracting away from biological details, the computational power of insertion-deletion systems for

RNA-editing is studied in [14]: an insertion step is the replacement of a string uv by the string uαv taken

from a particular finite set of triples u,α,v. Similarly, a deletion step replaces uαv by uv for another finite

set of triples u,α,v. In [10] the restriction is considered where u and v are both empty. The approach

claims full computational power, that is, they generate all recursively enumerable languages.

The notion of splicing, inspired by DNA recombination, has been proposed by Head in [5]. A so-

called splicing rule is a tuple r = (u1,v1;u2,v2). Given two words w1 = x1u1v1y1 and w2 = x2u2v2y2

the rule r produces the word w = x1u1v2y2. So, the word w1 is split in between u1 and v1, the word w2

in between u2 and v2 and the resulting subwords x1u1 and v2y2 are recombined into the word w. For

splicing a closure result, reminiscent to the one for guided rewriting considered in this paper, has been

established. Casted in our terminology, if L is a regular language and S is a finite set of splicing rules,

then LS is regular too, cf. [8, 11]. Here, LS is the least language containing L and closed under the splicing

rules of S.

In the RNA-editing mechanisms occurring in nature, however, only very limited instances of these

formats apply. Often only the symbol U is inserted and deleted, instead of arbitrary strings α , see

e.g. [1]. Therefore, following [15], we investigate guided insertion/deletion focusing on the special role

of the distinguished symbol 0, the counterpart of the RNA-base U . However, in order to prove that

under this scheme regularity is preserved we extend our investigations to guided rewriting based on an

abstraction adjustment relation. In fact, we prove the theorem for guided insertion/deletion by appealing

to the result for guided rewriting based on adjustment.

The proof of the latter result relies on reorganizing sequences of guided rewrites into sequences of

so-called slices. The point is that, since guides may overlap, each guided rewrite step adds a ‘layer’

on top of the previous string. In this sense guided rewriting is vertically oriented. E.g., Figure 2 in

Section 5 shows six rewrite steps of the string ebcfa yielding the string fbcfb involving eight layers in

total. However, in reasoning about recognition by a finite automaton a horizontal orientation is more

natural. One would like to sweep from left to right, so to speak. Again referring to Figure 2, five slices

can be distinguished, viz. a slice for each symbol of the string ebcfa. The technical machinery developed

in this paper allows for a transition between the two orientations.

The organization of this paper is as follows. The biological background of RNA-editing is provided in

Section 2. Section 3 presents the theorem on preservation of regularity for guided insertion-deletion. The

notion of guided rewriting based on an adjustment relation is introduced in Section 4 and a corresponding

theorem on preservation of regularity is presented. To pave the way for its proof, Section 5 introduces

the notions of a rewrite sequence and of a slice sequence and establishes their relationship. Rewrite

sequences record the subsequent guided rewrites that take place, slice sequences represent the cumulative

effect of all rewrites at a particular position of the string being adjusted. In Section 6 we provide, given a

finite automaton accepting a language L, the construction of an automaton for the extended language LG

with respect to a set of guides G. Section 7 wraps up with related work and concluding remarks.

50

2 Biological Motivation

This section provides a description of RNA editing from a biological perspective. In this paper we

focus on the insertion and deletion of uracil in messenger RNA (mRNA) and provide abstractions of

the underlying mechanism in the sequel. However, in the living cell there are different kinds of RNA

editing that vary in the type of RNA that is edited and the type of editing operations. Uracil is represented

by the letter U . The three other types of nucleotides for RNA, viz. adenine, guanine and cytosine are

represented by the letters A, G and C, respectively.

U-insertion/deletion editing is widely studied in the mitochondrial genes of kinetoplastid proto-

zoa [13]. Kinetoplastids are single cell organisms that include parasites like Trypanosoma brucei and Cri-

thidia fasciculata, that can cause serious diseases in humans and/or animals. Modifications of kineto-

plastid mRNA are usually made within the coding regions. These are the parts that are translated into

proteins, which are the building blocks of the cells. This way coded information of the original gene can

be altered and therefore expressed, i.e. translated into proteins, in a varying number of ways, depending

on the environment in the cell. This provides additional flexibility as well as potential specialization of

different parts of the organisms for particular functions.

Here we describe a somewhat simplified version of the mechanism for the insertion and deletion of U .

More details can be found, for instance, in [13, 1, 3, 12]. For simplicity we assume that only identical

letters match with one another. In reality, the matching is based on complementarity, usually assuming

the so-called Crick-Watson pairs: A matches with U and G matches with C.

In general, a single step in the editing of mRNA involves two strands of RNA, a strand of messenger

RNA and a strand of guide RNA, the latter typically referred to as the guide. To explain the mechanism

for the insertion of uracil, let us consider an example. See Figure 1. Assume that we start of with

an mRNA fragment: u = N1N2N3N4N5 and the guide g = N2N3UUUN4, where Ni can be an arbitrary

nucleotide A, G or C, but not U . Obviously, there is some match between u and g involving the letters

N2, N3, and N4, which is partially ‘spoiled’ by the UUU sequence. By pairing of letters we have that g

attaches to u; the matching substrings N2N3 and N4 serve as anchors.

Figure 1: Various stages of guided U-insertion

By chemical reactions involving special enzymes u is split open between N3 and N4. The gap between

the anchors is then filled by the enzyme mechanism using the guide as a template. For each letter U in the

guide a U is added also in the gap. As a result the mRNA string u is transformed into N1N2N3UUUN4N5.

51

In general, one can have more than two anchors (involving only non-U letters) in which the guide and the

mRNA strand match. In that case mRNA is opened between each pair of anchors and all gaps between

these anchors are filled with U such that the number of Us in the guide is matched.

A similar biochemical mechanism implements the deletion of Us from a strand of mRNA. We

illustrate the deletion process on the following example. Let us assume that we have the mRNA strand

u = N1N2N3UUN4N5 and the guide g = N2N3N4. Like in the insertion case, g initiates the editing by

attaching itself to u at the matching positions N2,N3, and N4. Only now the enzymatic complex removes

the mismatching UU substring between N3 and N4 to ensure the perfect match between the substring

and the guide. As a result the edited string N1N2N3N4N5 is obtained. In general, we can have several

anchoring positions on the same string. In that case, all Us between each two matching positions are

removed from the mRNA.

A guide can also induce both insertions and deletions of U simultaneously. For instance the guide

N2N3UUUN4 can induce editing in parallel of the string N1UN2UN3UN4UN5UN6 which results in the

string N1UN2N3UUUN4UN5UN6, where the U between N2 and N3 has been deleted and two U’s between

N3 and N4 have been inserted. This is done by the same biochemical mechanisms that are involved in

separate insertions and deletions. Analogously as above, we can have multiple insertions and deletions

induced by the same guide on the original pre-edited sequence.

The net effect of all three cases considered above is that a strand u = xyz, such that y equals g

up to occurrences of U , is modified by the insertion and deletion mechanism and becomes a string

v = xgz. It is noteworthy that the rewriting system that we describe in the sequel also applies to another

case with the same effect. For example, consider a guide g = N2N3UUUN4 and a pre-edited mRNA

u = N1N2N3UUN4N5N6. Now, to obtain the match of the guide g and a substring y of u, a U is inserted

in u, resulting in the string v = N1N2N3UUUN4N5N6. If the U subsequence in y was longer though, like

in the case for u′ = N1N2N3UUUN4N5N6 and g′ = N2N3UUN4, then we have that the extra U in u′ is

removed resulting in v′ = N1N2N3UUN4N5N6.

To summarize, the mRNA editing mechanism underlying U-insertion/deletion can be interpreted as

symbolic manipulations of strings. In the sequel symbol U will be denoted by 0 and obviously plays a

special role. The crucial point is that in a single step some substring y is replaced by a guide g for which

y and g coincide except for the symbol 0.

3 Guided insertion / deletion

Inspired by the biological scheme of editing of mRNA as discussed in the previous section, we study

more abstract notion of guided insertion and deletion and guided rewriting based on an adjustment rela-

tion in the remainder of this paper. In this section we address guided insertion and deletion, turning to

guided rewriting in Section 4.

More precisely, fix an alphabet Σ0 and distinguish 0 /∈ Σ0. Put Σ = Σ0 ∪{0}. Choose a finite set

G ⊆ Σ
∗, with elements g also referred to as guides. Reflecting the biological mechanism, we assume that

each g ∈ G is not equal to the empty string ε and that the first and last letter of each g ∈ G is not equal

to 0. Hence, G ⊆ Σ0·Σ
∗·Σ0. Now a guided insertion/deletion step ⇒i/d with respect to G is given by

u ⇒i/d v ⇐⇒ u = xyz∧ v = xgz∧g ∈ G∧π(y) = π(g)

where y ∈ Σ0·Σ
∗·Σ0, and π(y) and π(g) are obtained from y and g, respectively, by removing their 0s.

Thus, π : Σ
∗ → Σ

∗
0 is the homomorphism such that π(ε) = ε , π(0) = ε and π(a) = a for a ∈ Σ0. So,

52

intuitively, g is anchored on the substring y of u and sequences of 0s are adjusted as prescribed by the

guide g, in effect replacing the substring y by the guide g while maintaining the prefix x and suffix z.

As a simple example of a single guided insertion/deletion step, for G = {g} with g = bcb000ab0c

and u = a00bc00babcc00a00b, we have u ⇒i/d v for v = a00bcb000ab0cc00a00b. Here we have u =
a00 ·bc00babc ·c00a00b, π(bc00babc) = bcbabc = π(bcb000ab0c) and v = a00 ·bcb000ab0c ·c00a00b.

Note, for the string v, being the result of a rewrite with guide g itself with only one possible anchoring,

only trivial steps can be taken further. So, the operation of guided insertion/deletion with the same

guide g at the same position in a string is idempotent. However, anchoring may overlap. Consider the

set of guides G = {aa0a, a0aa}, for example. Then the string aaa yields an infinite rewrite sequence

aaa ⇒i/d aa0a ⇒i/d a0aa ⇒i/d aa0a ⇒i/d a0aa · · ·

Still, from aaa only finitely many different rewrites can be obtained by insertion/deletion steps guided

by this G, viz. {aaa, aa0a, a0aa}.

The restrictions put on G exclude arbitrary deletions (possible if ε would be allowed as guide) and

infinite pumping (if guides need not be delimited by symbols from Σ0). As an illustration of the latter

case, starting from the string abc and ‘guide’ 0ab, the infinite sequence abc ⇒i/d 0abc ⇒i/d 00abc ⇒i/d

000abc . . . would be obtained. The restriction on the substring y prevents to make changes outside the

scope of the guide g and forbids a0b000c ⇒i/d ab0c by way of the guide ab.

As a first observation we show that the set Lu
i/d

= { v ∈ Σ
∗ | u ⇒∗

i/d
v}, for any finite set of guides G

and any string u, is finite. Write u = a00i1a1 . . .an1
0inan where ai ∈ Σ0, ik > 0, for some n> 0. In effect,

a guided insertion/deletion step only modifies the substrings 0ik or leaves them as is. Therefore, after one

or more guided insertion/deletion steps the substrings 0ik are strings taken from the set

Zu
i/d = {0ik | 16 k 6 n}∪{0ℓ | xa ·0ℓbz ∈ G, a,b ∈ Σ0, ℓ> 0}

Thus, if u ⇒∗
i/d

v then v ∈ L̂u
i/d

= { a0z1a1 . . .an1
znan | zk ∈ Zu

i/d
, 1 6 k 6 n }, i.e. Lu

i/d
⊆ L̂u

i/d
. Since the

set of guides G is finite, it follows that Zu
i/d

is finite, that L̂u
i/d

is finite and that Lu
i/d

is finite as well.

More generally, given a set of guides G, we define the extension by insertion/deletion Li/d of a

language L over Σ by putting Li/d = { v ∈ Σ
∗ | ∃u ∈ L : u ⇒∗

i/d
v }. Casted to the biological setting of

Section 2, L are the strands of messenger RNA, G are strands of guide RNA. Next, we consider the

question whether regularity of the language L is inherited by the induced language Li/d . Note, despite

the finiteness of the insertion/deletion scheme for a single string, it is not obvious that such would hold.

For example, consider the language corresponding to the regular expression (ab)∗ together with

the operation sort which maps a string w over the alphabet {a,b} to the string anbm where n = #a(w),
m = #b(w). Thus sort(w) is a sorted version of w with the a’s preceding the b’s. Note, for w ∈ (ab)∗

there is only one string sort(w), as sorting is a deterministic, hence finitary operation. However, despite

L ((ab)∗), the language associated by the regular expression, is regular, the language

sort((ab)∗) = { sort(w) | w ∈ (ab)∗ }= {anbn | n> 0}

is not regular. Also, if we define the rewrite operation ba →R ab, then { v ∈ {a,b}∗ | u →∗
R v } contains

shuffles of the string u, i.e. all strings over {a,b} having the same number of a’s and b’s but are smaller

lexicographically. Thus, the set { v ∈ {a,b}∗ | u →∗
R v} is finite for each string u. However, the language

L̂ = { v ∈ {a,b}∗ | ∃u ∈ L : u →∗
R v } cannot be regular: intersection with the language of a∗b∗ does

not yield a regular language. More specifically, L̂∩L (a∗b∗) = { anbn | n > 0 }. We conclude that the

question of Li/d being regular, given regularity of the language L, is not straightforward.

53

With machinery of rewrite sequences and slice sequences developed in the sequel of the paper, we

will be able to prove the following for guided insertion/deletion.

Theorem 1. In the setting above, if L is a regular language and for some number k > 0 it holds that no

string of L or G contains k (or more) consecutive 0’s, then the language Li/d is regular too.

We will prove Theorem 1 by applying a more general result on guided rewriting, viz. Theorem 3 for-

mulated in the next section and ultimately proven in Section 6. As in the notion of guided rewriting as

developed in the sequel, symbols are only replaced by single symbols by which lengths of strings are

always preserved, a transformation is required to be able to apply Theorem 3.

Before doing so we relate our results to those of [15]. There a relation similar to ⇒i/d was introduced,

with the only difference that in a single step either 0’s are deleted or inserted, but not simultaneously.

A main conclusion of [15] is that in that setting regularity is not preserved, so the opposite of the main

result in the present setting.

4 Guided rewriting

The idea of guided rewriting is that symbols are replaced by equivalent symbols with respect to some ad-

justment relation ∼. The one-one correspondence of the symbols of the string u and its guided rewrite v,

enjoyed by this notion of reduction, will turn out technically convenient in the sequel.

Let Σ be a finite alphabet and ∼ an equivalence relation on Σ, called the adjustment relation. If a∼b

we say that a can be adjusted to b. For a string u ∈ Σ
∗ we write #u for its length, use u[i] to denote its i-th

element, i = 1, . . . ,#u, and let u[p,q] stand for the substring u[p]u[p+1] · · ·u[q]. The relation ∼ is lifted

to Σ
∗ by putting

u ∼ v iff #u = #v ∧ ∀i = 1, . . . ,#u : u[i]∼ v[i]

Next we define a notion of guided rewriting that involves an adjustment relation.

Definition 2. We fix a finite subset G ⊆ Σ
∗, called the set of guides.

(a) For u,v ∈ Σ
∗, g ∈ G, p > 0, we define u ⇒g,p v, stating that v is the rewrite of u with guide g at

position p, by

u ⇒g,p v iff ∃x,y,z ∈ Σ
∗ : u = xyz ∧ #x = p ∧ y ∼ g ∧ v = xgz

(b) We write u ⇒ v if u ⇒g,p v for some g ∈ G and p> 0. We use ⇒∗ to denote the reflexive transitive

closure of ⇒. A sequence u1 ⇒ u2 ⇒ ·· · ⇒ un is called a reduction.

(c) For a language L over Σ and a set of guides G we write

LG = { v ∈ Σ
∗ | ∃u ∈ L : u ⇒∗ v}

So, a ⇒-step adjusts a substring to a guide in G element-wise, and LG consists of all strings that can

be obtained from a string from L by any number of such adjustments. For example, if Σ = {a,b,c},

G = {bb} and a ∼ b but not a ∼ c, then by a ⇒-step two consecutive symbols not equal to c are replaced

by two consecutive b’s. In particular, aaacaa →bb,1 abbcaa and abbcaa →bb,0 bbbcaa. We have

{aaacaa}G = {aaacaa, bbacaa, abbcaa, aaacbb, bbbcaa, abbcbb, bbacbb,bbbcbb}

Next, we state the main result of this paper regarding guided rewriting.

54

Theorem 3. Given an equivalence relation ∼ on Σ, let G be a finite set of guides. Suppose L is a regular

language. Then LG is regular too.

Before going to the proof, we first show that both finiteness of G and the requirement of ∼ being an

equivalence relation are essential. Below, for a regular expression r we write L (r) for its corresponding

language.

To see that finiteness of G is essential for Theorem 3 to hold, let G = { cakcbkc | k > 0 } and L =
L (ca∗ca∗c). Let ∼ satisfy a ∼ b but not a ∼ c. Then all elements of L on which an adjustment is

applicable are of the shape cakcakc, where the result of the adjustment is cakcbkc, which can not be

changed by any further adjustment. So

LG ∩ L (ca∗cb∗c) = { cakc bkc | k > 0}

is not regular. Since regularity is closed under intersection we conclude that LG cannot be regular itself.

Also equivalence properties of ∼ are essential for Theorem 3. For G = {ab} and ∼= {(a,b),(b,a)}
the only possible ⇒-steps are replacing the pattern ba by ab. Note that here ∼ is neither reflexive nor

transitive. Since ba may be replaced by ab, bubble sort on a’s and b’s can be mimicked by ⇒∗, while on

the other hand ⇒∗ preserves both the number of a’s and the number of b’s. Hence

L ((ab)∗)G ∩ L (a∗b∗) = {akbk | k > 0}

which proves that L ((ab)∗)G is not regular, again since regularity is closed under intersection.

5 Rewrite sequences and slice sequences

Fix an alphabet Σ, an adjustment relation ∼, and a set of guides G.

Definition 4. A sequence ρ = (gk, pk)
r
k=1 of guide-position pairs is called a guided rewrite sequence

for a string u ∈ Σ
∗ if it holds that (i) gk ∈ G, (ii) 0 6 pk 6 #u−#gk, and (iii) u[pk+1, pk+#gk]∼gk, for

all k = 1, . . . ,r.

A guide-position pair (g, p) indicates a redex for a guided rewrite with g of the string u. The position p

is relative to u. For the rewrite to fit we must have p+ #g 6 #u. The first p symbols of u, i.e. the

substring u[1, p], are not affected by the rewrite, as are the last #u− p+#g symbols of u, i.e. the substring

u[p+#g+1,#u].
The sequence ρ induces a sequence of strings (uk)

r
k=0 by putting u0 = u and uk such that uk−1 ⇒gk,pk

uk for k= 1, . . . ,r. To conclude that uk−1 ⇒gk,pk
uk is indeed a proper guided rewrite step, in particular that

we have uk−1[pk+1, pk+#gk], we use the assumption u[pk+1, pk+#gk]∼gk and the fact that if u ⇒g,p v

then u[p+1, p+#g]∼ v[p+1, p+#g]. So we obtain u ⇒∗ ur by construction. The string ur is referred

to as the yield of ρ for u, notation yield(ρ). Conversely, every specific reduction from u to v gives rise to

a corresponding guided rewrite sequence for u.

Definition 5. Let a ∈ Σ. A sequence sℓ = (gi,qi)i∈I of guide-offset pairs, for I ⊆ N a finite index set, is

called a slice for a and G if it holds that (i) gi ∈ G, (ii) 16 qi 6 #gi, and (iii) a∼gi[qi], for all i ∈ I. The

slice sℓ is called a slice for a string u ∈ Σ
∗ at position n, 16 n6 #u, if it is a slice of u[n].

Note that in a guide-offset pair (g,q) of a slice sequence, the offset q is relative to the guide q. Since

we require 1 6 q 6 #g for such a pair, the symbol g[q] is well-defined. We will reserve the use of q for

offsets, indices within a guide, and the use of p for positions after which a rewrite may take place, i.e.

for lengths of proper substrings of a given string.

55

The goal of the notion of slice is to summarize the effect of a number of guided rewrites local to a

specific position within a string. The symbol generated by the last rewrite that affected the position, i.e.

the particular symbol of the last element of the slice sequence, is part of the overall outcome of the total

rewrite. This symbol is called the yield of the slice. More precisely, if I 6= /0, the yield of a slice sℓ for a

symbol a is defined as yield(sℓ) = gimax
[qimax

] where imax = max(I). In case I = /0, we put yield(sℓ) = a.

Occasionally we write a∼ sℓ, as for a slice sℓ for a symbol a it always holds that a∼ yield(sℓ).
A slice sℓ is said to be repetition-free if gi = g j ∧qi = q j implies i = j. If we have I = /0, the slice sℓ

is called the empty slice.

Next we consider sequences of slices, and investigate the relationship between slices on two consecutive

positions in a guided rewrite sequence.

Definition 6. A sequence σ = (sℓn)
#u
n=1 is called a slice sequence for a string u if the following holds:

• sℓn is a slice for u at position n, for n = 1, . . . ,#u;

• for n = 1, . . . ,#u−1, putting sℓn = (gi,qi)i∈I and sℓn+1 = (g′i,q
′
i)i∈J , there exists a monotone partial

injection γn : I → J such that, for all i ∈ I and j ∈ J,

– i /∈ dom(γn) =⇒ qi = #gi

– γn(i) = j ⇐⇒ gi = g′j ∧qi +1 = q′j
– j /∈ rng(γn) =⇒ q′j = 1

• the slices sℓ1 and sℓ#u, say sℓ1 = (gi,qi)i∈I and sℓ#u = (g′j,q
′
j) j∈J , satisfy qi = 1, for all i ∈ I, and

q′j = #g′j, for all j ∈ J, respectively.

For the slices sℓn and sℓn+1 the mapping γn : I → J is called the cut for sℓn and sℓn+1. It witnesses that

sℓn and sℓn+1 match in the sense that a rewrite may end at position n, may continue for its next offset at

position n+1, and may start at position n+1. Since a cut γ is an order-preserving bijection from dom(γ)
to rng(γ), and dom(γ) and rng(γ) are finite, it follows that for two slices sℓ,sℓ′ the cut sℓ→ sℓ′ is unique.

We write sℓ sℓ′. A slice sℓ = (gi,qi)i∈I is called a start slice if qi = 1 for all i ∈ I. Similarly, sℓ is

called an end slice if qi = #gi for all i ∈ I. A start slice is generally associated with the first position of

the string that is rewritten, an end slice with the last position. Note, a start slice as well as an end slice

are allowed to be empty. The yield of the slice sequence σ is the sequence of the yield of its slices, i.e.

we define yield(σ) = yield(sℓ1) · · ·yield(sℓ#u).

Example 7. Let ∼ be the adjustment relation with equivalence classes {a,b},{c,d},{e, f} and let the

set of guides G be given by G = { g1, g2, g3 } where g1 = fb, g2 = ace and g3 = d. For the string

u = ebcfa we consider the guided rewrite sequence ρ = ((g3,2), (g1,0), (g2,1), (g1,0), (g1,3), (g1,3)).
The associated reduction looks like

ebcfa ⇒g3,2 ebdfa ⇒g1,0 fbdfa ⇒g2,1 facea ⇒g1,0 fbcea ⇒g1,3 fbcfb ⇒g1,3 fbcfb (1)

Recording what happens at all of the five positions of the string u yields, for this example, the slice

sequence σ = (sℓn)
5
n=1 given in the table at the left-hand side of Figure 2, where the slice sequence is

visualized too.

For the choice of I1, . . . , I5, the monotone partial injection γn, n = 1 . . .4, maps every number to itself. It

is easily checked that all requirements of a slice sequence hold. The ovals covering guide-offset pairs

reflect the cuts as mappings between to adjacent slices. However, they also comprise, in this situation

derived from a guided rewrite sequence, complete guides. Note, sℓ1 is a start slice, sℓ5 is an end slice.

We have for the slice sequence σ = (sℓn)
5
i=1 that yield(σ) = yield(sℓ1) · · · · · yield(sℓ5) = fbcfb. Indeed,

this coincides with the yield of the guided rewrite sequence ρ of (1).

56

In (gi,qi)i∈In

sℓ1 2,4 2 7→ (g1,1), 4 7→ (g1,1)

sℓ2 2,3,4 2 7→ (g1,2), 3 7→ (g2,1), 4 7→ (g1,2)

sℓ3 1,3 1 7→ (g3,1), 3 7→ (g2,2)

sℓ4 3,5,6 3 7→ (g2,3), 5 7→ (g1,1), 6 7→ (g1,1)

sℓ5 5,6 5 7→ (g1,2), 6 7→ (g1,2)

Figure 2: An example slice sequence

The rest of this section is devoted to proving that the above holds in general: Given a string and a set of

guides, for every guided rewrite sequence there exists a slice sequence and for every slice sequence there

exists a guided rewrite sequence. Moreover, the yield of the guided rewrite sequence and slice sequence

are the same.

Theorem 8. Let ρ = (gk, pk)
r
k=1 be a guided rewrite sequence for a string u. Then there exists a slice

sequence σ = (sℓn)
#u
n=1 for u such that yield(σ) = yield(ρ).

Proof sketch. Induction on r. If ρ is the empty rewrite sequence, we take for σ the slice sequence of

n empty slices. Suppose ρ is non-empty. Let (uk)
r
k=0 be the sequence of strings induced by ρ . By

induction hypothesis there exists a slice sequence σ ′ for the first r−1 steps of ρ . Suppose ur−1 ⇒gr,pr
ur.

The slice sequence σ is obtained by extending the slices of σ ′ from position pr+1 to pr+#gr with the

pairs (gr,n−pr). Then,

yield(σ) = yield(σ ′[1, pr]) ·gr[1,#gr] · yield(σ ′[pr+#gr+1,#u])

= ur−1[1, pr] ·gr ·ur−1[pr+#gr+1,#ur−1] = ur = yield(ρ)

Verification of σ being a slice sequence for u requires transitivity of ∼.

In order to show the reverse of Theorem 8 we proceed in a number of stages. First we need to relate

individual guide-offset pairs in neighboring slices. For this purpose we introduce the ordering 4 on

so-called chunks.

Definition 9. Let σ = (sℓn)
#u
n=1 be a slice sequence for u. Assume we have sℓn = (gn,i,qn,i)i∈In

, for n =
1, . . . ,#u. Let γn : In → In+1 be the cut for sℓn and sℓn+1, 16 n < #u. Let X = { (gn,i,qn,i, i,n) | 16 n6

#u, i∈ In} be the set of chunks of σ and define the ordering4 on X by putting (g,q, i,n)4 (g′,q′, i′,n′)
iff

• either n′ > n and there exist indexes ℓ0,h0, . . . , ℓn′−n,hn′−n such that

– ℓk,hk ∈ In+k and ℓk 6 hk, 06 k 6 n′−n

– hk ∈ dom(γn+k) and γn+k(hk) = ℓk+1, 06 k < n′−n

– ℓ0 = i and hn′−n = i′

• or n′ 6 n and there exist indexes ℓ0,h0, . . . , ℓn−n′ ,hn−n′ such that

– ℓk,hk ∈ In′+k and ℓk 6 hk, 06 k 6 n−n′

57

– ℓk ∈ dom(γn′+k) and γn′+k(ℓk) = hk+1, 06 k < n−n′

– h0 = i′ and ℓn−n′ = i

In the above setting with n′ > n, we say that the sequence ℓ0,h0, ℓ1,h1, . . ., ℓn′−n,hn′−n is leading from

i ∈ In up to i′ ∈ In′ . Likewise for the case where n′ 6 n.

For example, for the slice sequence (sℓi)
r
i=1 of Figure 2, to identify the guide belonging to the guide-

offset pair (g2,1) of slice sℓ2, the pair is more precisely represented by the chunk (g2,1,3,2), for the

pair is associated with index 3 ∈ I2 of slice sℓ2. Since for the cuts γ2 : I2 → I3 and γ3 : I3 → I4 we have

γ2(3) and γ3(3) = 3, we have (g2,1,3,2)4 (g2,2,3,3)4 (g2,3,3,4) via the sequence 3,3,3,3 connects

(g2,1) and (g2,2), and 3,3,3,3 connecting (g2,2) and (g2,3). (Hence the combination of sequences

3,3,3,3,3,3 connecting (g2,1) and (g2,3) directly.) As no jumps from a low index ℓ to a high index h

needs to be taken, we also have (g2,1,3,2)< (g2,2,3,3)< (g2,3,3,4). Thus (g2,1,3,2)≡ (g2,2,3,3)≡
(g2,3,3,4)}. In fact, {(g2,1,3,2), (g2,2,3,3), (g2,3,3,4)} is an equivalence class for X corresponding

to the guide g2 (cf. Lemma 10). Differently, we have (g2,1,3,2) 4 (g1,2,6,5) relating g2 to the fourth

occurrence of g1 via the sequence 3,3,3,3,3,5,5,5, for example. Since there is a jump here from ℓ2 = 3

to h2 = 5, we do not have (g2,1,3,2) < (g1,2,6,5). This reflects that apparently the rewrite with this

occurrence of g1 is on top of part of the rewrite using g2 as guide.

Given a slice sequence σ , the ordering 4 on the chunks of σ in X gives rise to a partial ordering on

the set X /≡ of equivalence classes of chunks. As we will argue, the equivalence classes correspond

to guides and their ordering corresponds to the relative order in which the guides occur in a rewrite

sequence ρ having the same yield as the slice sequence σ .

Lemma 10. (a) The relation 4 on X is reflexive and transitive.

(b) The relation ≡ on X such that x ≡ y ⇐⇒ x4 y∧ y4 x is an equivalence relation.

(c) The ordering 4 on X /≡ induced by 4 on X by [x] 4 [y] ⇐⇒ ∃x′ ∈ [x]∃y′ ∈ [y] : x′ 4 y′, makes

X /≡ a partial order.

The next lemma describes the form of the equivalence class holding a chunk x = (g,q, i,n). Using

the cuts, equivalent chunks can be found backwards up to position n−q+1 and forward up to position

n−q+#g. These chunks together, (g,1, in−q+1,n−q+1), . . ., (g,q, in,n), . . ., (g,#g, in−q+#g,n−q+ #g)
span the guide g that is to be applied, in the rewrite sequence to be constructed.

Lemma 11. Let σ = (sℓn)
#u
n=1 be a slice sequence for a string u. Let X = { (gn,i,qn,i, i,n) | 1 6 n 6

#u, i ∈ In } be the set of chunks and choose x ∈ X , say x = (g,q, i,n). Put p = n−q. Then there exist

j1 ∈ Ip+1, . . . , j#g ∈ Ip+#g such that [x] = { (g,s, js, p+ s) | 16 s6 #g}.

We are now in a position to prove the reverse of Theorem 8.

Theorem 12. Let σ be a slice sequence for a string u. Then there exists a guided rewrite sequence ρ

for u such that yield(ρ) = yield(σ).

Proof. Suppose σ = (sℓn)
#u
n=1, sℓn = (gi,n,qi,n)i∈In

, for n = 1, . . . ,#u, and let X = { (gn,i,qn,i, i,n) | 16

n 6 #u, i ∈ In } be the corresponding set of chunks. We proceed by induction on #X . Basis, #X = 0:

In this case every slice is empty and yield(σ) = yield(sℓ1) · · ·yield(sℓ#u) = u[1] · · · · u[#u] = u and the

empty guided rewrite sequence for u has also yield u.

Induction step, #X > 0: Clearly, X /≡ is finite and therefore we can choose, by Lemma 10, x ∈ X

such that [x] is maximal in X /≡. By Lemma 11 we can assume [x] = { (g,s, is, p+ s) | 16 s6 #g} for

58

suitable p and indexes is ∈ Ip+s, for s = 1, . . . ,#g. Note, by maximality of [x], the indexes is must be the

maximum of Ip+s. In particular, yield(σ)[p+ s] = yield(sℓp+s) = g[s], for s = 1, . . . ,#g.

Now, consider the slice sequence σ ′ = (sℓ′n)
#u
n=1 where

sℓ′n =

{

sℓn for n = 1, . . . , p and n = p+#g+1, . . . ,#u

(gi,n,qi,n)i∈In\{in−p} for n = p+1, . . . , p+#g

So, the slice sequence σ ′ is obtained from the slice sequence σ by leaving out the guide-offset pairs

related to the particular occurrence of g.

Let X ′ be the set of chunks of σ ′. Then #X ′< #X . By induction hypothesis we can find a

guided rewrite sequence ρ ′ = (g′k, p′k)
r
k=1 for u such that yield(ρ ′) = yield(σ ′). Define the guided

rewrite sequence ρ = (gk, pk)
r+1
k=1 by gk = g′k, pk = p′k for k = 1, . . . ,r and gr+1 = g, pr+1 = p. We

have 0 6 p 6 #u−#g and u[p+1, p+#g]∼ g since sℓp+1, . . . ,sℓp+#g are slices for u[p+1], . . . ,u[p+#g],
respectively. So, ρ is a well-defined guided rewrite sequence for u.

It holds that yield(ρ ′)⇒g,p yield(ρ) as ρ extends ρ ′ with the pair (g, p). Therefore,

yield(ρ)[n] =

{

yield(ρ ′)[n] for n = 1, . . . , p and n = p+#g+1, . . . , p+#g

g[n−p] for n = p+1, . . . , p+#g

From this it follows, for any index n, 16 n6 p or p+#g+16 n6 #u, that yield(ρ)[n] = yield(ρ ′)[n] =
yield(σ ′)[n] = yield(σ)[n], and for any index n, p+1 6 n 6 p+#g, that yield(ρ)[n] = g[n−p] =
yield(σ)[n]. As #yield(ρ) = #yield(σ) = #u, we obtain yield(ρ) = yield(σ), as was to be shown.

For the slice sequence (sℓi)
5
i=1 of Figure 2 we have the following equivalence classes of chunks:

G3 = { (g3,1,1,3)} G2 = { (g2,1,3,2), (g2,2,3,3), (g2,3,3,4)}

G1
1 = { (g1,1,2,1), (g1,2,2,2)} G3

1 = { (g1,1,5,4), (g1,2,5,5)}

G2
1 = { (g1,1,4,1), (g1,2,4,2)} G4

1 = { (g1,1,6,4), (g1,2,6,5)}

Moreover, G3 4 G1
1 4 G2, G2 4 G2

1 and G2 4 G3
1 4 G4

1. A possible linearization is G3 4 G1
1 4 G2 4

G3
1 4 G4

1 4 G2
1. This corresponds to the rewrite sequence

ebcfa ⇒g3,2 ebdfa ⇒g1,0 fbdfa ⇒g2,1 facea ⇒g1,3 facfb ⇒g1,3 facfb ⇒g1,0 fbcfb

Note that the yield fbcfb of this rewrite sequence is the same as the yield of the sequence (1) of Example 7.

However, here the second rewrite with g)1 of (1) has been moved to the end. This does not effect the end

result as the particular rewrites do not overlap.

6 Guided rewriting preserves regularity

Given a language L and a set of guides G, the language LG is given as the set {v ∈ Σ
∗ | ∃u ∈ L : u ⇒∗ v}.

One of the main results of this paper, Theorem 3 formulated in Section 4, states that if L is regular

than LG is regular too. We will prove the theorem by constructing a non-deterministic finite automaton

accepting LG from a deterministic finite automaton accepting L. The proof exploits the correspondence

of rewrite sequences and slice sequences, Theorem 8 and Theorem 12. First we need an auxiliary result

to assure finiteness of the automaton for LG.

59

Lemma 13. Let G be a finite set of guides. Let Z = { sℓ | sℓ repetition-free slice for a and G, a ∈ Σ }.

Then Z is finite. Moreover, for every string u and every rewrite sequence ρ for u, there exists a slice

sequence σ for u consisting of slices from Z only such that yield(σ) = yield(ρ).

Proof sketch. Finiteness of Z is immediate: there are finitely many guide-offset pairs (g,q), hence finitely

many repetition-free finite sequences of them. Thus, there are only finitely many repetition-free slices.

Now, let ρ be a rewrite sequence for a string u. By Theorem 8 we can choose a slice sequence σ ′ such

that yield(σ ′) = yield(ρ). Suppose σ ′ = (sℓn)
#u
n=1 and sℓn = (gi,n,qi,n)i∈In

for n= 1, . . . ,#u. By Lemma 11

it follows that given a repeated guide-offset pair (g,q), say (g,q) = (gi,n,qi,n) and (g,q) = (g j,n,q j,n) for

indexes i < j in In, we can delete the complete equivalence class of (gi,qi, i,n) from slices sℓn−q+1

to sℓn−q+#g, while retaining a slice sequence. In fact, we are removing the ‘lower’ occurrence of the

guide g. Moreover, the resulting slice sequence has the same yield as for all slices the topmost guide-

offset pair remains untouched. The existence of a repetition-free slice sequence σ such that yield(σ) =
yield(σ ′), hence yield(σ) = yield(ρ), then follows by induction on the number of repetitions.

As a corollary we obtain that every rewrite sequence has a repetition-free equivalent, an intuitive result

which require some technicalities though to obtain directly.

We are now prepared to prove that guided rewriting preserves regularity.

Proof of Theorem 3. Without loss of generality ε /∈ L. Let M = (Σ,Q,→,qo,F) be a DFA accepting L.

We define the NFA M′ = (Σ,Q′,→′,q0,F
′) as follows: Let qF be a fresh state. Put Q′ = Q∪ (Q×Z)∪

{qF} with Z as given by Lemma 13, F ′ = {qF} and

q0
ε
−→′ q0 ×ζ if ζ is a start slice

q×ζ
b
→′ q′×ζ ′ if q

a
→ q′, a∼ζ , yield(ζ) = b, ζ ζ ′

q×ζ
b
→′ qF if ∃q′ : q

a
→ q′ ∈ F , a∼ζ , yield(ζ) = b, ζ is an end slice

Note, by Lemma 13, Q′ is a finite set of states. The automaton M′ has only one final state, viz. qF .

Suppose v ∈ LG. Then there exist u = a1 · · ·as ∈ L, a rewrite sequence ρ = (gk, pk)
r
k=1 and strings

u0,u1, . . . ,ur such that u = u0, uk−1 ⇒gk,pk
uk for k = 1, . . . ,r, and v = ur. Let, by Theorem 8 and

Lemma 13, σ be a slice sequence for u of repetition-free slices with yield(σ) = yield(ρ). Say σ =

(sℓn)
#u
n=1 and sℓn = (gi,n,qi,n)i∈In

for n= 1, . . . ,#u. Let q0
a1−→ q1 · · ·

as−→ qs ∈F be an accepting computation

of M for u. Then q0
ε
−→′ q0×sℓ1

b1−→′ · · ·qs−1×sℓs
bs−→′ qF is an accepting computation of M′. Since we

have b1 · · ·bs = yield(sℓ1) · · · yield(sℓs) = yield(σ) = v, it follows that v ∈ L (M′). So, LG ⊆ L (M′).
Let v = b1 · · ·bs be a string in L (M′). Given the definition of the transition relation on M′, we can

find states q0,q1, . . . ,qs−1, repetition-free slices sℓ1, . . .sℓs such that sℓn sℓn+1 for n = 1, . . . ,s−1, and

a computation q0
ε
−→′ q0×sℓ1

b1−→′ · · ·qs−1×sℓs
bs−→′ qF . Thus, there exist a final state qs and a computation

q0
a1−→ q1 · · ·qs−1

as−→ qs ∈ F such that an ∼ sℓs for n = 1, . . . ,s, i.e. sℓn is a slice for an. Put u = a1 · · ·as.

Then u ∈ L, (sℓn)
#u
n=1 is a slice sequence for u and yield(σ) = v. By Theorem 12 we can find a rewrite

sequence ρ for u such that yield(ρ) = yield(σ) = v. It follows that u ⇒∗ v and v ∈ LG. Thus, L (M′)⊆
LG. We conclude that LG = L (M′) and regularity of LG follows.

Since L ⊆ LG the automaton M′ should accept any word a1 . . .as ∈ L, s > 0. This can be verified as

follows. Let ζ i be the empty slice for ai, i = 1 . . .s. Then ai ∼ ζ i, i.e. ai = yield(ζ i), which holds by

definition. Moreover, ζ1 is a start slice, ζ i ζ i+1 for i = 1 . . .s−1, and ζs is an end slice. It follows that

we can turn an accepting computation of M, say q0
a1−→ q1

a2−→ ·· ·
as−→ qs ∈F into an accepting computation

of M′: q0
ε
−→′q0 ×ζ1

a1−→′q1 ×ζ2
a2−→′ · · ·

as−1
−−→′qs−1 ×ζs

as−→′qF .

60

We now return to a proof of Theorem 1 formulated in Section 3 for which we want to apply Theorem 3.

For the latter theorem to apply we need a preparatory transformation. The point is, in the setting of

guided insertion/deletion strings are allowed to grow or shrink while guided insertions and deletions are

being applied, whereas in the setting of guided rewriting the strings do not change length.

The key idea of the transformation is that every group of 0’s is compressed to a single symbol. Let

a language L over Σ and a number k be given by Theorem 1. So, L does not contain strings with k or

more 0s. We introduce k fresh symbols 00,01, . . . ,0k−1. Put Θ = { 00, 01, . . . , 0k−1 }. For any string u

over Σ not containing the substring 0k, i.e. not containing k or more zeros, we define the string ū over the

alphabet Σ = (Σ\{0})∪{00,01, . . . ,0k−1} that is obtained from u by replacing every maximal pattern 0i

by the single symbol 0i. Note, between two consecutive non-zero letters ab the symbol 00 is interspersed.

For instance, for k > 3, 10023 = 1022003. Also note, that the compression scheme constitutes a 1–1

correspondence of Σ
∗∩{w | w has no substring 0k } and

(

Θ ·Σ0

)∗
·Θ.

Next, we show that the above operation of compressing groups of 0s preserves regularity using basic

closure properties of the class of regular languages, cf. [7, Section 3].

Lemma 14. Let L be a language without strings containing 0k and let L = {ū | u ∈ L}. Then L is regular

if and only if L is regular.

Proof. The language L is the homomorphic image of L for h : Σ
∗
→ Σ

∗ with h(0i) = 0 i and h(a) = a

otherwise. So, if L is regular, so is L. Reversely, L = (Θ ·Σ)∗ ·Θ∩ h−1(L). Hence, if L is regular, so

is L.

With the above lemma in place we can give a proof of the preservation of regularity by guided inser-

tion/deletion.

Proof of Theorem 1. Let k be as given by the statement of the theorem. Obtain L by applying the com-

pression of strings 0i, for i < k, changing from the alphabet Σ to Σ, as introduced above. By Lemma 14

we then have that L is regular. Let G be obtained from G, again by compression of strings 0i, for i < k.

Then G is a finite set of guides with respect to Σ. Now let the adjustment relation ∼ be the equivalence

relation on Σ generated by 0i ∼ 0 j, 06 i, j < k. By Theorem 3 we obtain that LG is regular.

Next we note that if u ⇒i/d v with respect to Σ, then ū ⇒ v̄ with respect to Σ. Vice versa, if ū ⇒ v̄ and

there exist (unique) u and v such that u,v map to ū, v̄ under compression, then u ⇒i/d v. It follows that

LG and Li/d coincide. Finally, by another application of Lemma 14, we conclude that Li/d is regular.

7 Related work and concluding remarks

In this paper we discussed abstract concepts of guided rewriting: a more flexible notion focusing on

insertions and deletions of a dummy symbol, another more strict notion based on an equivalence relation.

Given a language L we considered the extended languages Li/d and LG comprising the closure of L for

the two types of guided rewriting with guides from a finite set G. In particular, as our main result we

proved that these closures preserve regularity. For doing so we investigated the local effect of guided

rewriting on two consecutive string positions, leading to a novel notion of a slice sequence. Finally,

the theorem for adjustment-based rewriting was proved by an automaton construction exploiting a slice

sequence characterization of guided rewriting. Via a compression scheme for strings of dummy symbols,

the theorem for guide insertion/deletion followed.

61

Preservation of regularity by closing a language with respect to a given notion of rewriting arises as a

natural question. In Section 3 we observed that by closing the regular language L ((ab)∗) under rewrit-

ing with respect to the single rewrite rule ba → ab the resulting language is not regular. So, by arbitrary

string rewriting regularity is not necessarily preserved. A couple of specific rewrite formats have been

proposed in the literature. In [6] it was proved that regularity is preserved by deleting string rewriting,

where a string rewriting system is called deleting if there exists a partial ordering on its alphabet such

that each letter in the right-hand side of a rule is less than some letter in the corresponding left-hand

side. In [9] it was proved that regularity is preserved by so-called period expanding or period reducing

string rewriting. When translated to the setting of [15], as also touched upon in Section 3, our present

notion of guided insertions and deletions allows for simultaneous insertion and deletion of the dummy

symbol. A phenomenon also supported by biological findings. Remarkably, the more liberal guided

insertion/deletion approach preserves regularity, whereas in the more restricted mechanism of [15], not

mixing insertions and deletions per rewrite step, regularity is not preserved.

The computational power of a variant of insertion-deletion systems was studied in [14]. There dele-

tion means that a string uαv is replaced by uv for a predefined finite set of triples u,α,v, while by insertion

a string uv is replaced by uαv for another predefined finite set of triples u,α,v. This notion of insertion-

deletion is quite different from ours, and seems less related to biological RNA editing. In the same

vein are the guided insertion/deletion systems of [2]. There a hierarchy of classes of insertion/deletion

systems and related closure properties are studied. Additionally, a non-mixing insertion/deletion system

that models part of the RNA-editing for kinetoplastids is given. A rather different application of term

rewriting in the setting of RNA is reported in [4], where the rewrite engine of Maude is exploited to

predict the occurrence of specific patterns in the spatial formation of RNA, with competitive precision

compared to techniques that are more frequently used in bioinformatics.

Possible future work includes investigation of preservation of context-freedom and of lifting the

bound on the number of consecutive 0’s in Theorem 1. More specifically, for a context-free language L,

does it hold, for a finite set of guides G, that LG is context-free too? Considering the set of guides, a

generalization to regular sets G is worthwhile studying. Note that the counter-example given in Section 4

involves a non-regular set of guides. So, if L is regular and G is regular, do we have that LG is regular?

Similarly for L context-free. We also plan to consider guided rewriting based on other types of adjustment

relations. In particular, rather than comparing strings symbol-by-symbol, one can consider two strings

compatible if they map to the same string for a chosen string homomorphism. A prime example would

be the erasing of the dummy 0 in the context of Section 3 for which we conjecture a variant of Theorem 3

to hold.

Acknowledgment We acknowledge fruitful feedback from Peter van der Gulik and detailed comment

from the reviewers of the MeCBIC 2012 workshop.

References

[1] J.D. Alfonzo, O. Thiemann & L. Simpson (1997): The Mechanism of Insertion/Deletion RNA Editing in

Kinetoplastid Mitochondria. Nucleic Acids Research 25(19), pp. 3751–3759.

[2] F. Biegler, M.J. Burrell & M. Daley (2007): Regulated RNA Rewriting: Modelling RNA Editing with Guided

Insertion. Theoretical Computer Science 387(2), pp. 103–112.

[3] B. Blum, N. Bakalara & L. Simpson (1990): A Model for RNA Editing in Kinetoplastid Mitochondria:

RNA Molecules Transcribed From Maxicircle DNA Provide the Edited Information. Cell 60, pp. 189–198,

doi:10.1016/0092-8674(90)90735-W.

62

http://dx.doi.org/10.1016/0092-8674(90)90735-W

[4] X.Z. Fu, H. Wang, W. Harrison & R. Harrison (2005): RNA Pseudoknot Prediction using Term Rewriting.

In: Proc. BIBE’05, Minneapolis, IEEE Computer Society, pp. 169–176.

[5] T. Head (1987): Formal Language Theory and DNA: An Analysis of the Generative Capacity of Specific

Recombinant Behaviors. Bulletin of Mathematical Biology 49(6), pp. 737–759.

[6] D. Hofbauer & J. Waldmann (2004): Deleting String Rewriting Systems Preserve Regularity. Theoretical

Computer Science 327, pp. 301–317.

[7] J.E. Hopcroft & J.D. Ullman (1979): Introduction to Automata Theory, Languages and Computation.

Addison-Wesley.

[8] K. Cullik II & T. Harju (1991): Splicing Semigroups and Dominoes and DNA. Discrete Applied Mathematics

31(3), pp. 261–271.

[9] P. Leupold (2008): On Regularity-Preservation by String-Rewriting Systems. In C. Martı́n-Vide, F. Otto &

H. Fernau, editors: Proc. LATA 2008, LNCS 5196, pp. 345–356.

[10] M. Margenstern, G. Paun, Y. Rogozhin & S. Verlan (2005): Context-free Insertion-deletion Systems. Theo-

retical Computer Science 330, pp. 339–348.

[11] D. Pixton (1996): Regularity of Splicing Languages. Discrete Applied Mathematics 70(1), pp. 57–79.

[12] H. van der Spek, G.J. Arts, R.R. Zwaal, J. van den Burg, P. Sloof & R. Benne (1991): Conserved Genes

Encode Guide RNAs in Mitochondria of Crithidia Fasciculata. EMBO 10(5), pp. 1217–1224.

[13] K. Stuart, T.E. Allen, S. Heidmann & S.D. Seiwert (1997): RNA editing in kinteoplastid protozoa. Micor-

biology and Molecular Biology Reviews 61(1), pp. 105–120.

[14] A. Takahara & T. Yokomori (2003): On the Computational Power of Insertion-Deletion Systems. Natural

Computing 2(4), pp. 321–336.

[15] H. Zantema (2010): Complexity of Guided Insertion-Deletion in RNA-Editing. In A.-H. Dediu, H. Fernau &

C. Martı́n-Vide, editors: Proc. LATA 2010, LNCS 6031, pp. 608–619.

63

Pre-Proceedings of 6th Workshop on Membrane

Computing and Biologically Inspired Process Calculi

MeCBIC 2012, Pages 65–82.

c© P. Drábik, A. Maggiolo-Schettini and P. Milazzo

All the rights to the paper remain with the authors.

Towards Modular Verification of Pathways:

Fairness and Assumptions

Peter Drábik

Istituto di Informatica e Telematica
Consiglio Nazionale delle Ricerche

Pisa, Italy

peter.drabik@iit.cnr.it

Andrea Maggiolo-Schettini

Dipartimento di Informatica
Università di Pisa

Pisa, Italy

maggiolo@di.unipi.it

Paolo Milazzo

Dipartimento di Informatica
Università di Pisa

Pisa, Italy

milazzo@di.unipi.it

Modular verification is a technique used to face the state explosion problem often encountered in the

verification of properties of complex systems such as concurrent interactive systems. The modular

approach is based on the observation that properties of interest often concern a rather small portion

of the system. As a consequence, reduced models can be constructed which approximate the overall

system behaviour thus allowing more efficient verification.

Biochemical pathways can be seen as complex concurrent interactive systems. Consequently,

verification of their properties is often computationally very expensive and could take advantage of

the modular approach.

In this paper we report preliminary results on the development of a modular verification frame-

work for biochemical pathways. We view biochemical pathways as concurrent systems of reactions

competing for molecular resources. A modular verification technique could be based on reduced

models containing only reactions involving molecular resources of interest.

For a proper description of the system behaviour we argue that it is essential to consider a suitable

notion of fairness, which is a well-established notion in concurrency theory but novel in the field of

pathway modelling. We propose a modelling approach that includes fairness and we identify the

assumptions under which verification of properties can be done in a modular way.

We prove the correctness of the approach and demonstrate it on the model of the EGF receptor-

induced MAP kinase cascade by Schoeberl et al.

1 Introduction

A big challenge of current biology is understanding the principles and functioning of complex biolog-

ical systems. Despite the great effort of molecular biologists investigating the functioning of cellular

components and networks, we still cannot provide a detailed answer to the question “how a cell works?”.

In the last decades, scientists have gathered an enormous amount of molecular level information.

To uncover the principles of functioning of a biological system, just collecting data does not suffice.

Actually, it is necessary to understand the functioning of parts and the way these interact in complex

systems. The aim of systems biology is to build, on top of the data, the science that deals with principles

of operation of biological systems. The comprehension of these principles is done by modelling and

analysis exploiting mathematical means.

A typical scenario of modelling a biological system is as follows. To build a model that explains the

behaviour of a real biological system, first a formalism needs to be chosen. Then a model of the system

is created, simulation is performed, and the behaviour is observed. The model is validated by comparing

the results with the real experiments. The advantage of simulation is not only validation of laboratory

experiments, but also prediction of behaviour under new conditions and automation of the whole process.

Simulation can give either the average system behaviour or a number of possible system behaviours.

This may be insufficient when one is interested in analysing all the behaviours of a system.

Model checking may be of help. This technique permits the verification of properties (expressed as

logical formulae) by exploring all the possible behaviours of a system. This analysis technique typically

relies on a state space representation whose size, unfortunately, makes the analysis often intractable for

realistic models. This is true in particular for systems of interest in systems biology (such as metabolic

pathways, signalling pathways, and gene regulatory networks), which often consist of a huge number of

components interacting in different ways, thus exhibiting very complex behaviours.

Many formalisms originally developed by computer scientists to model systems of interacting com-

ponents have been applied to biology, also with extensions to allow more precise descriptions of the

biological behaviours [2, 4, 6, 9, 18, 19]. Examples of well-established formal frameworks that can be

used to model, simulate and model check descriptions of biological systems are [6, 14, 15].

Model checking techniques have traditionally suffered from the state explosion problem. Standard

approaches to the solution of this problem are based on abstractions or similar model reduction tech-

niques (e.g. [7]). Moreover, the use of Binary Decision Diagrams (BDDs) [8] to represent the state space

(symbolic model checking) often allows significantly larger model to be treated [3].

A method for trying to avoid the state space explosion problem is to consider a decomposition of

the system, and to apply a modular verification technique allowing global properties to be inferred from

properties of the system components. This approach can be particularly efficient when the modelled

systems consist of a high number of components, whereas properties of interest deal only with rather

small subset of them. This is often the case for properties of biological systems. Hence, for each

property it would be useful to be able to isolate a minimal fragment of the model that is necessary

for verifying such a property. If such a fragment can be obtained by working only on the syntax of the

model, the application of a standard verification technique on the semantics of the fragment avoids the

state explosion.

In previous work we developed a modular verification technique in which the system of interest is

described by means of a general automata-based formalism suitable for qualitative description of a large

class of biological systems, called sync-programs, which supports modular construction [11, 12]. Sync-

programs include a notion of synchronization that enables the modelling of biological systems. The

modular verification technique is based on property preservation and allows the verification of properties

expressed in the temporal logic ACTL− to be verified on fragments of models. In order to handle mod-

elling and verification of more realistic biological scenarios, we have proposed a dynamic version of our

formalism along with an extension of the modular verification framework [10].

The long-term aim of our research is the development of an efficient modular verification framework

specifically designed for biochemical pathways, and of a pathway analysis tool based on such a frame-

work. Presently, we are at the first stages of the development of the modular verification framework.

However, we already faced some problems whose solution required the definition of concepts related to

the formal modelling of biochemical pathways and that we believe could be interesting not only in the

context of modular verification. In particular, we defined a notion of fairness for biochemical pathways

and a notion of molecular component of a pathway. The former is a well-known concept in concur-

rency theory that could be useful to describe more accurately the dynamics of a pathway (in a qualitative

framework). The latter is a notion relating species involved in the same pathway such that two species

are considered to be part of the same molecular component if they can be seen as different states of the

same molecule. As far as we know, the adoption of a notion of fairness in the context of biology is new.

On the other hand, the notion of molecular component has been often implicitly used (for instance in

the modelling of biological systems by means of automata), but now we can provide new insight on this

66

notion.

In this paper we report preliminary results obtained during the development of the modular verifica-

tion framework. Modular verification requires either adopting a modular notation for pathway modelling

or finding a way to decompose a pathway, simply expressed as a set of biochemical reactions, into a num-

ber of modules. The approach that we choose to follow is in between these two alternatives. Actually,

we assume the pathway to be expressed as a set of reactions satisfying some modularisation require-

ments, and then we define a modularisation procedure that allows modules to be inferred from reactions.

Modules will be molecular components, hence our modularisation procedure will allow us to consider a

pathway not only as a set of reactions, but also as a set of entities interacting with each other (through

reactions) and consequently changing state.

Once the molecular components of a pathway are identified, we can use them to decompose the

verification of a global pathway property into the verification of a number of sub-properties related

with groups of components. To this aim we define a projection operation that allows a model fragment

describing the behaviour of a group of components to be obtained from a model describing the whole

pathway. Such a projection operation is actually an abstraction function, since the behaviour of the group

of components will be over-approximated (i.e. the model will include behaviours that are not present

in the model of the whole pathway). By considering a suitable temporal logic for the specification

of properties (namely ACTL−, a fragment of the CTL logic consisting only of universally quantified

formulae) we can prove that properties holding in model fragments obtained by projection also hold in

the complete model of the pathway. Nothing can be said, instead, of properties that do not hold in the

the model fragment.

In order to verify properties of complete pathway models or of model fragments it is possible to

translate them into the input language of an existing model checking tool. Specifically, we use the

NuSMV model checker [5], which is a well-established and efficient instrument.

We demonstrate the modular verification approach on the model of the EGF receptor-induced MAP

kinase cascade by Schoeberl et al. [20] and we discuss how we plan to continue the development of the

approach to improve its efficiency.

2 Modelling Biochemical Pathways with a Notion of Fairness

In biochemistry, metabolic pathways are networks of biochemical reactions occurring within a cell. The

reactions are connected by their intermediates: products of one reaction are substrates for subsequent

reactions. Reactions are influenced by catalysts and inhibitors, which are molecules (proteins) which

can stimulate and block the occurrence of reactions, respectively. For the sake of simplicity we do not

consider inhibitors in this paper, although they could be easily dealt with.

2.1 Syntax and semantics of the modelling notation

Given an infinite set of species S, let us assume biochemical reactions constituting a pathway to have the

following form:

r1, . . . ,rn → p1, . . . , pn′ { c1, . . . ,cm }

where r j, p j and c j, for suitable values of j, are all in S. We have that r js are reactants, p js are products

and c js are catalysts of the considered reaction. Given a reaction R we define re(R) = {r1, . . . ,rn},

pro(R) = {p1, . . . , pn′}, and cat(R) = {c1, . . . ,cm}. We denote the set of species involved in reaction R as

species(R) = re(R)∪pro(R)∪ cat(R).

67

A pathway P is simply a set of reactions, P = {R1, . . . ,RN}. Given a pathway P, we can infer the set

of species involved in it as species(P) =
⋃

R∈P species(R).
The dynamics of a pathway can be described at several different levels of abstraction. The most

precise level consists of a quantitative description in which quantities (or concentrations) of species are

taken into account, as well as reaction rates in either a deterministic or a stochastic framework. At a

more abstract level reaction rates can be ignored. Ultimately, also quantities of species can be ignored

by considering only their presence (or absence) in the considered biochemical solution. The less abstract

description level is obviously the most precise, but also the most difficult to treat with formal analysis

techniques. The more abstract levels are more suitable for the application of formal analysis techniques

and are often precise enough to provide some information on the role of the species and of the reactions

involved in the pathway. We choose to adopt the most abstract description level, and hence we define a

qualitative formal semantics of pathways in which species can only be either present or absent.

The dynamics of a pathway starts from an initial state representing a biochemical solution and is

determined by the reactions. A reaction essentially causes the appearance of some new species in the

biochemical solution. Actually, we choose to interpret the effect of a reaction depending on whether

it is catalysed or not. In our interpretation a reaction without catalysts creates the products but does

not consume the reactants. We choose this interpretation since non-catalysed reactions usually reach a

steady-state of dynamic equilibrium in which both reactants and products are present in the biochemical

solution. On the other hand, a reaction favoured by catalysts usually tends to be performed as long

as there are reactants. Therefore, in our interpretation a reaction with catalysts creates the products

and consumes the reactants. This choice implies that a reversible reaction in which both directions are

catalysed, which frequently occurs in biological pathways, oscillates between two states. This is realistic

in some cases (oscillatory behaviours) but not always. We leave a more detailed treatment of this aspect

as future work.

Lastly, we assume that all of the catalysts are required to be present in order for the reaction to

occur. Alternative combinations of catalysts that may enable the reaction should be modelled as different

reactions having the same reactants and products.

Formally, given a pathway P and a set s0 ⊆ species(P) representing species present in the initial state

of the system, the semantics of P is given by the labelled transition system (P(species(P)),s0,→R),
where P(species(P)) is the powerset of the set of species of P, meaning that each state of the LTS

is a configuration of the pathway indicating which species are present. We use the boldface notation,

e.g. s to denote states in the semantics, while a simple s denotes a species which means either a reactant,

a product or a catalyst. Furthermore, →R: P(species(P))×P×P(species(P)) is the least transition

relation satisfying the following inference rules

re(R)⊆ s, pro(R) 6⊆ s, /0 6= cat(R)⊆ s

s
R
−→ (s \ re(R))∪pro(R)

(cat)
re(R)⊆ s, pro(R) 6⊆ s, cat(R) = /0

s
R
−→ s∪ pro(R)

(no-cat).

Rules (cat) and (no-cat) formalise the dynamics of reactions in the presence and absence of catalysts,

respectively. Both rules contain an assumption which states that the reaction does not occur if its products

already exist. Note that thanks to this optimisation transitions that do not change the state of the system

are excluded, which is convenient for the verification as the size of the transition system is smaller but

the set of properties that hold stays the same. We denote the semantic function as LTS, i.e. LTS : P 7→
(P(species(P)),s0,→R).

A path in LTS(P) can be either a finite sequence s0,R0,s1,R1, . . . ,sn or an infinite sequence s0,R0,

s1,R1, . . . where for all i, si is a state and Ri is a reaction and si
Ri−→ si+1 is a transition in LTS(P). The

68

path consisting only of the initial state s0 is denoted ε . In this paper we consider only maximal paths,

corresponding to behaviours of the pathway in which as long as some reactions can occur, the pathway

activity does not halt. It is worth noting that maximal paths are not necessarily infinite, as a state where

no reactions can occur has no successor and a path leading to such a state is finite.

2.2 Fairness

In order to describe the behaviour of a pathway more accurately we consider a notion of fairness. We

motivate it by considering a quantitative system consisting of four reactions A
k1−→ B {D }, B

k2−→ A {D },

A
k3−→ C { D } and C

k4−→ A { D }, where k1, k2, k3 and k4 are the reaction rates. By performing the

qualitative abstraction, we get a pathway containing reactions R1 =A → B {D } and R2 =B → A {D },

R3 = A → C { D } and R4 = C → A { D }, whose semantics as defined above includes behaviours

such as the one where R3 never occurs. Such a behaviour is a qualitative abstraction which is not correct,

since the standard quantitative dynamics ruled by the law of mass action would imply that both R1 and

R3 occur with a frequency proportional to their kinetic rates. Actually, in a stochastic setting both R1

and R3 would infinitely occur with probability 1. A correct qualitative abstraction of our system should

therefore only include maximal paths in which both R1 and R3 occur infinitely many times.

A concept from concurrency theory that allows to specify the correct behaviour is fairness, which

stipulates that reactions should compete in a fair manner. We consider the well-known notion of strong

fairness [13], also called compassion, which requires that if a reaction is enabled (ready to occur) in-

finitely many times, then it will occur infinitely many times.

Technically, fairness is specified by a linear temporal logic (LTL) formula. LTL [17] is built up from

formulae over a finite set of atomic propositions S, therefore a s ∈ S is a LTL formula and if f and g are

LTL formulae, then so are ¬ f , f ∨g, X g and f U g where X is read as next and U as until. Additional

logical operators can be defined, true = s∨¬s, false = ¬true, f ∧g = ¬(¬ f ∨¬g) and f → g = ¬ f ∨g,

additional temporal operators eventually F g = true U g and globally G g = ¬F ¬g. A LTL formula can

be satisfied by a maximal path π in LTS(P) as described by the satisfaction relation �LTL: π �LTL s if

π= s,R,π′, π�LTL ¬g if not π�LTL g, π�LTL f ∨g if π�LTL f or π�LTL g, π�LTL X g if π= s,R,π′ and

π′ �LTL g, and finally π�LTL f U g if there is an i ≥ 0 such that π= s0,R0,s1,R1, . . . and si,Ri,πi �LTL f

and forall 0 ≤ k < i, sk,Rk,πk �LTL g.

Fairness is expressed by formula Φ, and a maximal path π is fair iff it satisfies Φ, i.e. π�LTL Φ. We

have

Φ ⇐⇒
∧

R∈P

(GF enabled(R)→ GF occurred(R))

where enabled(R) ⇐⇒ ((
∧

r∈re(R) r)∧ (
∨

p∈pro(R)¬p)∧ (
∧

c∈cat(R) c)) and the satisfaction of proposition

occurred(R) is defined as π′ �LTL occurred(R) iff there is a path π such that π= s,R,π′.

It should be noted that our fairness neither requires all reactions to occur infinitely nor requires fair

paths to be infinite.

2.3 Modelling the EGF receptor-induced MAP kinase cascade

We apply our modular verification approach to a well-established computational model of the EGF sig-

nalling pathway. We consider the model of the MAP kinase cascade activated by surface and inter-

nalised EGF receptors, proposed by Schoeberl et al. in [20]. This model includes a detailed description

of the reactions that involve active EGF receptors and several effectors named GAP, ShC, SOS, Grb2,

RasGDP/GTP and Raf. Moreover, the model describes the activity of internalised receptors, namely

69

receptors that are no longer located on the cell membrane, but on a vesicle obtained by endocytosis and

floating in the cytoplasm. Such internalised receptors continue to interact with effectors and to contribute

to the pathway functioning, but actually the pathway can be seen as composed by two almost identical

branches: the first consisting of the reactions stimulated by receptors on the cell membrane and the

second consisting of reactions stimulated by internalised receptors.

A diagram representing all of the reactions of the pathway considered in the model is shown in

Figure 1. In the figure, species are identified by a short name, but also by a number (in black) in the

interval [1−60]. Arrows represent reactions, which are also associated with an identifier (in grey) in the

interval [v0− v101]. Note that the two branches of the pathway are partially combined in the figure. In

particular, the representation of most of the species is combined with the representation of its internalised

counterpart. In such cases, the number between brackets denotes the number identifying the internalised

species. The same holds for reactions: in many cases an arrow denotes both a reaction stimulated by

receptors in the cell membrane and the corresponding reaction stimulated by internalised receptors.

The set of reactions constituting the pathway can be trivially reconstructed from the diagram in Figure

1. The only non-trivial aspect is related with the presence in the diagram of some reactions in which one

reactants is actually acting as a catalyst. For instance, this happens in the case of the reactions involving

Raf∗ and MEK, in which Raf∗ initially binds MEK and then releases it phosphorylated. We describe

these two reactions in the diagram with the following single catalysed reaction:

MEK → MEK-P { Raf∗ }

Other species acting as catalysts are MEK-PP, Phosphatase1, Phosphatase2 and Phosphatase3. By

applying the same transformation also to the reactions they are involved in we obtain a pathway consti-

tuted by 80 reactions. We call this pathway PEGF.

We recall that fairness requires that a reaction that is infinitely often enabled is also infinitely often

performed. This prevents starvation situations to happen among reactions. In the case of PEGF the two

branches of the pathway include reactions that could be involved in infinite loops (e.g. the reactions

involving MEK and ERK). This means that the semantics of the pathway includes behaviours in which

only one branch executes forever even if the other is constantly enabled. Such unrealistic behaviours are

excluded by the adoption of fairness.

3 Identification of Molecular Components

In this section we argue, that under conditions often found in practice, a pathway can be decomposed into

components, which, as it will be shown in the following sections, can be used for modular verification.

3.1 Assumptions

Intuitively, a species can be seen as a part of a “state” or “configuration” of a more general system

component, and a reaction can be seen as a synchronised state change of a set of such system components.

In order to view a pathway through this optics, it is convenient to assume that the pathway has equal

number of reactants and products (which is not the case in general). Moreover, we assume a positional

correspondence between the reactants and the products, in particular we assume that product p j is the

result of the transformation of reactant r j by the reaction. In our experience, it is usually possible to

translate a reaction of a pathway into such a “normal form”. Reactions of cellular pathways very often

represent bindings (and unbindings) of well-defined macromolecules, such as proteins and genes, to

70

Figure 1: Scheme of the EGF receptor-induced MAP kinase cascade [20]

71

form (or to break) complexes either with other macromolecules or with small molecules such as ions

and nutrients. Also conformational changes are common, in which a protein (or a complex constituted

by a few proteins) changes its own “state”. If we consider a complex not as a single entity, but as a

combination of macromolecules we have that all of the mentioned kinds of reaction do not change the

number of (macro)molecules in the system. Hence, it should be possible to model them with the reactions

in the form we assume here. For the moment we leave the translation of reaction into the assumed form

to the modeller.

In Section 2.1 we have introduced the syntax of the modelling formalism of biochemical pathways,

in which a reaction is allowed to have a different number of reactants and products.

3.2 Components identification

Let us, thus, assume that the pathway P consists of reactions in the following form:

r1, . . . ,rn → p1, . . . , pn { c1, . . . ,cm }.

Such a form enables us to identify a set of components I that constitute the pathway. Now we present an

algorithm that given a pathway P returns the set of components I along with the partition of the set of

species belonging to respective components.

We illustrate the intuitive idea on an example. Each reaction can be seen as a synchronisation of

components. For example reaction r1,r2 → p1, p2 { c } can be interpreted as a synchronisation of

three components: one that changes its state from a state where r1 holds into a state where p1 is present

and r1 is not, another component that changes its state from a state where r2 holds to a state where p2

is present and r2 is not, and a component which participates passively and stays in a state where c is

present. Since we suppose that only one reaction takes place at a time in the whole system, the states

of all the components do not change other than those involved in the reaction in the way we described.

From the example we can see that species r1 and p1 belong to the same component. Similarly r2 belongs

to the component that contains p2, while c is from a separate one.

The algorithm follows. We start by assuming that each species belongs to a different component and

we refine this assumption by iterating over the reactions constituting P. The result of the algorithm is a

mapping map assigning each species to its component.

Algorithm 1 Algorithm to partition species into different components

Let map : S 7→ I be an injective mapping

for all R in P do

for all r j in re(R) do

map :=

{

p 7→ map(r j) ∀p ∈ {s ∈ S | map(s) = map(p j)}

s 7→ map(s) otherwise

end for

end for

return map

The algorithm updates the mapping by unifying the elements assigned to reactants and products in

the same position in a reaction, and this is done for all reactions in the pathway.

The set of components comp(P) = I of pathway P is the image of mapping map. Components of a

reaction R denoted, using the same notation, as comp(R) are defined as comp({R}).

72

3.3 Initial state

We adopt a semi-automatic heuristic procedure to find an initial state of the pathway. The idea is the

following: for each species s in species(P), if there is no reaction creating it (i.e. if s 6∈
⋃

R∈P pro(R)) then

in the initial state s is present. This means that species that cannot be produced are assumed to be present

in the initial state. Otherwise their presence in the model would not be meaningful. Subsequently, we

resort again to the partitioning of species according to components to find other species to be inserted.

In particular, we find those components containing no species present in the previous phase. These

components must contain loops, hence we choose manually some of their species to insert. All other

species are assumed absent.

3.4 Visualisation of component interaction

A component interaction graph can be drawn which visualises the components of a pathway and their

interactions. It is a directed graph in which vertices are system components (elements of I) and edges

connect components that are involved together in a reaction. If two components are both involved as

reactants (and consequently products), the edge connecting them will not be oriented (displayed as bidi-

rectional). If one of the two is involved as reactant and the other as catalyst, then the edge will start from

the vertex representing the latter to the vertex representing the former. There is no edge between vertices

representing components involved in the same reactions only as catalysts.

3.5 The model

The model PEGF is made up of 143 species and 80 reactions. It is in the correct form assumed in

Section 3.1 and no preprocessing is needed. After performing the components identification procedure,

14 components are identified. On Figure 2 we can see the component interaction graph of PEGF. Each

node of the graph is labelled by the intuitive name of the component that we have chosen.

Visually, we can do some simple observations on the component interaction graph. We can identify

enzymes like Phosphatase1, Phosphatase2 and Phosphatase3. We can see the first part of the pathway

corresponding to the EGF receptor and its interaction with effectors, and its connection to the MAP

kinase cascade through the component RasGDP.

EGF

EGFi

EGFR

GAP

Shc

RasGDP

Grb2

Sos

Phosphatase1Raf

MEK

ERK

Phosphatase2

Phosphatase3

Figure 2: Component interaction graph of PEGF

73

4 Modular Verification

In this section we define a modular verification technique for pathway models. We proceed by defining

the projection of a pathway with help of the identified components. Such a projection can be seen as an

abstraction, giving rise to abstract pathways. We prove that a successful verification of a property in the

abstraction implies its truth in the original model.

4.1 Abstract pathways: syntax, semantics and fairness

We are interested in analysing only a portion of the entire pathway, in particular a portion induced by

only a subset of all components. Let I = comp(P) and J ⊆ I, we define the projection of a pathway P

onto J as an abstract pathway P↾J.

We will need an extension of function species, abusing the notation, which operates on a component

set: species(J) = {s ∈ species(R) | R s.t. comp(R)∩ J 6= /0}.

Definition 1. An abstract pathway P↾J is a pair (PR,AR), where

• PR = {R ∈ P | comp(R)⊆ J}

• AR =
⋃

R∈P, comp(R)∩J 6= /0
comp(R)∩(I\J) 6= /0

{re(R)↾J → pro(R)↾J { cat(R)↾J }, re(R)↾J → re(R)↾J { cat(R)↾J }}

where the projection of a set of species u ⊆ S is defined as u↾J = {s ∈ u | s ∈ species(J)}.

An abstract pathway consists of two sets of of reactions: PR contains reactions which influence only

components inside J, and AR contains projections of reactions that influence components both inside and

outside J. Reactions in PR are exactly as in P, since all of the species involved in such reactions are

considered in the abstract pathway. On the other hand, reactions in AR are obtained from the reactions

in P which involve species both from some components in J and from some components not in J. For

each of such reactions in P we have two reactions in AP: one describing the situation in which species

not in species(J) are assumed to be configured such that the reaction can occur, and the other describing

the opposite situation. In the first case the reaction in AR produces some products; in the second case the

reaction in AR performs a self-loop (i.e. it does not change the state).

The abstract pathway semantics is defined as LTSα : P↾J 7→ LTS(PR ∪ AR), that is by using the

standard semantics LTS on the projected reactions in both PR and AR.

What changes with respect to the pathway model is the definition of fairness. In fact, in this case

fairness constraints can be applied only to reactions in PR since reactions in AR consist of pairs of

reactions always applicable at the same time and in which it is reasonable to assume that one of the two

is always preferred (describing the situation in which the corresponding reaction in R is always enabled

or disabled). We define the notion of abstract fairness as

Φα ⇐⇒
∧

R∈PR

(GF enabled(R)→ GF occurred(R)).

Here the compassion is only required for reactions from PR.

Note that a pathway is a special case of abstract pathway, since the semantics of P is equivalent

(isomophic) to that of P↾I and in this case also Φ≡ Φα holds.

74

4.2 Logic for specifying properties

Properties of pathways are specified in temporal logic with species as atomic propositions.

The logic we consider is a fragment of the Computation Tree Logic CTL. Following Attie and Emer-

son [1], we assume the logic ACTL− for specification of properties. ACTL is the “universal fragment”

of CTL which results from CTL by restricting negation to propositions and eliminating the existential

path quantifier and ACTL− is ACTL without the AX modality.

Definition 2. The syntax of ACTL− is defined inductively as follows:

• The constants true and false are formulae. s and ¬s are formulae for any atomic proposition s,

where the set of atomic propositions AP are the set of all species S.

• If f ,g are formulae, then so are f ∧g and f ∨g.

• If f ,g are formulae, then so are A[f U g] and A[f Uw g].

We define the logic ACTL−
J to be ACTL− where the atomic propositions are drawn from APJ =

species(J). Abbreviations in ACTL−: AFf ≡ A[true U f] and AG f ≡ A[f Uw false].

Properties expressible by ACTL− formulae represent a significant class of properties investigated in

the systems biology literature as identified in [16], such as properties concerning exclusion (“It is not

possible for a state s to occur”), necessary consequence (“If a state s1 occurs, then it is necessarily

followed by a state s2”), and necessary persistence (“A state s must persist indefinitely”).

On the other hand, properties as occurrence, possible consequence, sequence and possible persistence

are of inherently existential nature, and are not expressible in ACTL−.

Definition of the semantics of ACTL− formulae on labelled transition system LTS(P) follows. Note

that only fair maximal paths are considered.

Definition 3. Semantics of ACTL−. We define LTS(P),s �Φ f (resp. LTS(P),π�Φ f) meaning that f is

true in structure LTS(P) at state s (resp. fair maximal path π). We define �Φ inductively:

• LTS(P),s �Φ true. LTS(P),s 6� false. LTS(P),s �Φ s iff s(s) = tt. LTS(P),s �Φ ¬s iff s(s) = ff .

• LTS(P),s �Φ f ∧g iff LTS(P),s �Φ f and LTS(P),s �Φ g.

LTS(P),s �Φ f ∨g iff LTS(P),s �Φ f or LTS(P),s �Φ g.

• LTS(P),s �Φ A f iff for every fair maximal path π= (s,R, . . .) in LTS(P) : LTS(P),π�Φ f .

• LTS(P),π�Φ f iff LTS(P),s �Φ f , where s is the first state of π

• LTS(P),π�Φ f ∧g iff LTS(P),π�Φ f and LTS(P),π�Φ g.

LTS(P),π�Φ f ∨g iff LTS(P),π�Φ f or LTS(P),π�Φ g.

• LTS(P),π�Φ f U g iff π= (s0,R0,s1,R1, . . .) and there is m ∈ N such that LTS(P),sm �Φ g

and for all m′ < m : LTS(P),sm′ �Φ f .

• LTS(P),π�Φ f Uw g iff π= (s0,R0,s1,R1, . . .) and for all m ∈N, if LTS(P),sm′ 6� g

for all m′ < m then LTS(P),sm �Φ f .

We assume �Φα to be defined as �Φ, but with abstract fairness Φα replacing Φ.

75

4.3 Modular verification theorems

Now we prove that in order to verify an ACTL−
J property for a pathway P, it is enough to verify the

same property in the abstract semantics of the abstract pathway P↾J. The principle behind property

preservation is that each path in the semantics of the modelled pathway must have a corresponding

abstract path in the abstract semantics of a model obtained by projection. This, combined with the fact

that ACTL− properties are universally quantified (namely describe properties that have to be satisfied by

all paths) ensure that if an ACTL− property holds in the abstract semantics of the projection, then it will

also hold in the semantics of the orginal model. In fact, for the components considered in a projection

the semantics of the original model will contain essentially a subset of the paths of the projected model.

ACTL− properties are universally quantified, namely they they deal with all paths starting form a

given initial state, and the fact that all original paths (more precisely their projections) are included

amongst the paths of the projection. Thus if one proves that the property holds in the projection for all

paths it will hold for all paths also in the original system.

First we define the path projection, which from a path in semantics of a pathway with the set of

components I removes transitions made by components outside of portion J ⊆ I and restricts the rest of

transitions onto J.

Definition 4.

π⌈J =











ε if π= ε
π′⌈J if π= s,R,π′ and comp(R)∩ J = /0

s⌈J,R,π′⌈J if π= s,R,π′ and comp(R)∩ J 6= /0

Follows the infinite path projection which ensures that the resulting traces are infinite. In case of a

finite original trace it adds an infinite looping in the final state.

Definition 5. Given π⌈J with initial state s0 we define π⌈∞
J = π⌈J if π⌈J is infinite, otherwise if π⌈J =

s0,R0, . . . ,sn−1,Rn−1,sn we define π⌈∞
J = π⌈J,(∗,sn)

∞, where (R,s)∞ = R,s,(R,s)∞. We denote ε⌈∞
J =

s0,(∗,s0)
∞ as ε∞.

Now we are in the position to present the crucial result, which states that a fair maximal path in the

semantics of a pathway is either projected or infinitely projected into an abstractly fair maximal path in

the abstract semantics of an abstract pathway. It is split in two lemmas, where the first one states that at

least one of the projections is present as a maximal path in the abstract semantics. The second lemma

proves the abstract fairness of the projections.

Lemma 1. π∈ LTS(P) implies (π⌈J ∈ LTSα (P↾J) or π⌈∞
J ∈ LTSα (P↾J)).

Proof. We prove a stronger statement, namely π∈ LTS(P) with initial state s implies (π⌈J ∈ LTSα (P↾J)
with initial state s⌈J or π⌈∞

J ∈ LTSα (P↾J) with initial state s⌈J). We proceed by induction on path π.

Case π= ε . We have that π⌈J = ε and π⌈∞
J = ε∞. Since π= ε , the initial state s0 is such that no

reaction is enabled in s0. By the definition of abstract pathway semantics we know that the initial state

of LTSα (P↾J) is s0⌈J. Let R be any reaction from P, we consider three cases:

• comp(R)∩ J = /0: R is not in P↾J, thus ε = π⌈J ∈ LTSα (P↾J).

• comp(R) ⊆ J: R is in P↾J but by contradiction we have that R is not enabled in s0⌈J, thus ε =
π⌈J ∈ LTSα (P↾J).

• comp(R)∩ J 6= /0 and comp(R)∩ (I \ J) 6= /0: in P↾J are the following two reactions

R1 = re(R)↾J → pro(R)↾J { cat(R)↾J }
R2 = re(R)↾J → re(R)↾J { cat(R)↾J }

76

Cases:

– s0⌈J 6⊇ re(R)↾J∪cat(R)↾J: none of R1 and R2 are enabled in s0⌈J, thus ε =π⌈J ∈ LTSα (P↾J).

– s0⌈J ⊇ re(R)↾J ∪ cat(R)↾J and s0⌈J 6⊇ pro(R)↾J: both R1 and R2 are enabled in s0⌈J, from

the latter we have ε∞ = π⌈∞
J ∈ LTSα (P↾J).

– s0⌈J ⊇ re(R)↾J∪cat(R)↾J∪pro(R)↾J: R1 is not enabled in s0⌈J, but is R2 is and since it does

not change the state it will be enabled forever, thus ε∞ = π⌈∞
J ∈ LTSα (P↾J).

Case π = s,R,π′. We have that π⌈J = s⌈J,R,π′⌈J and π⌈∞
J = s⌈J,R,π′⌈∞

J. We distinguish two

cases:

• comp(R)∩ J = /0: s′ is the initial state of π′, so by induction hypothesis s′⌈J is the initial state of

either π′⌈J or π′⌈∞
J. Moreover, state s⌈J = s′⌈J then s⌈J is the initial state of either π′⌈J or π′⌈∞

J,

which means that either π′⌈J = π⌈J ∈ LTSα (P↾J) or π′⌈∞
J = π⌈∞

J ∈ LTSα (P↾J).

• comp(R)∩ J 6= /0: s′ is the initial state of π′, so by induction hypothesis s′⌈J is the initial state

of either π′⌈J or π′⌈∞
J. Moreover, in P↾J there are R1 and R2 as above. R1 is enabled in s⌈J.

Therefore either s⌈J,R,π′⌈J = π⌈J ∈ LTSα (P↾J) of s⌈J,R,π′⌈∞
J = π⌈∞

J ∈ LTSα (P↾J).

In all the cases we have that π⌈J ∈ LTSα (P↾J) or π⌈∞
J ∈ LTSα (P↾J), which concludes the proof of the

lemma.

Now we state and prove the second lemma.

Lemma 2. π�LTL Φ implies π⌈J �LTL Φα and π⌈∞
J �LTL Φα .

Proof. Suppose that π �LTL Φ, i.e. π �LTL

∧

R∈P(GF enabled(R) → GF occurred(R)). Let J ⊆ I and

P↾J = (AR,PR). We want to prove that π⌈J �LTL Φα , that is π⌈J �LTL

∧

R∈PR(GF enabled(R) →
GF occurred(R)) This holds because of two facts (1) and (2) that can be easily checked: for any re-

action R from PR

• s �LTL enabled(R) implies s⌈J �LTL enabled(R) (1)

• s �LTL occurred(R) implies s⌈J �LTL occurred(R) (2)

Analogously π⌈∞
J �LTL

∧

R∈PR(GF enabled(R)→ GF occurred(R)).

Finally, the property preservation theorem states that a successful verification of a property in the

abstraction implies its truth in the original model.

Theorem 3. For a pathway P and a J ⊆ I where I is the component set of P and f an ACTL− formula

we have LTSα (P↾J) �Φα f implies LTS(P) �Φ f .

Proof. By induction on the structure of f (for all s).

f = s. By definition of state projection and the fact that APRs are pairwise disjoint, for all atomic

propositions s from APJ we get that LTSα (P↾J),s⌈J �Φα s iff LTS(P),s �Φ s. Analogously for f = ¬s.

f = g∧ h. From the assumption LTSα (P↾J),s⌈J �Φα g∧ h by CTL semantics, LTSα (P↾J),s⌈J �Φα

g and LTSα (P↾J),s⌈J �Φα h. By induction hypothesis LTS(P),s �Φ g and LTS(P),s �Φ h. Hence,

LTS(P),s �Φ g∧h. Case f = g∨h is proved analogously.

f = A[g Uw h]. Let π be an arbitrary fair maximal path starting in s. We establish LTS(P),π �Φ
[g Uw h]. By Lemma 1 at least one of π⌈J or π⌈∞

J is a path in LTSα (P↾J), and by Lemma 2 both are

abstractly fair.

Let us suppose first that π⌈J is the abstractly fair maximal path in LTSα (P↾J). Hence by the assump-

tion LTSα (P↾J),π⌈J �Φα [g Uw h]. There are two cases:

77

1. LTSα (P↾J),π⌈J �Φα G g. Let t be any state along π. By CTL semantics LTSα (P↾J), t⌈J �Φα g.

By induction hypothesis we have LTS(P), t �Φ g. Since t was an arbitrary state of π, we get

LTS(P),π�Φ G g and thus LTS(P),π�Φ g Uw h.

2. LTSα (P↾J),π⌈J �Φα [g U h]. Let sm′′

J be the first state along π⌈J that satisfies h. Then there is

at least one state sm′′
along π such that sm′′

⌈J = sm′′

J . Let sm′
be first such state. By induction

hypothesis LTS(P),sm′
�Φ h. From the definition of path projection any sm with m < m′ projects

to sm⌈J that is before sm′

J in π⌈J. By the assumption LTSα (P↾J),s
m⌈J �Φα g, hence by induction

hypothesis LTS(P),sm �Φ g. By CTL semantics we get LTS(P),π�Φ g U h.

In both cases we showed LTS(P),π�Φ g Uw h. Since π was arbitrary fair maximal path starting in s, we

conclude LTS(P),s �Φ A[g Uw h].
The reasoning for the case in which the abstractly fair maximal path in LTSα (P↾J) is π⌈∞

J is analo-

gous to the considered case.

f = A[g U h]. Let π be an arbitrary fair maximal path starting in s. By Lemmas 1 and 2 we have that

π⌈J or π⌈∞
J is a fair maximal path in LTSα (P↾J) and by the assumption LTSα (P↾J),π⌈J �Φα [g U h] or

LTSα (P↾J),π⌈∞
J �Φα [g U h]. By the above case we get LTS(P),s �Φ A[g U h].

5 Experiments

In this section we exploit the NuSMV model checker to perform some experiments on the model of the

EGF pathway. To carry out the projection and encode the resulting abstract pathway in the NuSMV

format we have developed a tool (available upon request).

The first experiment is aimed at showing how modular verification could be applied to verify a

global property of the pathway, namely that the final product of the pathway is always produced. This

can be done in a modular way by proving sub-properties in three different model fragments obtained by

projection.

Subsequently, a number of experiments are performed with the aim of showing how the molecular

components we identified in the pathway can be used to better understand the pathway dynamics. In

particular, we check whether there are some molecular components that are not really necessary to obtain

the final product of the pathway. This will be done by applying model checking on models in which

molecular components are selectively disabled by setting their initial states to false. Also in this case the

modular verification approach is adopted.

In this case study modular verification allows properties to be verified faster than on the complete

model. However, modular verification is still not significantly more efficient than verification on the

complete model. This is due to the projection operation we are considering at the moment, which is

rather rough. In Section 6 we discuss why this modular verification is a promising approach for the

analysis of pathways, and how we plan to improve the approach to make it substantially more efficient.

To run the experiment we used NuSMV 2.5.4 on a workstation equipped with an Intel i5 CPU 2.80

Ghz, with 8GB RAM and running Ubuntu GNU/Linux. In order to make verification faster NuSMV

was executed in batch mode by enabling dynamic reordering of BDD variables and by disabling the

generation of counterexamples.

5.1 Modular verification of a global property

The final product of the MAP kinase cascade activated by surface and internalised EGF receptors is

species ERK-PP. Since surface and internalised receptors activate two different branches of the pathway,

78

we denote by ERK-PP the product of the branch activated by the surface receptors and by ERK-PPi the

product of the branch activated by the internalised receptors.

The property to be verified is

AF(ERK-PP∨ERK-PPi) (1)

The property holds in the complete model and its verification required 260 seconds. By looking at

the diagram in Figure 1 we noticed that the pathway could be partitioned in three parts, with two species

acting as “gates”. These two species are (EGF-EGFR∗)2-GAP and Raf∗. Hence, we decided to try to

apply modular verification by splitting property 1 into the following three sub-properties:

AF((EGF-EGFR∗)2-GAP) (2)

AG((EGF-EGFR∗)2-GAP → (AF Raf∗)) (3)

AG(Raf∗ → AF(ERK-PP∨ERK-PPi)) (4)

Property (2) states that in all paths of the system a state in which species (EGF-EGFR∗)2-GAP is

present is eventually reached. Property (3) states that whenever a state is reached in which species

(EGF-EGFR∗)2-GAP is present, then a state in which Raf∗ is present is eventually reached. Finally,

property (4) states that whenever a state is reached in which in which species Raf∗ is present, then a state

in which either ERK-PP or ERK-PPi is present is eventually reached. It is easy to see that the conjunction

of (2), (3) and (4) implies (1).

We considered three projections of the complete model to be used to verify properties (2), (3) and

(4), respectively. In particular, from the component interaction graph of the model (shown in Figure 2)

we extracted the following subsets to be used for projections:

• in order to verify (2) we considered the subset J1 consisting of components EGF, EGFi, EGFR

and GAP;

• in order to verify (3) we considered the subset J2 consisting of components EGFR, GAP, Shc,

RasGDP, Grb2 and Sos;

• in order to verify (4) we considered the subset J3 consisting of components RasGDP, Raf , MEK,

ERK, Phosphatase1, Phosphatase2 and Phosphatase3.

We obtained that (2), (3) and (4) hold in the abstract semantics of the abstract pathways P↾J1, P↾J2

and P↾J3, respectively. Moreover, model checking required less than three seconds for (2), 213 seconds

for (3) and less than one second for (4). Overall, modular verification required 217 seconds, that is 43

seconds less than verification on the complete model.

5.2 Reasoning on molecular components

As it can be seen in the component interaction graph and in the diagram in Figure 1, some molecular

components are involved in complex interactions. This is true in particular for components EGFR, GAP,

RasGDP, Sos, Shc and Grb2 which form a clique in the component interaction graph. We are interested

in understanding whether all of these components are really necessary in order to obtain the final products

of the pathway. The idea is to test whether the final species are produced when the components of interest

are assumed one by one as disabled. Molecular components EGFR and RasGDP are for sure necessary

since they connect the clique with the other molecular components of the pathway. Consequently, we

focus our analysis on GAP, Sos, Shc and Grb2.

In order to disable a molecular component we consider as absent all of its species in the initial state of

the systems. Hence, we consider a set of four (complete) models, each with one of the four components

79

Verification complete model Modular Verification

Disabled component Property Result Time Property Result Time Total time

none (1) true 260s

(2) true 3s

(3) true 213s 217s

(4) true 1s

GAP (1) false 252s (2),(5) false,true 2s 2s

Sos (1) false 253s
(2) true 3s

210s
(3),(6) false,true 207s

Shc (1) true 252s

(2) true 3s

212s(3) true 208s

(4) true 1s

Grb2 (1) false 253s
(2) true 3s

211s
(3),(6) false,true 208s

Table 1: Model checking results and comparison of verification times

under study disabled. On each model we try to verify property (1): if the property does not hold, then

the component that is disabled in such a model is necessary for the pathway; on the other hand, if the

property holds, then the component turns out to be not necessary since the products of the pathway can

be obtained even without it. The same tests can be also done in a modular way by decomposing the

pathway and the property as in Section 5.1.

In Table 1 we summarise the property verification results and compare verification times obtained

by model checking the complete models and by following the modular approach. The first row of data

in the table reports verification results in which no component is disabled (as in Section 5.1). The other

results show that Shc is not a necessary component, whereas all of the other three are. As previously, the

time required by modular verification is smaller than the one required by model checking the complete

model. This is true in particular in the case in which GAP is disabled since property (2), the verification

of which is very fast, turns out to be false.

Note that in the case of modular verification of the models in which GAP, Sos and Grb2 were disabled

we needed to verify some additional properties. In particular, in the case of GAP we have that property

(2) does not hold in the abstract semantics of P↾J1, and in the cases of Sos and Grb2 property (3) does

not hold in the abstract semantics of P↾J2. We remark that our modular verification approach guarantees

only that properties proved to hold in a model fragment also hold in the complete model. Nothing can be

said, instead, of properties that does not hold in the model fragments. In order to avoid applying model

checking on the complete model to check whether these properties hold there, we consider some new

properties whose satisfaction in suitable model fragments implies that properties (2) and (3) actually do

not hold. In order to prove that (2) is actually false when GAP is disabled we consider the following

property:

AG(¬(EGF-EGFR∗)2-GAP) (5)

In order to prove that (3) is actually false when either Sos or Grb2 is disabled we consider the following

property:

AG(¬Raf∗) (6)

Note that it is convenient to verify properties (5) and (6) together with (2) and (3), respectively. This

avoids spending twice the time needed by the model checker to construct the data structure necessary

80

to perform the verification. In the case of our experiments the construction of such data structures takes

usually the 98%-99% of the verification time. Times reported in Table 1 are based on this optimisation.

6 Discussion and conclusions

In this paper we presented preliminary results in the development of a modular verification framework

for biochemical pathways. We defined a modelling notation for pathways associated with a formal

semantics and a notion of fairness that allows the dynamics to be accurately described by avoiding

starvation situations among reactions. Moreover, we investigated a notion of molecular component of a

pathway and we provided a methodology to infer molecular components from pathways the reactions of

which satisfy some assumptions. Molecular components were then used by a projection operation that

allows abstract pathways modelling an over-approximation of the behaviour of a group of components

to be obtained from a pathway model. The fact that a property expressed by means of the ACTL− logic

holds in an abstract pathway was shown to imply that they hold also in the complete pathway model.

This preservation is at the basis of the modular verification approach which was demonstrated on a well-

established model of the EGF pathway.

The results of experiments given in Section 5 show that our modular verification approach allows

properties to be verified in a shorter time than in the case of verification of the complete pathway model.

However, in most of the cases the time saved was relatively small (∼ 15%). We believe that the cause

of this limited gain in efficiency is due to the projection operation we are considering at the moment,

which is still somewhat rough. Our plan to improve efficiency is to define a projection operation that

combines the current one (that essentially removes some molecular components from the model) with

another that somehow minimises the description of components not removed by the model, but whose

role in the property to be verified is marginal. In the case of the considered case study this would allow,

for example, to reduce the size of the model of the components constituting the clique in the component

interaction graph in Figure 2 by focusing on components EGFR and RasGDP, and by minimising the

description of components GAP, Shc, Sos and Grb2. This would allow for a significant improvement in

modular verification efficiency.

References

[1] Paul C. Attie & E. Allen Emerson (1998): Synthesis of Concurrent Systems with Many Similar Processes.

ACM Transactions on Programming Languages and Systems 20(1), pp. 51–115.

[2] Roberto Barbuti, Andrea Maggiolo-Schettini, Paolo Milazzo & Angelo Troina (2006): A Calculus of Looping

Sequences for Modelling Microbiological Systems. Fundamenta Informaticae 72(1-3), pp. 21–35.

[3] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill & L. J. Hwang (1992): Symbolic

Model Checking: 1020 States and Beyond. Information and Computation 98(2), pp. 142–170.

[4] Luca Cardelli (2005): Brane Calculi. Computational Methods in Systems Biology, pp. 257–278.

[5] Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco Pistore, Marco Roveri,

Roberto Sebastiani & Armando Tacchella (2002): NuSMV Version 2: An OpenSource Tool for Symbolic

Model Checking. In: Proc. International Conference on Computer-Aided Verification (CAV 2002), LNCS

2404, Springer, Copenhagen, Denmark.

[6] Federica Ciocchetta & Jane Hillston (2009): Bio-PEPA: A Framework for the Modelling and Analysis of

Biological Systems. Theoretical Computer Science 410(33-34), pp. 3065–3084.

[7] Edmund M. Clarke, Orna Grumberg & David E. Long (1994): Model Checking and Abstraction. ACM

Transactions on Programming Languages and Systems 16(5), pp. 1512–1542.

81

[8] Edmund M. Clarke, Orna Grumberg & Doron Peled (1999): Model Checking. MIT Press.

[9] Vincent Danos & Cosimo Laneve (2004): Formal Molecular Biology. Theoretical Computer Science 325(1),

pp. 69–110.

[10] Peter Drábik, Andrea Maggiolo-Schettini & Paolo Milazzo (2010): Dynamic Sync-programs for Modular

Verification of Biological Systems. In: 2nd Int. Workshop on Non-Classical Models of Automata and appli-

cations (NCMA’10), 263, Austrian Computer Society, Jena, Germany.

[11] Peter Drábik, Andrea Maggiolo-Schettini & Paolo Milazzo (2010): Modular Verification of Interactive Sys-

tems with an Application to Biology. Electronic Notes in Theoretical Computer Science 268, pp. 61–75.

[12] Peter Drábik, Andrea Maggiolo-Schettini & Paolo Milazzo (2011): Modular Verification of Interactive Sys-

tems with an Application to Biology. Scientific Annals of Computer Science 21, pp. 39–72.

[13] E. Allen Emerson & Chin-Laung Lei (1987): Modalities for Model Checking: Branching Time Logic Strikes

Back. Science of Computer Programming 8, pp. 275–306.

[14] François Fages, Sylvain Soliman & Nathalie Chabrier-Rivier (2004): Modelling and Querying Interaction

Networks in the Biochemical Abstract Machine Biocham. Journal of Biological Physics and Chemistry 4, pp.

64–73.

[15] John Heath, Marta Kwiatkowska, Gethin Norman, David Parker & Oksana Tymchyshyn (2008): Probabilis-

tic Model Checking of Complex Biological Pathways. Theoretical Computer Science 391(3), pp. 239–257.

[16] Pedro T. Monteiro, Delphine Ropers, Radu Mateescu, Ana T. Freitas & Hidde de Jong (2008): Temporal

Logic Patterns for Querying Dynamic Models of Cellular Interaction Networks. Bioinformatics 24(16), pp.

i227–233.

[17] Amir Pnueli (1981): A Temporal Logic of Concurrent Programs. Theoretical Computer Science 13, pp. 45 –

60.

[18] Corrado Priami, Aviv Regev, Ehud Shapiro & William Silverman (2001): Application of a Stochastic Name-

passing Calculus to Representation and Simulation of Molecular Processes. Information Processing Letters

80(1), pp. 25–31.

[19] Aviv Regev, Ekaterina M. Panina, William Silverman, Luca Cardelli & Ehud Shapiro (2004): BioAmbients:

An Abstraction for Biological Compartments. Theoretical Computer Science 325(1), pp. 141–167.

[20] Birgit Schoeberl, Claudia Eichler-Jonsson, Ernst Dieter Gilles & Gertraud Muller (2002): Computational

Modeling of the Dynamics of the MAP Kinase Cascade Activated by Surface and Internalized EGF Receptors.

Nature Biotechnology 20(4), pp. 370–375.

82

Pre-Proceedings of 6th Workshop on Membrane

Computing and Biologically Inspired Process Calculi

MeCBIC 2012, Pages 83–101.

c© M. Miculan and I. Sambarino

All the rights to the paper remain with the authors.

Implementing the Stochastics Brane Calculus

in a Generic Stochastic Abstract Machine

Marino Miculan Ilaria Sambarino

Department of Mathematics and Computer Science, University of Udine, Italy

marino.miculan@uniud.it ilaria.sambarino@gmail.com

In this paper, we deal with the problem of implementing an abstract machine for a stochastic ver-

sion of the Brane Calculus. Instead of defining an ad hoc abstract machine, we consider the generic

stochastic abstract machine introduced by Lakin, Paulevé and Phillips. The nested structure of mem-

branes is flattened into a set of species where the hierarchical structure is represented by means of

names. In order to reduce the overhead introduced by this encoding, we modify the machine by

adding a copy-on-write optimization strategy. We prove that this implementation is adequate with re-

spect to the stochastic structural operational semantics recently given for the Brane Calculus. These

techniques can be ported also to other stochastic calculi dealing with nested structures.

1 Introduction

A fundamental issue in Systems Biology is modelling the membrane interaction machinery. Several

models have been proposed in the literature [11, 14, 3]; among them, the Brane Calculus [4] has been

arisen as a good model focusing on abstract membrane interactions, still being sound with respect to

biological constraints (e.g. bitonality). In this calculus, a process represents a system of nested com-

partments, where active components are on membranes, not inside them. This reflects the biological

evidence that functional molecules (proteins) are embedded in membranes, with consistent orientation.

In the original definition of the Brane Calculus [4] (which we will recall in Section 2) membranes in-

teract according to three basic reaction rules corresponding to phagocytosis, endo/exocytosis, and pinocy-

tosis. However, this semantics does not take into account quantitative aspects, like stochastic distribu-

tions, which are important for, e.g., implementing stochastic simulations.

A stochastic semantics for the Brane Calculus has been provided in [2], following an approach pio-

neered in [5] (but see also [8, 12] for Markov processes). Instead of giving a stochastic version P
a,r
−→ Q

of the reaction relation, in this semantics each process is given a measure of the stochastic distribution

of the possible outcomes. More precisely, we define a relation P → µ associating to a process P an

action-indexed family of measures µ: for an action a, the measure µa specifies for each measurable set

S of processes, the rate µa(S) ∈ R
+ of a-transitions from P to (elements of) S. An advantage of this

approach is that we can apply results from measure theory for solving otherwise difficult issues, like

instance-counting problems; moreover, process measures are defined compositionally, and in fact the

relation P → µ can be characterized by means of a set of rules in a GSOS-like format. We will recall this

stochastic semantics and its main properties in Section 3.

In this paper, we use this new semantics for defining a stochastic abstract machine for the Brane

Calculus, so that it can be effectively used for in silico simulations of membrane systems. Defining an

ad hoc abstract machine for the Brane Calculus would be a complex task; instead, we take advantage of

the generic abstract machine for stochastic process calculi (GSAM for short) introduced in [13, 10] as

a general tool for simulating a broad range of calculi. This machine can be instantiated to a particular

calculus by defining a function for transforming a process of the calculus to a set of species, and another

for computing the set of possible reactions between species.

An important aspect is that this abstract machine does not have a native notion of compartment,

which is central in the Brane Calculus (as in any other model of membranes). To overcome this problem,

we adopt a “flat” representation of membrane systems, used also in [10], where the hierarchical structure

is represented by means of names: each name represents a compartment, and each species is labelled

with the name of the compartment where it is located, and the name of its inner compartment (if any).

So names and species are the nodes and the arcs of the tree, respectively. This technique can be used for

representing any system with a tree-like structure of compartments.

However, this approach does not scale well, as the population of species may grow enormously: for

instance, a population of n identical cells would lead to n different single species, differing only for the

name of its inner compartment, instead of a single specie with multiplicity n. For circumventing this

problem, in Section 4 we introduce a variant of the GSAM with a copy-on-write optimization strategy—

hence called COWGSAM. The idea is to keep a single copy of each species, with its multiplicity; when

a reaction has to be applied, fresh copies of the compartments involved are generated on-the-fly, and

reactions and rates are updated accordingly. In this way, the hierarchical structure is unfolded only if and

when needed.

In Section 5 we show how the Brane Calculus can be represented in the COWGSAM, and we will

prove that the abstract machine obtained in this way is adequate with respect to the stochastic semantics

of the Brane Calculus; in this proof, we take advantage of the compositional definition of this semantics.

Conclusions and final remarks are in Section 6.

2 Brane Calculus

In this section we recall Cardelli’s Brane Calculus [4] focusing on its basic version (without communi-

cation primitives, complexes and replication).

First, let us fix the notation we will use hereafter. Let S be a set of sorts (or “types”), ranged over

by s, t, and T a set of S-sorted terms; for t ∈ S, Tt ⊆ T denotes the set of terms of sort t. For A a set of

symbols, A∗ denotes the set of finite words (or lists) over A, and 〈a1, . . . ,an〉 denotes a word in A∗. For a

word 〈t1, . . . , tn〉 in S∗, we define T〈t1,...,tn〉 , Tt1 ×·· ·×Ttn .

Syntax The sorts and the set B of terms of Brane Calculus are the following:

Sorts :: S t ::= sys | mem

Membranes :: Bmem σ ,τ ::= 0 | σ |τ | Jn.σ | JI
n (τ).σ | Kn.σ | KI

n .σ | Gn(τ).σ

Systems :: Bsys P,Q ::= k | PmQ | σhPi

The subscripted names n are taken from a countable set Λ. By convention we shall use M, N, . . . to

denote generic Brane Calculus terms in B.

A membrane can be either the empty membrane 0, or the parallel composition of two membranes

σ |τ , or the action-prefixed membrane ε.σ . Actions are: phagocytosis J, exocytosis K, and pinocytosis

G. Each action but pinocytosis comes with a matching co-action, indicated by the superscript ⊥.

A system can be either the empty system k, or the parallel composition PmQ, or the system nested

within a membrane σhPi. Notice that, differently from [4], pino actions are indexed by names in Λ.

In [4], names are meant only to pair up an action with its corresponding co-action, hence a pino action

84

JI
n (ρ).τ|τ0hQimJn.σ |σ0hPi} τ|τ0hρhσ |σ0hPiimQi

(red-phago)

KI
n .τ|τ0hKn.σ |σ0hPimQi}σ |σ0|τ|τ0hQimP

(red-exo)

G(ρ).σ |σ0hPi}σ |σ0hρhkimPi
(red-pino)

P}Q

σhPi}σhQi
(red-loc)

P}Q

PmR}QmR
(red-comp)

P ≡ P′ P′}Q′ Q′ ≡ Q

P}Q
(red-equiv)

Table 1: Reduction semantics for the Brane Calculus.

does not need to be indexed by any name. Actually, names can be thought of as an abstract representation

of particular protein conformational shapes; hence, each name can correspond to a different biological

behaviour. Therefore, if we want to observe also kinetic properties of processes, it is important to keep

track of names in pino actions.

Terms can be rearranged according to a structural congruence relation; the intended meaning is

that two congruent terms actually denote the same system. Structural congruence ≡ is the smallest

equivalence relation over B which satisfies the axioms and rules listed below.

PmQ ≡ QmP Pm (QmR)≡ (PmQ)mR Pmk≡ P

σ |τ ≡ τ|σ σ |(τ|ρ)≡ (σ |τ)|ρ σ |0 ≡ σ

0hki≡ k
P ≡ Q

PmR ≡ QmR

σ ≡ τ

σ |ρ ≡ τ|ρ

P ≡ Q σ ≡ τ

σhPi≡ τhQi

α ∈ {Jn,Kn,K
I
n}n∈Λ σ ≡ τ

α.σ ≡ α.τ

β ∈ {JI
n ,Gn}n∈Λ ρ ≡ ν σ ≡ τ

β (ρ).σ ≡ β (ν).τ

Differently from [4], we allow to rearrange also the sub-membranes contained in co-phago and pino

actions (by means of the last inference rule above).

Reduction Semantics The dynamic behaviour of Brane Calculus is specified by means of a reduction

semantics, defined over a reduction relation (“reaction”) } ⊆ Bsys ×Bsys, whose rules are listed in

Table 1. Notice that the presence of (red-phago/exo/pino) and (red-equiv) makes this not a structural

presentation, since these rules are not primitive recursive in the syntax (i.e., structural recursive) as

required by the SOS format.

3 Stochastic Structural Operational Semantics for the Brane Calculus

In this section we recall the stochastic structural operational semantics for the Brane Calculus, as defined

in [2]. Following the pattern of [5], we replace the classic “pointwise” rules of the form P
a,r
−→ P′ with

rules of the form P → µ , where µ is an indexed class of measures on the measurable space of processes.

We assume the reader to be familiar with basic notions from measure theory; for a brief summary, see

Appendix A.

85

0 →mem ωmem

(zero)
α ∈ {Jn,Kn,K

I
n | n ∈ Λ}

α.σ →mem [α]σ
(pref)

β ∈ {JI
n ,Gn | n ∈ Λ}

β (τ).σ →mem [β]τσ
(pref-arg)

σ →mem µ ′ τ →mem µ ′′

σ |τ →mem µ ′
σ✑τ µ ′′

(par)

k→sys ωsys

(void)
σ →mem ν P →sys µ

σhPi→sys µ@σ
P ν

(loc)
P →sys µ ′ Q →sys µ ′′

PmQ →sys µ ′
P⊗Q µ ′′

(comp)

Table 2: Stochastic structural operational semantics for Brane Calculus

The set of action labels for the Brane Calculus will be denoted by A and can be partitioned with

respect to the source sort (i.e., either systems or membranes), as follows:

Asys , {id : sys→ 〈sys〉}∪{phn : sys→ 〈sys,sys〉 | n ∈ Λ}∪

{ph⊥n : sys→ 〈mem,mem,sys,sys〉 | n ∈ Λ}∪

{exn : sys→ 〈mem,sys,sys〉 | n ∈ Λ}

Amem , {Jn,Kn,K
I
n : mem→ 〈mem〉 | n ∈ Λ}∪

{JI
n ,Gn : mem→ 〈mem,mem〉 | n ∈ Λ}

Let a range over A, and ar(a) denote its arity. To ease the reading in the following we will use the

notation ∆a(T,Σ) to denote the set of measures ∆(T〈t1,...tn〉,
⊗n

i=1 Σti), for ar(a) = t → 〈t1, . . . , tn〉.
Let B/≡ be the set of ≡-equivalence classes on B. For M ∈ B, we denote by [M]≡ the ≡-equivalence

class of M.

Definition 3.1 (Measurable space of terms). The measurable space of terms (B,Π) is given by the

measurable space over B where Π is the σ -algebra generated by B/≡.

Notice that B/≡ is a denumerable partition of B, hence it is a base (a generator such that all its

elements are disjoint) for Π. Any element of Π can be obtained by a countable union of elements of

the base, i.e., for all M ∈ Π there exist {Mi}i∈I , for some countable I, such that M =
⋃

i∈I[Mi]≡. As a

consequence, in order to generate the whole Π we can simply compute all these unions, without the need

of any closure by complement.

A similar argument holds for the product space (B〈t1,...,tn〉,
⊗n

i=1 Πti), where ti ∈ {mem,sys} (1 ≤
i ≤ n); indeed

⊗n
i=1 Πti can be generated from the base B〈t1,...,tn〉/≡〈t1 ,...,tn〉

, where ≡〈t1,...,tn〉⊆ B〈t1,...,tn〉×
B〈t1,...,tn〉 is defined by

〈M1, . . . ,Mn〉 ≡〈t1,...,tn〉 〈N1, . . . ,Nn〉 iff Mi ≡ Ni, for all 1 ≤ i ≤ n ,

which can be easily checked to be an equivalence relation. ≡〈t1,...,tn〉-equivalence classes are rectangles,

i.e. [〈M1, . . . ,Mn〉]≡〈t1 ,...,tn〉
= [M1]≡×·· ·× [Mn]≡, therefore the product measure

⊗n
i=1 Πti is well defined.

For sake of simplicity in the following we write [〈M1, . . . ,Mn〉]≡ in place of [〈M1, . . . ,Mn〉]≡〈t1 ,...,tn〉
, and

B〈t1,...,tn〉/≡ in place of B〈t1,...,tn〉/≡〈t1 ,...,tn〉
.

The operational semantics associates with each membrane a family of measures in ∆Amem(B,Π),
and with each system a family of measures in ∆Asys(B,Π). This can be represented by two relations

86

→mem: Tmem → ∆Amem(B,Π), →sys: Tsys → ∆Asys(B,Π), defined by the SOS rules listed in Table 2. (In

the following, for sake of readability, we will drop the indexes mem,sys). In these rules we use some

constants and operations over indexed families of measures, that we define next. For a set (of labels) A,

let us denote by ∆A(B,Π) the set ∏a∈A ∆a(B,Π) of A-indexed families of measures over (B,Π). Given a

family of measures µ ∈ ∆A(B,Π) and a ∈ A, the a-component of µ will be denoted as µa ∈ ∆a(B,Π).

Null: Let ωmem ∈ ∆Amem(B,Π) be the constantly zero measure, i.e., for all a∈Amem such that ar(a) =
t → 〈t1, . . . , tn〉 and M ∈

⊗n
i=1 Πti : (ωmem)a(M)=0.

Prefix: For arbitrary n∈Λ, α ∈{J,K,KI}, and β ∈{JI,G}, let the constants [αn]σ , [βn]
τ
σ ∈∆Amem(B,Π)

be defined, for arbitrary X ,Y ∈ Bmem/≡, as follows:

([αn]σ)αm
(X) =

{

ι(n) if n = m and σ ∈ X

0 otherwise

([αn]σ)βm
(X ×Y) = 0

([βn]σ)αm
(X) = 0

([βn]
τ
σ)βm

(X ×Y) =

{

ι(n) if n = m and σ ∈ X , τ ∈ Y

0 otherwise

Parallel: For µ,µ ′ ∈ ∆Amem(B,Π), let µσ✑τ µ ′ ∈ ∆Amem(B,Π) be defined, for n ∈ Λ, α ∈ {J,K,KI},

β ∈ {JI,G}, and X ,Y ∈ Bmem/≡, as follows (where for all X ,τ: X|τ ,
⋃
{[σ]≡ | σ |τ ∈ X}):

(µσ✑τ µ ′)αn
(X) = µαn

(X|τ)+µ ′
αn
(X|σ)

(µσ✑τ µ ′)βn
(X ×Y) = (µ)βn

(X|τ ×Y)+(µ ′)βn
(X|σ ×Y)

Void: Let ωsys ∈ ∆Asys(B,Π) be defined by (ωsys)a(M) = 0 for any a ∈ Asys, such that ar(a) = t →
〈t1, . . . , tn〉, and M ∈

⊗n
i=1 Πti .

Nesting: For ν ∈ ∆Amem(B,Π) and µ ∈ ∆Asys(B,Π), let µ@σ
P ν ∈ ∆Asys(B,Π) be defined, for X ,Y ∈

Bmem/≡ and Z,W ∈ Bsys/≡, as follows:

(µ@σ
P ν)phn

(Z ×W) =

{

νJn
([σ]≡) if σhPi ∈ Z and k ∈W

0 otherwise

(µ@σ
P ν)ph⊥n

(X ×Y ×Z ×W) =

{

νJI
n
(X ×Y) if P ∈ Z and k ∈W

0 otherwise

(µ@σ
P ν)exn

(X ×Z ×W) =

{

νKn
(X) if P ∈ Z and k ∈W

0 otherwise

(µ@σ
P ν)id(X) = µid(Xσhi)+

n∈Λ

∑
X ′hX ′′h[k]≡im[P]≡i=X

νGn
(X ′×X ′′)+

n∈Λ

∑
X ′|X ′′hY ′′imY ′=X

µexn
(X ′×Y ′×Y ′′) ·νKI

n
(X ′′)

ι(n)

87

Composition: For µ,µ ′ ∈ ∆Asys(B,Π), let µP⊗Q µ ′ ∈ ∆Asys(B,Π) be defined, for X ,Y ∈ Bmem/≡ and

Z,W ∈ Bsys/≡, as follows (where for all W,Q, WmQ ,
⋃
{[P]≡ | PmQ ∈W}):

(µP⊗Q µ ′)phn
(Z ×W) = µphn

(Z ×WmQ)+µ ′
phn

(Z ×WmP)

(µP⊗Q µ ′)ph⊥n
(X ×Y ×Z ×W) = µph⊥n

(X ×Y ×Z ×WmQ)+µ ′
ph⊥n

(X ×Y ×Z ×WmP)

(µP⊗Q µ ′)exn
(X ×Z ×W) = µexn

(X ×Z ×WmQ)+µ ′
exn

(X ×Z ×WmP)

(µP⊗Q µ ′)id(X) = µid(XmQ)+µ ′
id(XmP)+

n∈Λ

∑
X1hX2hY1imZ1imY2mZ2=X

µphn
(Y1 ×Y2) ·µ ′

ph⊥n
(X1 ×X2 ×Z1 ×Z2)

ι(n)
+

n∈Λ

∑
X1hX2hZ1imY1imZ2mY2=X

µph⊥n
(X1 ×X2 ×Y1 ×Y2) ·µ ′

phn
(Z1 ×Z2)

ι(n)

These operators have nice algebraic properties (e.g., µ ′
σ✑τ µ ′′ = µ ′′

τ✑σ µ ′, (µ ′
σ✑τ µ ′′)σ |τ✑ρ µ ′′′ =

µ ′
σ✑τ|ρ (µ

′′
τ✑ρ µ ′′′), . . .), and respect the structural congruence (e.g., if P ≡ P′ and Q ≡ Q′ then µ ′

P⊗Q

µ ′′ = µ ′
P′⊗Q′ µ ′′). We refer to [2] for further details about these properties, very useful in calculations.

The next lemmata state that the stochastic transition relation → (and hence the operational semantics)

is well-defined and consistent, that is, for each process we have exactly one family of measures of its

continuations, and this family respects structural congruence.

Lemma 3.2 (Uniqueness). For a∈A such that ar(a) = t →〈t1, . . . , tn〉, and M ∈Bt , there exists a unique

µ ∈ ∆At (B,Π) such that M → µ .

Lemma 3.3. If M ≡ N and M → µ , then N → µ .

This operational semantics can be used to define the “ traditional” pointwise semantics:

M
a,r
−→ 〈M1, . . . ,Mn〉

△
⇐⇒ M → µ and µa([〈M1, . . . ,Mn〉]≡) = r

and it is conservative with respect to the non-stochastic reduction semantics.

Proposition 3.4. For all systems P,Q ∈ Bmem, if P → µ and µid([Q])> 0 then P}Q.

4 The COW Generic Stochastic Abstract Machine

In this section we present a variant of the generic stochastic abstract machine (GSAM), oriented to

systems with nested compartments.

The GSAM has been introduced in [13, 10] for simulating a broad range of process calculi with

an arbitrary reaction-based simulation algorithm. Although it does not have a native notion of “com-

partment”, nested systems can represented by “flattening” all compartments and species into a single

multiset, where each species is tagged with names representing their position in the hierarchy, as shown

in [10]. The idea is to represent each compartment (i.e., each cell) as a different species, keeping track

of the relative position in the hierarchy by means of (node) names. These names are ranged over by

x,y,z, . . . , and are different from names in actions. As an example, a system σhτhii is represented as

the multiset {σhx
yi 7→ 1,τhy

zi 7→ 1}, where the species σhx
yi should be read “a cell with membrane σ ,

located in the compartment x and whose compartment is y”. Analogously, τh
y
zi} is positioned in y and its

88

compartment is z. Reactions can happen only if the names tagging the involved species match according

to the required nesting structure.

However, this approach does not scale well, as the population of species may grow enormously. Let

us consider a system composed of n copies of the same cell, e.g., n · (σhi) (where n can be easily in

the order of 103–104). According to the original GSAM idea, this should be represented in the machine

as a single species with multiplicity n, and a single instance of possible reactions whose propensity

takes into account of this multiplicity. Instead, the “flat encoding” above yields n different species

σhx
y1
i, . . . ,σhx

y1
i, each with multiplicity 1; also the set of reactions explode correspondingly.

For circumventing this problem we introduce a variant of the GSAM with a copy-on-write strategy—

hence it is called COWGSAM. The idea is to keep a single copy of each species, with its multiplicity; the

same applies to reactions. When a reaction has to be applied, the compartments involved are “unfolded”,

i.e., fresh copies of the compartments are generated and the reaction set is modified accordingly; then,

the reaction can be applied. In this way, the hierarchical structure is unfolded only if and when needed.

In order to implement this idea, we have to modify the notion of machine term, reaction and reaction

rule. The COWGSAM (with the Next Reaction method) is shown in Figure 1.

First, for generating fresh names, we have to keep track of those already allocated. To this end we

introduce environments, which are finite sets of names. Then, the machine state is represented by a

machine term T , i.e. a quadruple E ⊢ (t,S,R) where E is an environment; t is the current time; S is a

finite function mapping each species I to its population S(I) (if not null); and R maps each reaction O

to its activity A, which is used to compute the next reaction. (Notice that the syntax of species I is left

unspecified, as it depends on the specific process calculus one has to implement.) We say that a machine

term E ⊢ (t,S,R) is well-formed if for all xi,x j ∈ E : xi = x j ⇒ i = j, and the free names in S,R appear in

E. In the following, we assume that machine terms are well formed.

Each reaction is a quadruple (S1,r, f ,S2), where

• S1 and S2 denote the reactant population and product population respectively;

• r denotes the rate (in s−1) of the reaction, i.e., reactions are assumed to be of the form S1
r
−→ S2;

• f is a function mapping machine terms to machine terms; this functions implements any global

update of the machine term after the reaction (if needed).

The transitions of the abstract machine are represented by a relation T
a,O
−−→ T ′ between machine

terms, indexed by the propensity a and reaction rules. This should be read as “T goes to T ′ with rate

a, using the rule O”. This relation is defined by (Reaction rule) in Figure 1, where the function next(T)
selects the next reaction, i.e. it returns a pair (O, t ′) where O = (S1,r, f ,S2) is the reaction to happen

first among all possible reactions in T , and t ′ is the new time of the system. Once the reaction has been

selected, we have first to create the separate (private) copies of the compartments involved, and to update

the reaction set accordingly. This is done by the functions cow() and duplicate(), which implement a

deep copy-on-write: cow(E ⊢ (t,S,R),S1) is a machine term E ′ ⊢ (t,S′,R′) representing the same state

as E ⊢ (t,S,R), but in S′ the species indicated in S1 are unfolded; E ′ contains all names which have

been generated in the process, and R′ is the new set of reactions. (Actually, the freshly generated copies

represent the instances which are not involved by the reaction; this simplifies the reaction application.)

At this point, the reaction is executed, by removing the reactants S1 from the machine term (via

the operation ⊖), adding the products S2 (via the operation ⊕) and updating the current time of the

machine. The function f performs any global “clean-up” and restructuring to the machine term that

may be required by the reaction (e.g., garbage collection, elimination of names not used anymore,. . .).

Moreover, since a reaction can rearrange the hierarchy structure, possibly creating new compartments

and deleting others, we have to add to the environment any fresh name introduced in the products.

89

T ::=E ⊢ (t,S,R) (Machine term)

E ::=x1, . . . ,xn (Environments)

S ::={I1 7→ i1, . . . , IN 7→ iN} (Populations)

R ::={O1 7→ A1, . . . ,ON 7→ AN} (Reactions)

O ::=(S1,r, f ,S2) (Reaction)

((S1,r, f ,S2),a, t
′) = next(t,S,R) E ′ ⊢ (t,S′,R′) = cow(E ⊢ (t,S,R),S1)

E ⊢ (t,S,R)
a,(S1,r, f ,S2)
−−−−−−→ norm(E ′∪ f n(S2) ⊢ (f (S2 ⊕ ((t ′,S′,R′)⊖S1))))

(Reaction rule)

next(t,S,R), (O,a, t ′) if R(O) = (t ′,a) and t ′ = min{t | R(O) = (t,a)}

cow(E ⊢ (t,S,R), /0),E ⊢ (t,S,R)

cow(E ⊢ (t,S,R),{ρhy
zi 7→ j}∪S1), cow(E ∪ f n(S′′) ⊢ (t,S′∪S′′,R′∪ init(L,(t,S′,R))∪R′′),S1)

where if S(σh
x
yi)> 0 for some σh

x
yi :

S′ = S{σh
x
yi 7→ 1,σh

x
wi 7→ i−1}, for i = S(σh

x
yi) and w /∈ E,

L = reactions(σh
x
wi 7→ i−1,S′),

R′ = {O 7→ A ∈ R | O 6∈ L},

(S′′,R′′) = duplicate(E ⊢ (t,S,R),y,w)

otherwise

S′ = S{ρhy
zi 7→ j,ρhy

wi 7→ i− j}, for i = S(ρhy
zi) and w /∈ E,

L = reactions(ρhy
wi 7→ i− j,S′),

(S′′,R′′) = duplicate(E ⊢ (t,S,R),z,w)

duplicate(E ⊢ (t,S,R),y,y′), (S′∪S′′,R′∪ init(L,(t,S′,R))∪R′′)

where S′ = S∪{ρh
y′

w′i 7→ i | S(σh
z
yi)> 0,S(ρhy

wi) = i},w′ /∈ E,

L = reactions(ρhy′

w′i 7→ i,S′),

R′ = {O 7→ A ∈ R | O 6∈ L},

(S′′,R′′) = duplicate(E ∪{w′} ⊢ (t,S,R),w,w′)

Figure 1: The COW Generic Stochastic Abstract Machine, with the Next Reaction method.

Finally, the term can be “normalized” by collapsing equivalent copies of the same subtree into a

single copy (with the right multiplicity), by the function norm(). In its simplest form, norm() can

be the identity, i.e., no normalization at all. Although this would be correct, it can lead to unnecessary

copies of the same subtrees. We could define norm() such that

norm({I1 7→ i1, I2 7→ i2}∪S,R) = norm({I1 7→ i1 + i2}∪S,R[I2/I1]) if I1 ≡ I2

where the equivalence between species can be implemented by comparing the subtrees starting from I1,

I2, e.g., by calculating a suitable hash value. We leave this refinement as future development.

90

{I1 7→ i1, . . . , IN 7→ iN}⊕ (t,S,R), I1 7→ i1 ⊕ . . .⊕ IN 7→ iN ⊕ (t,S,R)

I 7→ i⊕ (t,S,R),







(t,S′,R∪updates(I,(t,S′,R))) if S(I) = i′ and S′ = S{I 7→ i′+ i}

(t,S′,R∪ init(L,(t,S′,R))) if I /∈ dom(S),S′ = S{I 7→ i}

and L = reactions(I 7→ i,S)

(t,S,R)⊖{I1 7→ i1, . . . , IN 7→ iN}, (t,S,R)⊖ I1 7→ i1 ⊖ . . .⊖ IN 7→ iN

(t,S,R)⊖ I 7→ i , (t,S′,R∪updates(I,(t,S′,R)))

if S(I) = i′, i′ ≥ i and S′ = S{I 7→ i′− i}

init(L,(t,S,R)), {O 7→ (t ′,a) | O ∈ L and a = propensity(O,S) and

O = (S1,r, f ,S2) and t ′ = t +delay(r,a)}

updates(I,(t,S,R)), {O 7→ (t ′,a′) | R(O) = (t ′′,a) and O = (S1,r, f ,S2) and S1(I)> 0 and

if t ′′ > t then a′ = propensity(O,S) and t ′ = t +(a/a′)(t ′′− t)

if t ′′ = t then a′ = propensity(O,S) and t ′ = t +delay(r,a)}

propensity((S1,r, f ,S2),S), r ·

(
S∗(I1)

j1

)

· . . . ·

(
S∗(In)

jn

)

if S1 = {I1 7→ j1, . . . , In 7→ jn}

S∗(σh
x
yi),

{

S(σhx
yi) if x = root

S(σhx
yi) ·S

∗(ρhz
xi) if x 6= root and S(ρhz

xi)> 0

Figure 1: The COW Generic Stochastic Abstract Machine (cont.).

In order to implement the Next Reaction method, each reaction O is associated with a pair R(O) =
(a, t), where a is the reaction propensity and t is the time at which the reaction is supposed to occur. The

function delay(r,a) computes a time interval from a random variable with rate r and propensity a.

This general structure can be instantiated with a given process calculus, by providing the definition

for the missing parts. Given a set Proc of processes, we have to define:

1. the syntax of the species I (which may be different from that of processes);

2. a function speciesE,x(P) mapping a process P ∈ Proc to a species set located in x;

3. a function reactions(I 7→ i,S) for computing the multiset of reactions between a (new) species I

with multiplicity i and a population of (existing) species S.

The function species is used to initialise the abstract machine at the beginning of a simulation. If we aim

to simulate the execution of a process P ∈ Proc, the corresponding initial state (rooted in x) is

▲P▼x , f n(J) ⊢ J⊕ (0, /0, /0) where J = species /0,x(P).

The reactions function is used to adjust the set of possible reactions dynamically.

5 Implementing the Stochastic Brane Calculus in COWGSAM

In this section, we show how the COW Generic Stochastic Abstract Machine can be used to implement

the Stochastic Brane Calculus, following the protocol described in the previous section.

91

5.1 Encoding of the Stochastic Brane Calculus

Syntax of species We can define the species for the brane calculus, which in turn lead us to introduce

complexes and actions.

I ::= Ch
x
yi (Species)

C ::= A1, . . . ,An (Complexes)

A ::= Jn.σ | JI
n (τ).σ | Kn.σ | KI

n .σ | Gn(τ).σ (Actions)

Notice that (despite the deceiving syntax) species are not systems and complexes are not membranes;

nevertheless, actions are a subset of membranes.

Node names can appear in the species in S and in reactions R.

The species function We can now provide the definition of the translation of a process P ∈ Bsys into a

species set. Basically, each compartment is assigned a different, fresh node name; therefore, the function

speciesE,x(P) is parametric in the set E of allocated node names, and the name x ∈ E to be used as the

location of the system P. The name x changes as we descend the compartment hierarchy.

In order to capture correctly the multiplicity of each species, we assume that systems are in normal

form. Basically, this form is a shorthand for products where n copies of the same system, i.e., P◦ · · · ◦P,

are represented as n ·P.

Normal Systems :: Bn
sys

Q ::= n1 ·σ1hQ1im . . .mnk ·σkhQki

where k ≥ 0 and for i 6= j : σihQii 6≡ σ jhQ ji

A system in normal form can be translated into a system just by unfolding the products. For Q ∈ B
n
sys

a

system in normal form, let ⌈Q⌉ ∈ Bsys defined as follows:

⌈k⌉= k ⌈n ·σhQ′
i◦Q′′⌉=

n times
︷ ︸︸ ︷

σh⌈Q′⌉i◦ · · · ◦σh⌈Q′⌉i◦⌈Q′′⌉

Proposition 5.1. For all P ∈ Bsys, there exists a system in normal form Q ∈ B
n
sys

such that ⌈Q⌉ ≡ P.

As a consequence, we can give the definition of species on systems in normal form, as follows:

speciesE,x(k), /0

speciesE,x(n ·σhQ1i◦Q2), {s(σ)hx
yi 7→ n}∪ speciesE⊎{y},y(Q1)∪ speciesE,x(Q2)

with y /∈ E and f n(speciesE⊎{y},y(Q1))∩ f n(speciesE,x(Q2))⊆ {x}

The condition in the second case ensures that two different compartments are never given the same

name—any name clash has to be resolved by an α-conversion. The function s() converts a membrane

into a set of complexes:

s(0), /0 s(σ |σ ′), s(σ)∪ s(σ ′) s(π.σ), {π.σ}

92

The reactions function The next step is to define the function reactions(I 7→ i,S), for I a species with

multiplicity i and S a population.

reactionsE(I1 7→ i,S), unaryE(I1)∪binaryE(I1,S)

unaryE(I1), {({I1 7→ 1},rn, id,{(s(σ)∪U ′
1)h

x
yi 7→ 1,s(ρ)hy

wi 7→ 1}) |

I1 =U1h
x
yi, U1 = {Gn(ρ).σ}∪U ′

1,w /∈ E}

binaryE(I1,S),
{
({I1 7→ 1, I2 7→ 1},rn, f ,{(s(τ)∪U ′

1 ∪ s(σ)∪U ′
2)h

x
yi 7→ 1}) | I2 ∈ dom(S),

(I1 =U1h
x
yi, I2 =U2h

y
wi)∨ (I2 =U1h

x
yi, I1 =U2h

y
wi),

U1 = {KI
n .τ}∪U ′

1,U2 = {Kn.σ}∪U ′
2, f = λT.T [w := x]

}
⊎

{
({I1 7→ 1, I2 7→ 1},rn, id,

{(s(τ)∪U ′
1)h

x
yi 7→ 1,s(ρ)hy

wi 7→ 1,(s(σ)∪U ′
2)h

w
z i 7→ 1}) | I2 ∈ dom(S),

(I1 =U1h
x
yi, I2 =U2h

x
zi)∨ (I2 =U1h

x
yi, I1 =U2h

x
zi),

U1 = {JI
n (ρ).τ}∪U ′

1,U2 = {Jn.σ}∪U ′
2, w /∈ E

}

In the case of Brane Calculus, the unary reactions are only those arising from pinocytosis, while binary

reactions arise from exocytosis and phagocytosis. In both cases, the multiplicity of each reactant is 1, so

the multiplicity of I1 is not relevant. Exocytosis merges two compartments; this is reflected by the fact

that the “rearranging” function f substitutes every occurrence of the name w in T with x. On the other

hand, pinocytosis and phagocytosis create new compartments; to represent the new structure, we choose

a fresh name w representing the new intermediate nesting level, and reconnect the various compartments

accordingly. Therefore, for any reaction (S1,r, f ,S2) ∈ reactionsE(I1 7→ i,S), f n(S2) \E is either /0 (in

the case of exocytosis) or {w}.

5.2 Adequacy results

Before proving the correctness of our implementation, we have to define how to translate a species set

back to a system of the brane calculus.

Let S be a non empty species set. A root name of S, denoted by root(S), is a name x such that

S(Chx
yi) > 0 for some C,y, and for all z,C′ : C′hz

xi /∈ dom(S). The next result states that root() is well

defined on the species sets we encounter during a simulation.

Lemma 5.2. For all P ∈ Bsys:

1. if P 6= k: root(▲P▼x) = x.

2. if ▲P▼x
a,O
−−→ E ⊢ (t,S,R) and S 6= /0, then root(S) = x.

Proof. (1.) is trivial by definition. (2.) It is enough to check that the reaction rules introduced by

reactions() do not change the name of the root, nor introduce new ones.

We can now define a function ❏ ❑ which maps complexes to membranes, and a function ❏ ❑x mapping

species sets to systems; the latter is parametric in the name x of the root of the system.

❏A1, . . . ,An❑, A1| . . . |An ❏S❑x , ∏
Chx

yi∈dom(S)

S(Ch
x
yi) · (❏C❑h❏S❑yi)

where the notation n ·P is a shorthand for Pm . . .mP, n times.

93

Lemma 5.3. For all P ∈ Bsys:

1. ❏▲P▼x❑x ≡ P.

2. if ▲P▼x
a,O
−−→ E ⊢ (t,S,R) then ❏S❑x is well defined.

Proof. (1.) is easy. (2.) It is enough to check that the reaction rules introduced by reactions() do not

introduce loops (i.e., the order among names is well founded).

We can now state and prove the main results of this section.

Proposition 5.4 (Soundness). For all P ∈ Bsys, if ▲P▼x
a,O
−−→ E ⊢ (t,S,R) then there exists µ such that

P −→ µ and µid([❏S❑x]) = a.

Proof. The proof is by cases on which reaction rule O is selected by the function next. By additivity of

measures, we can restrict ourselves to when the whole process P is the redex of the reduction. Let us see

here the case when P is the redex of a (red-pino) (another is in Appendix B).

Let P =Gn(ρ).σ |σ0hP′i and let us assume that σ0 does not exhibit a Gn action. Then, the translation

of P is ▲P▼x = E ⊢ species /0,x(P)⊕ (0, /0, /0), where

species /0,x(P) = {s(Gn(ρ).σ |σ0)h
x
yi 7→ 1}∪ species{y},x(P

′)

= {(s(Gn(ρ).σ)∪ s(σ0))h
x
yi 7→ 1}∪ species{y},x(P

′)

= {({Gn(ρ).σ}∪ s(σ0))h
x
yi 7→ 1}∪ species{y},x(P

′)

Let I1 = ({Gn(ρ).σ}∪ s(σ0))h
x
yi and JP′ = species{y},x(P

′); then ▲P▼x = I1 7→ 1⊕ JP′ ⊕ (0, /0, /0) = JP′ ⊕
(0,S′,R′) where

S′ = {I1 7→ 1}

R′ = init(L,(0,S′, /0)) = {OL 7→ (t1,a1)}

OL = ({I1 7→ 1},rn, id,{(s(σ)∪ s(σ0))h
x
yi 7→ 1,s(ρ)hy

wi 7→ 1})

L = reactions(I1 7→ 1, /0) = unary(I1) = {({I1 7→ 1},rn, id,{(s(σ)∪ s(σ0))h
x
yi 7→ 1,s(ρ)hy

wi 7→ 1})}

Now, the reaction O in ▲P▼x
a,O
−−→ T is OL (otherwise it would involve P′, not the pino of the whole P).

This means that ▲P▼x
a,O
−−→ T is derived by means of an application of the (Reaction rule) as follows, where

S1 = {I1 7→ 1} and S2 = {(s(σ)∪ s(σ0))h
x
yi 7→ 1,s(ρ)hy

wi 7→ 1}:

((S1,rn, id,S2),a1, t1) = next(0,S′,R′) (E ′ ⊢ (0,S′′,R′′)) = cow(E ⊢ (0,S′,R′),S1)

E ⊢ {JP′}⊕ (0,S′,R′)
a1,(S1,rn,id,S2)
−−−−−−−−→ norm(E ∪ f n(S2) ⊢ ({JP′}⊕S2 ⊕ ((t1,S′′,R′′)⊖S1)))

where S′′ = S′ and R′′ = R′.

{JP′}⊕S2 ⊕ ((t1,S
′′,R′′)⊖S1) =

= JP′ ⊕{(s(σ)∪ s(σ0))h
x
yi 7→ 1,s(ρ)hy

wi 7→ 1}⊕ ((t1,S
′,R′)⊖{I1 7→ 1})

= JP′ ⊕{(s(σ)∪ s(σ0))h
x
yi 7→ 1,s(ρ)hy

wi 7→ 1}⊕ (t1,{I1 7→ 0},{OL 7→ (t2,a2)})
= JP′ ⊕ J′⊕ (t1,{I1 7→ 0},{OL 7→ (t2,a2)})

94

Now let us define Q as Q = σ |σ0hρhkimP′i, then ▲Q▼x = species /0,x(Q)⊕ (0, /0, /0) where

species /0,x(Q) = species /0,x(σ |σ0hρhkimP′
i)

= {s(σ |σ0)h
x
yi 7→ 1}∪ species{x},y(ρhkimP′)

= {(s(σ)∪ s(σ0))h
x
yi 7→ 1}∪ species{x},y(ρhki)∪ species{x},y(P

′)

= {(s(σ)∪ s(σ0))h
x
yi 7→ 1}∪{s(ρ)hy

wi 7→ 1}∪ /0∪ JP′ = J′∪ JP′

and hence Q ≡ ❏JP′ ⊕ J′⊕ (t1,{I1 7→ 0},{OL 7→ (t2,a2)})❑x. It remains to prove that rn = µid([Q]). Let

us notice that the derivation of P → µ is actually as follows:

Gn(ρ).σ −→ [Gn]
ρ
σ σ0 −→ µ ′′

(par)
Gn(ρ).σ |σ0 −→ [Gn]

ρ
σGn(ρ).σ✑σ0

µ ′′ P′ −→ µ ′

(loc)
Gn(ρ).σ |σ0hP′i−→ µ

where µ = µ ′@
Gn(ρ).σ |σ0

P′ ([Gn]
ρ
σGn(ρ).σ✑σ0

µ ′′). Then:

µid([σ |σ0hρhkimP′
i]) = (µ ′@

Gn(ρ).σ |σ0

P′ ([Gn]
ρ
σ Gn(ρ).σ✑σ0

µ ′′))id([σ |σ0hρhkimP′
i])

= µ ′
id([σ |σ0hρhkimP′

i])+([Gn]
ρ
σGn(ρ).σ✑σ0

µ ′′)Gn
([σ |σ0]× [ρ])

= ([Gn]
ρ
σGn(ρ).σ✑σ0

µ ′′)Gn
([σ |σ0]× [ρ])

= ([Gn]
ρ
σ)Gn

([σ |σ0]× [ρ])+µ ′′
Gn
([σ |σ0]× [ρ])

= rn +µ ′′
Gn
([σ |σ0]× [ρ]) = rn

where the last equivalence holds because µ ′′
Gn
([σ |σ0]× [ρ]) = 0 because we assumed that the reaction

does not involve σ0.

Proposition 5.5 (Progress). For all processes P,Q, if P}Q then there exists a reaction O and a term

T such that ▲P▼x
a,O
−−→ T and Q ≡ ❏T ❑x.

Proof. By induction on the derivation of P}Q. Let us see the case of (red-pin), the others being similar.

Let P = G(ρ).σ |σ0hP′i and Q = σ |σ0hρhkimP′i. Then,

▲P▼x = species{y},x(P
′)⊕ (0,{({Gn(ρ).σ}∪ s(σ0))h

x
yi 7→ 1},{OL 7→ (t1,a1)})

where OL = ({({Gn(ρ).σ}∪ s(σ0))h
x
yi 7→ 1},rn, id,{(s(σ)∪ s(σ0))h

x
yi 7→ 1,s(ρ)hy

wi 7→ 1}). Then, by

the (Reaction rule) we can take T = species{x},y(P
′)⊕ (t1,{(s(σ)∪ s(σ0))h

x
yi 7→ 1,s(ρ)hy

wi 7→ 1}, /0). It

is easy to check that Q ≡ ❏T ❑x.

Proposition 5.6 (Completeness). For all processes P,Q, if P −→ µ and µid([Q]) > 0 then for all node

name x, there exists a reaction O and a term T such that ▲P▼x
a,O
−−→ T , Q ≡ ❏T ❑x and a = µid([Q]).

Proof. If P −→ µ and µid([Q])> 0 then P}Q by Prop. 3.4. By Prop. 5.5, we have that for some a,O,T ,

▲P▼x
a,O
−−→ T and Q ≡ ❏T ❑x. But then a = µid([Q]) by soundness (Prop. 5.4).

95

5.3 Example

We conclude this section with an example. Let P= 10000 ·Jn.KmhJkhiim100 ·((JI
n (K

I
m) |K

I)hJkhii).
Then, its reductions in the Brane Calculus are as follows:

10000 ·Jn.KmhJkhiim100 · ((JI
n (K

I
m) | K

I)hJkhii)

}9999 ·Jn.KmhJkhiim99 · ((JI
n (K

I
m) | K

I)hJkhii)mK
I
hK

I
mhKmhJkhiiimJkhii

}9999 ·Jn.KmhJkhiim99 · ((JI
n (K

I
m) | K

I)hJI
k ()hii)mK

I
h2 ·Jkhimkhkii

The translation of P is ▲P▼x = E ⊢ species /0,x(P)⊕ (0, /0, /0), where

species /0,x(P) = species{x}(10000 ·Jn.KmhJkhii◦100 · (JI
n (K

I
m) | K

I)hJkhii)

= {s(Jn.Km)h
x
yi 7→ 10000}∪ species{x,y},y(Jkhi)∪{s(JI

n (K
I
m) | K

I)hx
zi 7→ 100}

∪ species{x,z},z(Jkhi)

= {{Jn.Km}h
x
yi 7→ 10000,{JI

n (K
I
m),K

I}hx
zi 7→ 100,{Jk}h

y
wi 7→ 1,

{Jk}h
z
vi 7→ 1}

Let I1 = {Jn.Km}h
x
yi, I2 = {JI

n (K
I
m),K

I}hx
zi, I3 = {Jk}h

y
wi, I4 = {Jk}h

z
vi, rn = 10s−1, rk = 5s−1 and

rm = 5s−1; then

▲P▼x = I1 7→ 10000⊕ I2 7→ 100⊕ I3 7→ 1⊕ I4 7→ 1⊕ (0, /0, /0)

= I2 7→ 100⊕ I3 7→ 1⊕ I4 7→ 1⊕ (0,S1,R1)

= I3 7→ 1⊕ I4 7→ 1⊕ (0,S2,R2)

= I4 7→ 1⊕ (0,S3,R3) = (0,S4,R4)

where

L1 = reactions(I1 7→ 10000, /0) = /0

S1 = S{I1 7→ 10000}

R1 = R∪ init(L1,(0,S1, /0)) = /0

L2 = reactions(I2 7→ 100,S1)

= ({I2 7→ 1, I1 7→ 1},10, id,{{KI}hx
zi 7→ 1,{KI

m)}h
z
wi 7→ 1,{Km}h

w
y i 7→ 1})

S2 = S1{I2 7→ 100}= {I1 7→ 10000, I2 7→ 100}

R2 = R1 ∪ init(L2,(0,S2,R1)) = {OL2
7→ (t1,a1)}

L3 = reactions(I3 7→ 1,S2) = /0

S3 = S2{I3 7→ 1}= {I1 7→ 10000, I2 7→ 100, I3 7→ 1}

R3 = R2 ∪ init(L3,(0,S3,R2)) = R2

L4 = reactions(I4 7→ 1,S3) = /0

S4 = S3{I4 7→ 1}= {I1 7→ 10000, I2 7→ 100, I3 7→ 1, I4 7→ 1}

R4 = R3 ∪ init(L4,(0,S4,R3)) = R3

96

with OL2
= ({I2 7→ 1, I1 7→ 1},10, id,{{KI}hx

zi 7→ 1,{KI
m}h

z
wi 7→ 1,{Km}h

w
y i 7→ 1})

a1 = propensity(OL2
,S2) = 10000000

t1 = 0+delay(10,10000000).

Now, the reaction O in ▲P▼x
a,O
−−→ T is OL. This means that ▲P▼x

a,O
−−→ T is derived by means of an

application of the (Reaction rule) as follows, where E = x,y,z,w, S1 = {I2 7→ 1, I1 7→ 1}, and S2 =
{{KI}hx

zi 7→ 1,{KI
m}h

z
wi 7→ 1,{Km}h

w
y i 7→ 1}:

((S1,10, id,S2),10, t1) = next(0,S4,R4) (E ′ ⊢ (0,S5,R5)) = cow(E ⊢ (0,S4,R4),S1)

E ⊢ (0,S4,R4)
10,(S1,10,id,S2)
−−−−−−−−→ norm(E ′∪ f n(S2) ⊢ (S2 ⊕ ((t1,S5,R5)⊖S1)))

where

S5 = {I1 7→ 1,{Jn.Km}h
x
y′i 7→ 9999, I2 7→ 1,{JI

n (K
I
m),K

I}hx
z′i 7→ 99, I3 7→ 1,

I4 7→ 1,{Jk}h
y′

w′i 7→ 1,{Jk}h
z′

v′i 7→ 1}

R5 = {OL2
7→ (t1,a1),O1 7→ (t2,a2),O2 7→ (t3,a3),O3 7→ (t4,a4)}

with

O1 = ({{Jn.Km}h
x
y′i 7→ 1, I2 7→ 1},10, id,{{KI}hx

zi 7→ 1,{KI
m}h

z
w′′i 7→ 1,{Km}h

w′′

y′ i 7→ 1})

O2 = ({JI
n (K

I
m),K

I}hx
z′i 7→ 1, I1 7→ 1},10, id,{{KI}hx

z′i 7→ 1,{KI
m}h

z′

w′′′i 7→ 1,{Km}h
w′′′

y i 7→ 1})

O3 = ({{Jn.Km}h
x
y′i 7→ 1,{JI

n (K
I
m),K

I}hx
z′i 7→ 1},10, id,{{JI}hx

z′i 7→ 1,{KI
m}h

z′

z′′i 7→ 1,{Km}h
z′′

y′ i})

a2 = propensity(O1,S5) = 99990

a3 = propensity(O2,S5) = 990

a4 = propensity(O3,S5) = 989901

t2 = 0+delay(10,99990)

t3 = 0+delay(10,990)

t4 = 0+delay(10,989901)

We can now compute the multiset of the new machine state:

S2 ⊕ ((t1,S5,R5)⊖S1) = S2 ⊕ ((t1,S5,R5)⊖{I2 7→ 1, I1 7→ 1})

= S2 ⊕ ((t1,S6,R6})⊖{I1 7→ 1})

= {{KI}hx
zi 7→ 1,{KI

m}h
z
wi 7→ 1,{Km}h

w
y i 7→ 1}⊕ (t1,S7,R7)

= (t1,S8,R8)

with

a′2 = propensity(O1,S6) = 0 S8 = S6 ∪{{KI}hx
zi 7→ 1,{KI

m}h
z
wi 7→ 1,{Km}h

w
y i 7→ 1}

t ′2 = t1 +(a2/a′2)(t2 − t1) R6 = {O1 7→ (t ′2,a
′
2)}

a′3 = propensity(O2,S7) = 0 R7 = R6 ∪{O2 7→ (t ′3,a
′
3)}

t ′3 = t1 +(a3/a5)(t3 − t1) R8 = R7 ∪{{{KI
m}h

z
wi 7→ 1,{Km}h

w
y i 7→ 1},5, f ,{ /0hz

wi} 7→ 1}

S6 = S5\{I2 7→ 1}

S7 = S6\{I1 7→ 1} f = λT.T [y := z]

97

6 Conclusions

In this paper, we have presented an abstract machine for the Stochastic Brane Calculus. Instead of defin-

ing an ad hoc machine, we have adopted the generic abstract machine for stochastic calculi (GSAM) re-

cently introduced by Lakin, Paulevé and Phillips. According to the encoding technique we have adopted,

membranes are flattened into a set of species, where the hierarchical structure is represented by means

of names. In order to keep track of these names, and for dealing efficiently with multiple copies of the

same species, we have introduced a new generic abstract machine, called COWGSAM, which extends

the GSAM with a name environment and a copy-on-write optimization strategy. We have proved that

the implementation of the Stochastic Brane Calculus in COWGSAM is adequate with respect to the

stochastic structural operational semantics of the calculus given in [2].

We think that COWGSAM can be used for implementing other stochastic calculi dealing with nested

structures, also beyond the models for systems biology. In particular, it is interesting to apply this ap-

proach to Stochastic Bigraphs [9], a general meta-model well-suited for representing a range of stochas-

tic systems with compartments; in this way we would obtain a General Stochastic Bigraphical Machine,

which could be instantiated to any given stochastic bigraphic reactive system. However, such a machine

would not scale well, as in general the COW strategy may be not very useful; thus, we can restrict our

attentions to smaller subsets of BRSs, specifically designed to some application domain. For biological

applications, the bigraphic reactive systems considered in [1, 7] might be a more reasonable target.

Further work include comparison with other stochastic simulation tools dealing with compartments,

like BioPEPA [6].

Acknowledgment Work funded by MIUR PRIN project “SisteR”, prot. 20088HXMYN.

References

[1] G. Bacci, D. Grohmann, and M. Miculan. Bigraphical Models for Protein and Membrane Interactions. In

G. Ciobanu, editor, Proc. MeCBIC’09, volume 11 of EPTCS, 2009.

[2] G. Bacci and M. Miculan. Measurable Stochastics for Brane Calculus. Theoretical Comput. Sci., 431:117–

136, 2012. doi:10.1016/j.tcs.2011.12.055.

[3] R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, and A. Troina. The Calculus of Looping Sequences for

Modelling Biological Membranes. In G. Eleftherakis, P. Kefalas, G. Paun, G. Rozenberg, and A. Salomaa,

editors, Workshop on Membrane Computing, volume 4860 of Lecture Notes in Computer Science, pages

54–76. Springer, 2007.

[4] L. Cardelli. Brane Calculi. In V. Danos and V. Schächter, editors, Proc. CMSB, volume 3082 of Lecture

Notes in Computer Science, pages 257–278. Springer, 2004.

[5] L. Cardelli and R. Mardare. The Measurable Space of Stochastic Processes. In Proc. QEST, pages 171–180.

IEEE Computer Society, 2010.

[6] F. Ciocchetta and M. L. Guerriero. Modelling Biological Compartments in Bio-PEPA. Electronic Notes in

Theoretical Computer Science, 227:77–95, 2009.

[7] T. C. Damgaard, E. Højsgaard, and J. Krivine. Formal Cellular Machinery. Electronic Notes in Theoretical

Computer Science, 284:55–74, 2012.

[8] H. Hermanns. Interactive Markov Chains: The Quest for Quantified Quality, volume 2428 of Lecture Notes

in Computer Science. Springer, 2002.

[9] J. Krivine, R. Milner, and A. Troina. Stochastic Bigraphs. In Proc. 24th MFPS, volume 218 of ENTCS, pages

73–96, 2008.

98

[10] M. R. Lakin, L. Paulevé, and A. Phillips. Stochastic Simulation of Multiple Process Calculi for Biology.

Theoretical Comput. Sci., 431:181–206, 2012.

[11] C. Laneve and F. Tarissan. A Simple Calculus for Proteins and Cells. Theor. Comput. Sci., 404(1-2):127–141,

2008.

[12] P. Panangaden. Labelled Markov Processes. Imperial College Press, London, U.K., 2009.

[13] L. Paulevé, S. Youssef, M. R. Lakin, and A. Phillips. A Generic Abstract Machine for Stochastic Process

Calculi. In P. Quaglia, editor, Proc. CMSB, pages 43–54. ACM, 2010.

[14] A. Regev, E. M. Panina, W. Silverman, L. Cardelli, and E. Y. Shapiro. Bioambients: An Abstraction for

Biological Compartments. Theor. Comput. Sci., 325(1):141–167, 2004.

A Some measure theory

Given a set M, a family Σ of subsets of M is called a σ -algebra if it contains M and is closed under

complements and (infinite) countable unions:

1. M ∈ Σ;

2. A ∈ Σ implies Ac ∈ Σ, where Ac = M \A;

3. {Ai}i∈N ⊂ Σ implies
⋃

i∈N Ai ∈ Σ.

Since M ∈Σ and Mc = /0, /0∈Σ, hence Σ is nonempty by definition. A σ -algebra is closed under countable

set-theoretic operations: is closed under finite unions (A,B ∈ Σ implies A∪B = A∪B∪ /0∪ /0∪ ·· · ∈ Σ),

countable intersections (by DeMorgan’s law A∩ B = (Ac ∪ Bc)c in its finite and inifite version), and

countable subtractions (A,B ∈ Σ implies A\B = A∩Bc ∈ Σ).

Definition A.1 (Measurable Space). Given a set M and a σ -algebra on M, the tuple (M,Σ) is called a

measurable space, the elements of Σ measurable sets, and M the support-set.

A set Ω ⊆ 2M is a generator for the σ -algebra Σ on M if Σ is the closure of Ω under complement

and countable union; we write σ(Ω) = Σ and say that Σ is generated by Ω. Note that the σ -algebra gen-

erated by a Ω is also the smallest σ -algebra containing Ω, that is, the intersection of all σ -algebras that

contain Ω. In particular it holds that a completely arbitrary intersection of σ -algebras is a σ -algebra. A

σ -algebra generated by Ω, denoted by σ(Ω), is minimal in the sense that if Ω ⊂ Σ and Σ is a σ -algebra,

then σ(Ω)⊂ Σ. If Ω is a σ -algebra then obviously σ(Ω) = Ω; if Ω is empty or Ω = { /0}, or Ω = {M},

then σ(Ω) = { /0,M}; if Ω ⊂ Σ and Σ is a σ -algebra, then σ(Ω)⊂ Σ. A generator Ω for Σ is a base for Σ

if it has disjoin elements. Note that if Ω is a base for Σ, all measurable sets in Σ can be decomposed into

countable unions of elements in Ω.

A measure on a measurable space (M,Σ) is a function µ : Σ → R
+
∞ , where R

+
∞ denotes the extended

positive real line, such that

1. µ(/0) = 0;

2. for any disjoint sequence {Ni}i∈I ⊆ Σ with I ⊆ N, it holds

µ(
⋃

i∈I Ni) = ∑i∈I µ(Ni) .

The triple (M,Σ,µ) is called a measure space. A measure space (M,Σ,µ) is called finite if µ(M) is a

finite real number; it is called σ -finite if M can be decomposed into a countable union of measurable sets

of finite measure, that is, M =
⋃

i∈I Ni, for some I ⊆N and µ(Ni) ∈R
+ for each i ∈ I. A set in a measure

space has σ -finite measure if it is a countable union of sets with finite measure. Specifying a measure

includes specifying its domain. If µ is a measure on a measurable space (M,Σ) and Σ′ is a σ -algebra

99

contained in Σ, then the restriction µ ′ of µ to Σ′ is also a measure, and in particular a measure on (M′,Σ′),
for some M′ ⊆ M such that Σ′ is a σ -algebra on M′.

Given two measurable spaces and measures on them, one can obtain the product measurable space

and the product measure on that space. Let (M1,Σ1) and (M2,Σ2) be measurable spaces, and µ1 and

µ2 be measures on these spaces. Denote by Σ1 ⊗Σ2 the σ -algebra on the cartesian product M1 ×M2

generated by subsets of the form B1 ×B2, said rectangles, where B1 ∈ Σ1 and B2 ∈ Σ2. The product

measure µ1 ⊗ µ2 is defined to be the unique measure on the measurable space (M1 ×M2,Σ1 ⊗Σ2) such

that, for all B1 ∈ Σ1 and B2 ∈ Σ2

(µ1 ⊗µ2)(B1 ×B2) = µ1(B1) ·µ2(B2)

The existence of this measure is guaranteed by the Hahn-Kolmogorov theorem. The uniqueness of the

product measure is guaranteed only in the case that both (M1,Σ1,µ1) and (M2,Σ2,µ2) are σ -finite.

Let ∆(M,Σ) be the family of measures on (M,Σ). It can be organized as a measurable space by

considering the σ -algebra generated by the sets {µ ∈ ∆(M,Σ) : µ(S)≥ r}, for arbitrary S ∈ Σ and r > 0.

Given two measurable spaces (M,Σ) and (N,Θ) a mapping f : M → N is measurable if for any

T ∈Θ, f−1(T)∈ Σ. Measurable functions are closed under composition: given f : M →N and g : N →O

measurable functions then g◦ f : M → O is also measurable.

B Proof of Prop. 5.4

Let P = KI
n .τ|τ0hKn.σ |σ0hP′i mP′′i then, the translation of P is ▲P▼x = E ⊢ species /0,x(P)⊕ (0, /0, /0),

where

species /0,x(P) = {s(KI
n .τ|τ0)h

x
yi}∪ species{x},y(Kn.σ |σ0hP′

imP′′)

= {({KI
n .τ}∪ s(τ0))h

x
yi 7→ 1}∪ species{x},y(Kn.σ |σ0hP′

i)∪ species{x},y(P
′′)

= {({KI
n .τ}∪ s(τ0))h

x
yi 7→ 1}∪{s(Kn.σ |σ0)h

y
wi 7→ 1}∪ species{x,y},w(P

′)∪ species{x},y(P
′′)

= {({KI
n .τ}∪ s(τ0))h

x
yi 7→ 1}∪{(s(Kn.σ)∪ s(σ0))h

y
wi 7→ 1}∪ species{x,y},w(P

′)∪ species{x},y(P
′′)

= {({KI
n .τ}∪ s(τ0))h

x
yi 7→ 1}∪{({Kn.σ}∪ s(σ0))h

y
wi 7→ 1}∪ species{x,y},w(P

′)∪ species{x},y(P
′′)

Let I1 =({KI
n .τ}∪s(τ0))h

x
yi, I2 =({Kn.σ}∪s(σ0))h

y
wi, JP′ = species{x,y},w(P

′) and JP′′ = species{x},y(P
′′);

then ▲P▼x = I1 7→ 1⊕ I2 7→ 1⊕JP′⊕JP′′⊕(0, /0, /0) = I2 7→ 1⊕JP′⊕JP′′⊕(0,S′,R′) = JP′⊕JP′′⊕(0,S′′,R′′)
where

L′ = reactions(I1 7→ 1, /0) = /0

S′ = S{I1 7→ 1}

R′ = init(L′,(0,S′, /0)) = /0

L′′ = reactions(I2 7→ 1,S′)

= ({I2 7→ 1, I1 7→ 1},rn, f ,{(s(τ)∪ s(τ0)∪ s(σ)∪ s(σ0))h
x
yi 7→ 1})

S′′ = S′{I2 7→ 1}= {I1 7→ 1, I2 7→ 1}

R′′ = init(L′′,(0,S′′,R′)) = {OL 7→ (t1,a1)}

with OL = ({I1 7→ 1, I2 7→ 1},rn, f ,{(s(τ)∪ s(τ0)∪ s(σ)∪ s(σ0))h
x
yi 7→ 1}). Now, the reaction O in

▲P▼x
F,O
−−→ T is OL. This means that ▲P▼x

F,O
−−→ T is derived by means of an application of the (Reaction rule)

as follows, where S1 = {I1 7→ 1, I2 7→ 1}, S2 = {(s(τ)∪s(τ0)∪s(σ)∪s(σ0))h
x
yi 7→ 1} and f = T [w := x]:

100

((S1,rn, f ,S2),a1, t1) = next(0,S′′,R′′) (E ′ ⊢ (0,S′′′,R′′′)) = cow(E ⊢ (0,S′′,R′′),S1)

E ⊢ (0,S′′,R′′)
a1,(S1,rn, f ,S2)
−−−−−−−−→ norm(E ′∪ f n(S2) ⊢ (f (S2 ⊕ ((t1,S

′′′,R′′′)⊖S1))))

where S′′′ = S′′ and R′′′ = R′′.

(f (S2 ⊕ ((t1,S
′′′,R′′′)⊖S1)))) =

= f ((s(τ)∪ s(τ0)∪ s(σ)∪ s(σ0)h
x
yi)⊕ ((t1,S

′′′,R′′′)⊖{I1 7→ 1, I2 7→ 1})

= f ((s(τ)∪ s(τ0)∪ s(σ)∪ s(σ0)h
x
yi)⊕ ((t1,{I1 7→ 0, I2 7→ 1},{OL 7→ (t2,a2)})⊖{I2 7→ 1})

= f ((s(τ)∪ s(τ0)∪ s(σ)∪ s(σ0)h
x
yi)⊕ (t1,{I1 7→ 0, I2 7→ 0},{OL 7→ (t3,a3)})

= (s(τ)∪ s(τ0)∪ s(σ)∪ s(σ0)h
x
yi)⊕ (t1,{I1 7→ 0, I2 7→ 0},{OL 7→ (t3,a3)})

= J′⊕ (t1,{I1 7→ 0, I2 7→ 0},{OL 7→ (t3,a3)})

Now let us define Q as Q = σ |σ0|τ|τ0hP′′imP′, then ▲Q▼x = species /0,x(Q)⊕ (0, /0, /0) where

species /0,x(Q) = species /0,x(σ |σ0|τ|τ0hP′′
imP′)

= species /0,x(σ |σ0|τ|τ0hP′′
i)∪ species /0,x(P

′)

= {s(σ |σ0|τ|τ0)h
x
yi) 7→ 1}∪ species{x},y(P

′′)∪ species /0,x(P
′)

= {s(τ)∪ s(τ0)∪ s(σ)∪ s(σ0)h
x
yi 7→ 1}∪ JP′′ ∪ JP′

= J′∪ JP′′ ∪ JP′

And hence Q ≡ ❏JP′ ⊕ JP′′ ⊕ J′⊕ (t1,{I1 7→ 0, I2 7→ 0},{OL 7→ (t3,a3)})❑x. It remains to prove that rn =
µid([Q]). Let us notice that the derivation of P −→ µ is actually as follows:

KI
n .τ −→ [KI

n]τ τ0 −→ µ
(par)

KI
n .τ|τ0 −→ [KI

n]τKI
n .τ✑τ0

µ

Kn.σ −→ [Kn]σ σ0 −→ µ ′′

(par)
Kn.σ |σ0 −→ [Kn]σKn.σ✑σ0

µ ′′ P′ −→ µ ′

(loc)
K.σ |σ0hP′i−→ µ ′@

Kn.σ |σ0

P′ ([Kn]σKn.σ✑σ0
µ ′′) P′′ −→ µ ′′′

(comp)
Kn.σ |σ0hP′imP′′ −→ (µ ′@

Kn.σ |σ0

P′ ([Kn]σKn.σ✑σ0
µ ′′))Kn.σ |σ0hP′i⊗P′′ µ ′′′

(loc)
KI

n .τ|τ0hKn.σ |σ0hP′imP′′i−→ ν

where ν = ((µ ′@
Kn.σ |σ0

P′ ([Kn]σKn.σ✑σ0
µ ′′))Kn.σ |σ0hP′i⊗S µ ′′′)@

KI
n .τ|τ0

Kn.σ |σ0hP′imP′′([K
I
n]τKI

n .τ✑τ0
µ),

µ1 = (µ ′@
Kn.σ |σ0

P′ ([Kn]σKn.σ✑σ0
µ ′′))Kn.σ |σ0hP′i⊗P′′ µ ′′′ and µ2 = [KI

n]τKI
n .τ✑τ0

µ . Then:

νid([σ |σ0|τ|τ0hP′′
imP′]) = (µ1 @

KI
n .τ|τ0

Kn.σ |σ0hP′imP′′ µ2)id([σ |σ0|τ|τ0hP′′
imP′])

= µ1id([σ |σ0|τ|τ0hP′′
imP′])+µ1exn

([σ |σ0]× [P′]× [P′′]) ·µ2KI
n
([τ|τ0])/rn

= µ1exn
([σ |σ0]× [P′]× [P′′]) ·µ2KI

n
([τ|τ0])/rn

= ((µ ′@
Kn.σ |σ0

P′ ([Kn]σKn.σ✑σ0
µ ′′))

exn
([σ |σ0]× [P′]× [P′′])+µ ′′′

exn
([σ |σ0]× [P′]× [P′′])) ·µ2KI

n
([τ|τ0])/rn

= (([Kn]σ Kn.σ✑σ0
µ ′′)Kn

([σ |σ0])+µ ′′′
exn
([σ |σ0]× [P′]× [P′′])) · ([KI

n]τKI
n .τ✑τ0

µ)
KI

n
([τ|τ0])/rn

= (([Kn]σ)Kn
([σ |σ0])+µ ′′

Kn
([σ |σ0])+µ ′′′

exn
([σ |σ0]× [P′]× [P′′])) · (([KI

n]τ)KI
n
([τ|τ0])+µKI

n
([τ|τ0]))/rn

= (rn +µ ′′
Kn
([σ |σ0])+µ ′′′

exn
([σ |σ0]× [P′]× [P′′])) · (rn +µKI

n
([τ|τ0]))/rn = rn

where the last equivalence holds because µ ′′
Kn
([σ |σ0]) = µ ′′′

exn
([σ |σ0]× [P′]× [P′′]) = µKI

n
([τ|τ0]) = 0

because we assumed that the reaction does not involve either σ0 nor τ0.

101

Work-in-Progress

Pre-Proceedings of 6th Workshop on Membrane

Computing and Biologically Inspired Process Calculi

MeCBIC 2012, Pages 105–120.

c© A. Compagnoni, M. Dezani–Ciancaglini,

P. Giannini, K. Sauer, V. Sharma, A. Troina

All the rights to the paper remain with the authors.

Parallel BioScape: A Stochastic and Parallel Language for

Mobile and Spatial Interactions

Adriana Compagnoni
Department of Computer Science
Stevens Institute of Technology

Mariangiola Dezani–Ciancaglini
Dipartimento di Informatica

Università di Torino

Paola Giannini
Dipartimento di Informatica

Università del Piemonte Orientale

Karin Sauer
Department of Biological Sciences

Binghamton University

Vishakha Sharma
Department of Computer Science
Stevens Institute of Technology

Angelo Troina
Dipartimento di Informatica

Università di Torino

BioScape is a concurrent language developed for the stochastic simulation of biological processes in

a reactive environment in 3D space. It is based on the stochastic π-Calculus process algebra, and it

is motivated by the need for individual-based, continuous motion, and continuous space simulation.

In this paper we extend BioScape with a fully parallel semantics. Keeping a general point of view, in

a fully parallel fashion, a set of movement reductions, a set of discrete interactions and a set of timed

reductions are combined to execute a step of the system.

1 Introduction

Process algebras have been successfully used in the modelling of biological systems, see [29, 10, 2],

where they are particularly attractive, because of their ability to accommodate new objects and new

behavioural attributes as the complex biological system becomes better understood.

However, most of the modelling languages lack adequate support for the design of systems in which

to study complex interactions involving both spatial properties, movements in three-dimensional space,

and stochastic interactions. Recently, new spatial modelling languages allowing explicit description

of temporal spatial dynamics of biochemical processes have been proposed (SpacePi [21], DCA [34],

LΠ [33], Stochsim [24]). Other agent-based platforms [23] include C-Immsim [31, 12] and PathSim

visualizer [28]. However, few of them support individual based, continuous motion, and continuous

space stochastic simulation [8], which are important features for modelling temporal spatial dynamics of

biochemical processes accurately. To address this problem in previous work we introduced BioScape, a

language incorporating both stochasticity and 3D spatial attributes.

BioScape is a concurrent language motivated by the biological landscapes found at the interface of

biology and biomaterials [15]. It has been motivated by the need to model antibacterial surfaces, biofilm

formation, and the effect of DNAse in treating and preventing biofilm infections. To accomplish this

modelling a strict interaction between biologists and computer scientists is needed, and therefore, also

a language with high level abstractions that may be shared by both. As its predecessor, SPiM [26], a

sequential semantics based on Gillespie’s algorithm [20] was defined for BioScape, and its implementa-

tion does not scale beyond 1000 agents. However, in order to model larger and more realistic systems a

semantics that may take advantage of the new multi-core and GPU architectures is needed. This moti-

vates the introduction of parallel semantics, which is the contribution of this paper: Parallel BioScape,

an extension with fully parallel semantics.

Gillespie’s algorithm produces two outputs in each iteration: 1) the next reaction R to be executed

and 2) a slice of time t to advance the simulation clock. Since many reactions, including many instances

of the same reaction, may be available, the slice of time t does not correspond to the time that R would

take, but an amount of time proportional to the time it would take to execute all available reactions. In

contrast, the parallel semantics will execute all available reactions, not just one instance of one reaction

R, and the first challenge is then how to calculate simulated time. Reaction times can vary substantially,

for example, some prokaryotic cell mitosis takes ten minutes, some plant cell mitosis takes about half

an hour, while some animal cell mitosis takes about three hours. So, if we trigger all reactions, how do

we advance the simulation clock? The solution we propose here consists of annotating each product of a

reaction with a timer indicating how long that reaction will take.

For example, if Cell →30 Cell | Cell means that a Cell takes 30 minutes to split into two daughter

cells, then we will annotate the two daughter cells as {{Cell}}30 and {{Cell}}30. As time lapses the timer

will be reduced, and when reaching {{Cell}}0, both cells will be available for new reactions.

Furthermore, not all reactions that start might succeed, bacterial cells in the process of splitting

might be lysed by an antibacterial agent. To account for those reactions that might fail, we consider their

stochastic rate.

1.1 Related Work

In the field of biological modelling, tools such as SPiM [25, 27] and Dizzy [30] have been used to

capture first order approximations to system dynamics using a combination of stochastic simulation and

differential equation approximation. SPiM has long been the standard tool for simulating stochastic

π calculus models. Still in the context of process algebra and biological modelling, we mention Bio-

PEPA [13], a timed process algebra designed for the description of biological phenomena and their

analysis through quantitative methods such as stochastic simulation and probabilistic model-checking.

As regards fully parallel reductions and stochasticity, Besozzi et al. [6] consider dynamical prob-

abilistic P systems where a universal clock is assumed to exist. At each step, all rules in all regions

are simultaneously applied to all objects which can be the subject of an evolution rule. The scenario is

more complex than in our case, since elements can move in and out membranes. In that paper, however,

space is not explicitly considered. Simulation results comparing a GPU-based parallel algorithm and

CPU-based Gillespie’s algorithm for BioScape can be found in [22].

In contrast to the now deep and multidimensional understanding of how tissue cells interact with

biomaterials surfaces, comparatively little is known about how surface properties influence interactions

with bacteria. Spatial information and stochasticity is crucial for the modelling of dynamic processes in a

living cell. To this extent in [9] is presented a survey on simulation techniques using Gillespie’s stochastic

method in a spatial context. The simulation algorithms and tools presented, however, do not permit to

express the complex behaviour that is possible to specify through process algebras. This expressiveness

is needed in the modelling of the domain we are interested in, that is the interaction between surface

properties and bacteria.

Cardelli and Gardner [11] introduce a geometric process algebra, that combines the interaction prim-

itives of the π-calculus with geometric transformations. In their calculus, 3π , the programmer has to

explicitly manipulate geometric primitives, while movement in BioScape is a higher level operation that

does not expect the programmer to handle collision or calculate distances. Also, as explicitly said in the

introduction, no space or timing issues are considered. The spatial calculus of looping sequences [3]

106

describes in an accurate way the space occupied by elements, without taking time into account. Colli-

sions may arise as results of transitions. This problem is solved by performing a “rearrangement” of the

elements in the system.

Interaction between entities spatially located are considered in some multi-agent systems platforms,

e.g., ByoDin, see [1]. However, in ByoDin, the behaviour of entities is driven by a set of predefined at-

tributes, and so it cannot be used to model our complex stochastic interaction. The Shape Calculus [4, 5]

is the calculus that most closely resembles BioScape: it is a CCS-like timed calculus, and its simulating

tool, BioShape, is a multi-agent system. The Shape Calculus is spatial - with a geometric notion of a

3D space - and it is shape-based, i.e. entities have geometric shapes. Shapes have velocities and their

movement takes time, while reactions are instantaneous, so modelling different phenomena than those

we can represent in our calculus. There are some other relevant differences. BioScape is stochastic, but

the Shape Calculus is not. Unlike BioScape, the Shape Calculus does not allow dynamic creation of

channels, moreover, agents in BioScape can be modified by reshaping transformations useful in mod-

elling phenomena such as cell growth, but the Shape Calculus only allows movement specified with a

velocity vector. The Shape Calculus has a time primitive for describing a delay, while BioScape has a

stochastic delay. The specification of an agent in BioScape describes an area where it is allowed to be,

but the Shape Calculus does not. This area is instrumental in describing biomaterials such as antibacterial

surfaces and preventing bacteria from penetrating the surface while allowing antibacterial molecules to

do so. On the other hand, such behaviour would have to be programmed in the description of the agent

in the Shape Calculus.

1.2 Summary

In Section 2 we introduce the syntax of the language, its operational semantics is presented in Section 3,

where we also discuss the main novelty of the paper which is the introduction of a fully parallel stochastic

reduction strategy. An example of modelling the interaction between bacteria, enzymes, and antimicro-

bial agents is presented along with the results of some simulations and 3D rendering, in Section 4, we

draw some conclusions.

2 Syntax

In Fig. 1 we define the syntax of the calculus, which slightly simplifies the syntax of [15] in order to avoid

decorating semantic processes with shapes, as defined in Section 3. We assume a set of channel names,

denoted by a and b, and a set of variables, denoted by x, y, with subscripts or superscripts, if needed.

As usual, a is a1, . . . ,an, and similar for x. The empty process is 0. By X(u) we denote an instance of

the entity defined by X . The actual parameters of the instance may be either channel names or variables,

in case the instance occurs in a definition. The process P | Q is the parallel composition of processes P

and Q. By (νa@r,rad).P we define the channel name a with two parameters r and rad∈ R≥0 within

process P; the parameter r is the stochastic rate for communications through channel a and rad is the

communication radius. The radius is the maximum distance between processes in order to communicate

through channel a, and the reaction rate determines how long it takes for two processes to react given

that they are close enough to communicate.

The heterogeneous choice is denoted by M, where π.P [+ M] means π.P | π.P + M. Choices may

have reaction branches and movement branches. The reaction branches are probabilistic (stochastic),

since reactions are subject to kinetic reaction rates, while the movement branches are non-deterministic,

107

P,Q ::= 0 Empty Process

| X(u) Entity Instance

| P | Q Parallel Composition

| (νa@r,rad).P Restriction

M ::= π.P [+ M] Choice of Prefixed Process

π ::= delay@r Delay

| !u(v) Output

| ?u(x) Input

| mov Move

D ::= /0 Empty

| D,X(x) = Mξ ,ω,σ FV(M)⊆ x Entity Definition

u,v ::= a | b | · · · | x | y | · · · Identifier

E ::= /0 Empty

| E,a@r,rad Channel Declaration

Figure 1: Syntax

since movement of instances of entities is always enabled. The prefix π denotes the action that the

process π.P can perform. The prefix delay@r is a spontaneous and unilateral reaction of a single

process, where r is the stochastic rate. The prefix !u denotes output and the prefix ?u denotes input. The

prefix mov moves processes in space according to their diffusion rate (ω) (see below). We use standard

syntactic abbreviations such as π for π.0.

We denote by D a global list of definitions. The equality X(x) = Mξ ,ω,σ defines process X with

formal parameters x, to be the choice M with geometry ξ ,ω,σ , specifying a movement space ξ , a step

ω , and a shape σ . M describes the behaviour of X with a choice of prefixed processes. The selection of

one of the choices depends not only on the available interactions with other processes, but also on the

available space. The movement space ξ is a set of point coordinates in the global coordinate system

defining a volume. Intuitively, X can move within ξ . The step ω ∈ R≥0, is the distance that X can stir

in a movement, and it corresponds to the diffusion rate of X ; σ is the three-dimensional shape (sphere,

cube, etc.) of X . The movement space for the empty process 0 is everywhere, the global space, and

its movement step is 0 by default. X can be defined at most once in D, and the free variables of P,

denoted by FV(P), must be a subset of the variables x. We also write X(x) = (π.π ′.P)ξ ,ω,σ as short for

X(x) = (π.Y (x))ξ ,ω,σ and Y (x) = (π ′.P)ξ ,ω,σ .

We use E to range over environments of channel name declarations. By a@r,rad we declare channel

name a with reaction rate r and reaction radius rad. A channel name a appears at most once in E.

Consider the following simple example of a bacterium Bac, that can either move or divide into two

daughter cells. Bac is defined with movement space movB, movement step stepB, and shape shapeB.

Intuitively, bacteria can move within movB, with non-deterministic steps of length stepB, and the shape

shapeB is at all times contained within movB. The prefix mov represents a non-deterministic move-

ment of length stepB, whereas delay@1.0.(Bac() | Bac()) represents mitosis, the division of a

108

S.LOC

P ≡ Q

{P}µ ≡ {Q}µ

S.LOC.NU

(νa@r,rad).{P}µ ≡ {(νa@r,rad).P}µ

S.LOC.PAR

µ1(shape(P))∪µ2(shape(Q)) = µ(shape(P | Q))

{P}µ1
| {Q}µ2

≡ {P | Q}µ

S.NU.COM

(νa@r,rad).(νb@r′,rad′).A ≡ (νb@r′,rad′).(νa@r,rad).A

S.NU.PAR

a 6∈ fn(B)

((νa@r,rad).A) | B ≡ (νa@r,rad).(A | B)

Figure 2: Structural Equivalence of Spatial Configurations

bacterium into two daughter cells: Bac() | Bac(), and the delay@1.0 prefix is used to model the fact

that division is not an instantaneous reaction.

Bac() = (mov.Bac() + delay@1.0.(Bac()|Bac()))movB,stepB,shapeB

3 Operational Semantics

A run-time system is represented by a parallel composition of entity instances (without free variables)

each with its shape, and located in some positions of a global frame. We define the shape of processes

inductively as follows:

shape(0) = /0 shape(X(a)) = σ if X(x) = Mξ ,ω,σ ∈ D

shape((νa@r,rad).P) = shape(P) shape(P | Q) = shape(P)⋒shape(Q)

where ⋒ gives a shape obtained by composing two shapes trough juxtaposition. For different applications

we can choose suitable functions to realise ⋒, we only require ⋒ to be a commutative and associative

operator, i.e. σ1⋒σ2 = σ2⋒σ1 and (σ1⋒σ2)⋒σ3 = σ1⋒ (σ2⋒σ3).
We use µ to denote a map which applied to a shape locates it in the global space, by putting its

barycentre at a fixed point, orienting the shape, and possibly modifying it. So µ(shape(P)) computes

the space occupied by a process P in the global coordinate system. Processes may also share channels

for communication. Spatial configurations, denoted by A, B, . . . are defined as follows:

A,B ::= {P}µ | A | B | (νa@r,rad).

Structural equivalence on configurations is defined in Fig. 2, omitting the rules for associativity and

commutativity of | and +. Rule S.LOC uses the standard structural equivalence of Pi-calculus processes.

We assume that structural equivalence on spatial configurations is also such that parallel composition

is commutative, associative, and has neutral element {0}µ for any µ . The premise of rule S.LOC.PAR

assures that the two equivalent processes occupy exactly the same space. In rule S.NU.PAR, fn is a

function that returns the set of free channel names of a configuration.

The (parallel) operational semantics of BioScape is based on two auxiliary reduction relations: a

stochastic relation, E ⊢ A
r
−→B, for reactions such as synchronisation and delay, defined in Fig. 3, and a

non-deterministic (non-stochastic) relation, A−→B, for geometric transformations, in our case movements,

defined in Fig. 4. Notice that reduction axioms (SR.DELAY, SR.COM, NR.MOVE) only involve entities

(X(a)), and entities evolve according to one of the choices in their definition.

Note that the evolution of systems in parallel BioScape follows the parallel reduction rules of Fig. 6,

where space and time are checked.

109

Figure 3 defines the stochastic reduction relation of BioScape, E ⊢ A
r
−→B, where r is the rate of the

channel used for synchronization or delay. We write dis(µ,µ ′) for the distance between the origin of

µ and the origin of µ ′. In rule SR.COM the condition dis(µ,µ ′) ≤ rad ensures that located processes

{P}µ and {Q}µ ′ are close enough to communicate through channel a.

The non-stochastic reduction relation of BioScape, A−→B, is defined in Fig. 4. By translate(ω ,µ)

we denote the function that randomly generates a new map µ ′, using the movement step ω and the old

map µ . The condition µ ′(σ)⊆ ξ of rule NR.MOVE ensures the new located process {P[a/x]}µ ′ is within

the movement space ξ of X .

For stochastic reductions we compute the duration of the reduction, based on the exponential distri-

bution associated with the propensity of the reduction. Since reductions may have different durations, we

introduce timed configurations, {{A}}n, meaning that, after a time n, this configuration will be A. With

the metavariables F , and G we denote either spatial configurations or timed configurations, i.e.,

F,G ::= A | {{A}}n | F | G | (νa@r,rad).F (n ≥ 0)

We extend structural equivalence to timed configurations in Fig. 5.

We define a reduction strategy that given the whole configuration, first moves all the processes that

can be moved, and then executes all the stochastic reductions that can be executed, omitting only reduc-

tions which would lead some entities to clash. Both non-stochastic and stochastic reductions are applied

in parallel. For this purpose, we define multi-hole contexts C by the following grammar:

C ::= F | [] | C |C | (νx@r,rad).C

Congruence on multi-hole contexts is naturally induced by the congruence on configuration, associativity

and commutativity of the parallel operator, and standard rules for ν restrictions similar to S.NU.COM

and S.NU.PAR. Given this congruence any multi-hole context, C, may be written in a canonical form.

That is, there is C′, C ≡C′ such that

C′ = ν1. . . .νn.F1 | · · · | Fm | [] | · · · | [] (1)

where νi, 1 ≤ i ≤ n, is an abbreviation for νai@ri,radi, and for all j, 1 ≤ j ≤ m, Fj = {{A}}n for some

A, and n, or Fj = {P}µ for some P, and µ . We say that a1@r1,rad1, . . . ,a1@r1,radi is restr(C). In

the following we assume that multi-hole contexts are always in canonical form.

SR.DELAY

X(x) = (delay@r.P [+ M])ξ ,ω,σ ∈ D

E ⊢ {X(a)}µ
r
−→{P[a/x]}µ

SR.COM

X(x) = (!a(b).P [+ M])ξ ,ω,σ ∈ D Y (y) = (?a(z).Q [+ N])ξ ′,ω ′,σ ′

∈ D dis(µ,µ ′)≤ rad

E,a@r,rad ⊢ {X(c)}µ | {Y (d)}µ ′
r
−→{P[c/x]}µ | {Q[d/y][b/z]}µ ′

SR.STR

A ≡ A′ E ⊢ A′ r−→B′ B′ ≡ B

E ⊢ A
r
−→B

Figure 3: Stochastic Reduction Relation

110

NR.MOVE

µ ′ = translate(ω,µ) µ ′(σ)⊆ ξ X(x) = (mov.P [+ M])ξ ,ω,σ ∈ D

{X(a)}µ−→{P[a/x]}µ ′

NR.STR

A ≡ A′ A′−→B′ B′ ≡ B

A−→B

Figure 4: Non-stochastic Reduction Relation

Our reduction strategy avoids spatial clashes. In particular for moving reductions we have to ensure

that moves and reshaping are compatible with the available space, that is after moving no entity overlaps

another entity. For stochastic reductions we have to assure that the created entities have their space. To

this aim we define the space of a configuration, and a predicate that says whether a configuration does

not have any overlapping entities.

Let space(F) be a function on configuration F that returns the space occupied by its processes

located in the global frame defined as follows.

space({P}µ) = µ(shape(P)) space({{A}}n) = space(A)
space(F | G) = space(F)∪space(G) space((νa@r,rad).F) = space(F)

We say that a configuration F is OK if the various entities in F do not overlap, that is:

{P}µ OK A OK ⇒ {{A}}n OK F OK ⇒ (νx@r,rad).F OK

F OK ∧ G OK ∧ space(F)∩space(G) = /0 ⇒ F | G OK

With the notion of OK configuration we define two notions of well-formedness of configurations.

The first to be used for parallel move reductions and the second for parallel stochastic reductions. We

say that a configuration obtained by a set of parallel moves is OKmv if it is OK and any “extra” movement

would produce a clash, i.e. a configuration where some entities occupy the same space. Similarly we say

that a configuration obtained by a set of stochastic transformations is OKst if it is OK and any “extra”

transformation would produce a clash. In order to formalise this we first need to single out the sets ℜmv

and ℜst of movement and stochastic redexes, i.e. we define:

• ℜmv = {{X(a)}µ | X(x) = (mov.P+M)ξ ,ω,σ ∈ D},

• ℜst = {{X(a)}µ | X(x) = (delay@r.P+M)ξ ,ω,σ ∈ D}∪

{{X(c)}µ | {Y (d)}µ ′ | X(x) = (!a(b).P+M)ξ ,ω,σ ∈ D & Y (y) = (?a(z).Q+N)ξ ′,ω ′,σ ′
∈ D}

It is also handy to extend the syntax of configurations by allowing underlined spatial configurations. We

can then define:

Definition 3.1 (i) An extended configuration F is OKmv if F is OK and F ≡ C[A] with A not under-

lined and A ∈ ℜmv and A−→B imply C[B] not OK.

(ii) An extended configuration F is OKst if F is OK and F ≡C[A] with A not underlined and A ∈ ℜst

and A
r

−→B imply C[B] not OK.

S.TI

A ≡ B

{{A}}n ≡ {{B}}n

S.TI.ZERO

{{A}}0 ≡ A

Figure 5: Structural Equivalence of Timed Configurations

111

PR.MOVE

Fi−→Gi (1 ≤ i ≤ p) C[G1] · · · [Gp] OKmv

C[F1] · · · [Fp]֌C[G1] · · · [Gp]

PR.STOC

restr(C) ⊢ Ai
ri−→Bi ni = τ(ri,Ci[Ai]) (1 ≤ i ≤ p) C[C1[B1]] · · · [Cp[Bp]] OKst

C[C1[A1]] · · · [Cp[Ap]] 99KC[C1[{{B1}}
n1]] · · · [Cp[{{Bp}}

np]]

PR.TIMED

n = min{ni | 1 ≤ i ≤ p} C is timed

C[{{A1}}
n1] · · · [{{Ap}}

np] C[{{A1}}
n1−n] · · · [{{Ap}}

np−n]

PR.CONF

F֌ F1 99K F2 F ′

F−→F ′

Figure 6: Parallel Reduction Relation

As a last notion, we say that a context C is timed if it does not contain timed configurations.

We are now able to explain our parallel reduction strategy, whose rules are given in Fig. 6. The

first three rules deal respectively with parallel movements, stochastic reductions and timed reductions,

while the fourth rule maps configurations into configurations by applying first the parallel movements,

then the stochastic interactions, and finally by advancing the time of the minimum required to complete

one or more interaction. In this way at the next iteration there would be new entities to be moved and/or

stochastically reduced.

The condition of obtaining an OKmv extended configuration in rule PR.MOVE assures that all pos-

sible moves in C[F1] · · · [Fp] which do not cause clash have been done in the reduction. Similar effect is

produced by the conditions that the extended configuration is OKst and that the context is timed in the

following two rules, respectively. Rule PR.STOC prescribes that the time of a stochastic reaction de-

pends (through the function τ) on the rate of the reduction and on the number of available reactants. The

context Ci of the redex Ai is a single hole context capturing the surrounding environment t hat influences

the speed of the reduction. In the following section we discuss its use.

3.1 Stochastic Fully Parallel Reductions

Combining stochastic reductions in a fully parallel way could give rise to subtle situations in which

the evolution of a system may lead towards several different possible routes. In this paper, we defined

the calculus in the more general possible way and left all the different possible executions as a system

nondeterministic choice. Note that other solutions could be used according to the particular scenario in

which the calculus is applied. As an example, all the possible fully parallel reductions could be weighted

and normalised, and the one to be executed could be chosen in a probabilistic fashion.

An example. Consider a molecule e which can react with molecules p1 and p2 resulting, respectively,

in the molecules p1’ and p2’. In BioScape we could model such reactions through two communications

on channels ch1 and ch2:

e() = !ch1() + !ch2() p1() = ?ch1().p1’() p2() = ?ch2().p2’()

The stochasticity of each reaction is given by the declared channel communication rate, we suppose them

to be r1 (for ch1) and r2 (for ch2). In this particular situation, the channel communication rate could be

112

used to express the kinetic constant of the described chemical reaction. If we take an initial process built

as the parallel composition of the processes

e() | e() | p1() | p1() | p2() | p2()

three different parallel executions could be expressed.1 In particular, the following parallel reductions

might arise (leading to tree different system evolutions):

• {{p1’()}}n1 | {{p1’()}}n2 | p2() | p2()

• {{p1’()}}n | {{p2’()}}m | p1() | p2()

• {{p2’()}}m1 | {{p2’()}}m2 | p1() | p1()

where n,n1 and n2 are computed from an exponential probability distribution with rate r1 and m,m1 and

m2 are computed according to rate r2.

Stochastic fully parallel reductions and Gillespie’s SSA. Consider the simpler case in which a single

reaction rule might happen, for example focusing on the two processes

e()=!ch() p()=?ch().p’()

with kinetic constant r as the rate for ch. In an initial system consisting of the parallel composition of

100 processes of definition e() and 1000 processes of definition p() (all of them, assumed to be within

communication range), the only possible fully parallel reduction (up to the probability distribution return

values ni) is:

• {{p’()}}n1 | {{p’()}}n2 | . . . | {{p’()}}n100 | p() . . .p()
︸ ︷︷ ︸

900

In the above example, all ni values are computed initially with rate r, in Gillespie’s SSA single reactions

are applied sequentially with propensities varying from the initial value of 100∗1000∗r (number of e()

molecules times the number of p() molecules times the kinetic constant), to the final value 1 ∗ 901 ∗r
(when there is only one e() molecule left that might react with 901 different p()).

To approximate Gillespie algorithm with the fully parallel approach we should incorporate in the

τ function a counting mechanism keeping track of the available reactants in the communication range

(in a way similar to what is done, e.g., in [19, 7] or [18, 16, 17]). In order to approximate Gillespie’s

algorithm when different reactions could take place, the set of fully parallel possible outputs needs to

be weighted according to a probability distribution taking into account the propensities of the different

reactions applied. The resulting method shall give an approximation of Gillespie’s SSA in the lines of

the tau–leaping technique [32].

4 Concurrent Modeling of Bacteria–DNase–Antimicrobial Interactions

Infections are now recognised as a leading cause of failure in implanted biomedical devices. They occur

when bacteria colonise a device’s biomaterial surface, develop into biofilms (Figure 7), and infect the

surrounding tissue. Bacteria in the biofilm state are orders of magnitude more resistant to antibiotics

than bacteria in the planktonic state. Thus, the current practice of systemic delivery of broad spectrum

1For simplicity, we omit here the spatial configurations and assume that all processes are in the range of communication,

thus mimicking a well–stirred mixture of elements.

113

Figure 7: Biofilm developmental stages

antibiotics ultimately exacerbate the problem by selecting for drug-resistant strains rather than curing

the infection. One current clinical practice includes localised rather than systemic delivery of antibac-

terial agents (AmAs) from inserted delivery reservoirs in the implant area. Yet such treatment is not

particularly efficient in preventing post-surgery implant infection, because of the high doses required,

the toxicity issues, and the eventual depletion of the drug from the reservoir. Therefore standard clinical

practice to deal with infected implanted medical devices is to remove the implant altogether and, when

possible, perform a revision surgery with a second implant when the infection has cleared. This, how-

ever, has tremendous impact on patient well-being and increases the total cost by an order of magnitude

or more. The infection-related failure rate ranges from 0.5% to 4% for hip and knee implants, and it

can be as high as 40% for fixation devices used in the treatment of traumatic orthopedic injury. The

total cost of this problem to the American health-care system is over $6 billion annually. Therefore,

engineering biomaterials whose surfaces prevent bacterial attachment or deliver antibacterial agents in

targeted and efficient ways is an important yet unsolved problem, from both the fundamental and the

clinical perspectives.

Biofilms are complex communities of microorganisms attached to surfaces and embedded in a self–

produced extracellular matrix. The extracellular matrix (ECM) can constitute up to 90% of the biofilm

biomass and provides a hydrated scaffolding to stabilise and reinforce the biofilm structure. The impor-

tance of extracellular genomic DNA (eDNA) as a structural component of biofilms was first demonstrated

in P. aeruginosa. Whitchurch et al. demonstrated that P. aeruginosa PAO1 biofilm formation was atten-

uated under static growth conditions and significantly reduced under flowing growth conditions by the

presence of DNase in the growth medium (Figure 8).

4.1 BioScape Modeling

We now build a prototype model of bacteria–DNase–antimicrobial interactions in solution. The simula-

tion starts with a number of bacteria irreversibly attached to the surface (bacBinit) interacting with a set

of antimicrobial agents (AmA) and DNAse enzymes in solution.

Notably the example is written according to both the syntax of [15] and the current one, so that we

can compare simulations with both semantics. These simulations will be part of the final version of this

paper, in the present version we only put in the appendix results relative to a different example.

directive sample 12.0 200

directive plot bacBinit();bacB(); bacDead(); AmA(); bacF(); DNAse(); eDNA(); bioMass()

114

Figure 8: Visualisation of extracellular DNA in P. aeruginosa biofilms. The arrow indicates propidium

iodide (PI) stainable eDNA. Intracellular DNA was stained with SYTO40. The composite image depicts

the overlay of PI and SYTO40 stained confocal image.

val top_right = <1.0, 2.0, 3.0>

val bacterialGrowthLayer:space = cuboid(100.0, 100.0, 100.0) @ top_right

val initialBacBLayer:space = cuboid(100.0,100.0,100.0)@ top_right

val step = 5.0

val radius = 1000.0

val radius1 = 1000.0

val radius2 = 1000.0

(* --- *)

(* Channels *)

(* --- *)

new kill@4.0, radius:chan() (* comm. between AmA and bacDisp *)

new lysis@3.0, radius1:chan() (* comm. between DNAse and eDNA *)

new disperse@2.0, radius2:chan() (* comm. between eDNA and bacB *)

(* --- *)

(* Species *)

(* --- *)

let bacBinit()@initialBacBLayer, 0 , sphere(1.0) = delay@0.5; bacB()

and bacB()@bacterialGrowthLayer , step , sphere(1.0) =

do delay@0.5; (bacB()|bacB())

or delay@0.5; bioMass()

or delay@0.5; eDNA()

or ?disperse; bacDisp()

and bioMass()@bacterialGrowthLayer , step , sphere(1.0) = delay@0.5; bioMass()

and eDNA()@bacterialGrowthLayer , step , sphere(1.0) = ?lysis;()

and bacDisp()@bacterialGrowthLayer , step , sphere(1.0) =

do delay@4.0; (bacDisp()|bacDisp())

115

! !

Figure 9: BioScape simulation results for two different executions with identical initial concentrations

of the model of bacteria–DNase–antimicrobial interactions in solution

or ?kill; bacDead()

or mov; bacDisp()

and bacDead()@bacterialGrowthLayer , step ,sphere(1.0) = delay@1.0;bacDead()

and DNAse()@bacterialGrowthLayer , step , sphere(1.0) = do !lysis;!disperse;()

or mov; DNAse()

and AmA()@bacterialGrowthLayer , step , sphere(1.0) = do !kill;()

or mov; AmA()

After a few interactions, several runs of the calculus give rise to clusters containing extracellular

DNA (eDNA), biomass, and bound bacteria (bacB) representing biofilms.

In this prototype model we assume the same diffusion rate for all species (step), and we use reaction

rates and radii that have not yet been validated with wet lab experimental data. We start with bacteria

bound to the substrate (bacBinit) that become bound bacteria (bacB). The need for the different species

arises because while bound bacteria can grow forming layers beyond the surface (bacterialGrowthLayer),

the initial conditions only account for bound bacteria on the substrate (initialBacBLayer), a smaller area

than that where a biofilm can develop.

Bound bacteria can secrete biomass and eDNA as they metabolize and decay, and they can be dis-

persed by DNAse. Biomass is part of the biofilm. Dispersed bacteria (bacDisp) can multiply, similar

to bacB, can be killed by AmA, becoming bacDead, and they can also move. DNAse lyses eDNA pro-

ducing a gap in the extra cellular matrix (ECM) and consequently dispersing bacteria, and they can also

move.

DNAse()@bacterialGrowthLayer , step , sphere(1.0) = do !lysis; !disperse;()

or mov; DNAse()

is a shorthand for

DNAse()@bacterialGrowthLayer , step , sphere(1.0) = do !lysis; aux()

or mov; DNAse()

and aux()@bacterialGrowthLayer , step , sphere(1.0) = !disperse;()

Simulation results for this model can be seen in Figures 9 and 10.

116

Figure 10: Simulation results rendering using Autodesk Maya animation tool. Color Key: Bac-

teria bacDisp() green; Drug Molecule AmA() dark blue; DNAse DNAse() purple; eDNA eDNA()

turquoise/light blue; BioMass bioMass() Black; Dispersing Bacteria bacB() yellow; Killed Bacteria

bacDead() red

5 Conclusions

In this paper, we have presented a fully parallel extension of the BioScape process algebra. Also, we

have added some spatial well–formedness conditions to avoid reductions that could give rise to spatial

overlapping between the shapes of different processes. The calculus now offers a wide variety of features,

ranging from geometrical descriptions to stochastic evolution and fully parallel reductions. BioScape has

been extensively used in recent years to model antibacterial surfaces, biofilm formation, and the effect of

DNAse in treating and preventing biofilm infections [15, 2, 14].

While BioScape processes are free to move (when they do not clash or overlap) the shape of a

BioScape process is constant during the evolution. A possible extension of the calculus consists of a se-

mantics enriched with features to deal with dynamic shapes, thus allowing a processes to change its shape

in an explicit way. An alternative way of achieving this in some cases is using affine transformations in

rule NR.MOVE.

Also, note that processes within a timed configuration are not allowed to interact until the time of

their preceding reduction has elapsed but it might be the case that other reactions could occur during the

given time window. An extension of the model could consider a wider set of interactions allowing some

kind of reactivity for timed configurations.

While Gillespie’s algorithm sequentializes an inherently parallel system, and therefore requires a

mathematical model to justify the relation between chemical reactions in a homogeneous volume and a

sequential algorithm, our semantics closely captures the world we attempt to model. While in the real

world movement and reaction happen simultaneously, our implementation splits the process into two

phases: motion and reaction. Entities move in an instantaneous way. The reaction step creates timed

entities that will become available when the time it takes to complete the reaction finishes, exactly as

117

it happens in real phenomena. A simulation clock ticks in the same way reaction time lapses in a the

real world. Therefore, we believe that a comparison with Gillespies algorithm could be an interesting

intellectual exercise, but, justifying an algorithm that closely matches the real world, may result in an

unnecessarily complicated artefact.

Acknowledgment We are grateful to Emily Routenberg for the rendering in Fig. 10. This research

is founded by the BioBITs Project (Converging Technologies 2007, area: Biotechnology–ICT), Regione

Piemonte.

References

[1] P. Ballet. SimBioDyn: Multiagent System for Dynamic Biological Processes. http://pagesperso.

univ-brest.fr/~ballet/pages/8.html, 2012.

[2] Y. Bao, A. B. Compagnoni, J. Glavy, and T. White. Computational Modeling for the Activation Cycle of

G-proteins by G-protein-coupled Receptors. In Proceedings Fourth Workshop on Membrane Computing and

Biologically Inspired Process Calculi 2010. (MeCBIC), number 40 in Electronic Proceedings in Theoretical

Computer Science, pages 39–53, 2010.

[3] R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, and G. Pardini. Spatial Calculus of Looping Sequences.

Theoretical Computer Science, 412(43):5976–6001, 2011.

[4] E. Bartocci, D. R. Cacciagrano, M. R. D. Berardini, E. Merelli, and L. Tesei. Timed Operational Semantics

and Well-formedness of Shape Calculus. Sci. Ann. Comp. Sci., 20:32–52, 2010.

[5] E. Bartocci, F. Corradini, M. R. D. Berardini, E. Merelli, and L. Tesei. Shape Calculus. A Spatial Mobile

Calculus for 3d Shapes. Sci. Ann. Comp. Sci., 20:1–31, 2010.

[6] D. Besozzi, P. Cazzaniga, D. Pescini, and G. Mauri. A Multivolume Approach to Stochastic Modelling with

Membrane Systems. Algorithmic Bioprocesses, pages 519–542, 2009.

[7] L. Bioglio, M. Dezani-Ciancaglini, P. Giannini, and A. Troina. Typed Stochastic Semantics for the Calculus

of Looping Sequences. Theoretical Computer Science, 431:165–180, 2012.

[8] A. T. Bittig and A. M. Uhrmacher. Spatial Modeling in Cell Biology at Multiple Levels. In Winter Simulation

Conference, pages 608–619, 2010.

[9] K. Burrage, P. Burrage, A. Leier, T. Marquez-Lago, and J. Nicolau, DanV. Stochastic Simulation for Spatial

Modelling of Dynamic Processes in a Living Cell. In H. Koeppl, G. Setti, M. di Bernardo, and D. Densmore,

editors, Design and Analysis of Biomolecular Circuits, pages 43–62. Springer New York, 2011.

[10] L. Cardelli, E. Caron, P. Gardner, O. Kahramanogullari, and A. Phillips. A Process Model of rho gtp-binding

Proteins. Theor. Comput. Sci., 410(33-34):3166–3185, 2009.

[11] L. Cardelli and P. Gardner. Processes in Space. Theoretical Computer Science, 431(0):40–55, 2012.

[12] F. Castiglione and M. Bernaschi. C-immsim: Playing with the Immune Response. In Proceedings of the

Sixteenth International Symposium on Mathematical Theory of Networks and Systems (MTNS2004), 2004.

[13] F. Ciocchetta and J. Hillston. Bio-PEPA: An Extension of the Process Algebra PEPA for Biochemical Net-

works. In Proc. of 1st Workshop ”From Biology To Concurrency and back (FBTC), Lisbon, Portugal, volume

194 of Electr. Notes Theor. Comput. Sci., pages 103–117. Elsevier, 2008.

[14] A. Compagnoni. Bioscape website. http://www.cs.stevens.edu/~abc/

ComputationalSystemsBiology/Computational_Systems_Biology.html.

[15] A. Compagnoni, V. Sharma, Y. Bao, P. Bidinger, L. Bioglio, E. Bonelli, M. Libera, and S. Sukhishvili.

Bioscape: A Modeling and Simulation Language for Bacteria-materials Interactions. In P. Giannini and

E. de Vink, editors, CS2Bio’12. 3rd International Workshop on Interactions between Computer Science and

Biology 16th of June 2012- Stockholm, Sweden, ENTCS, 2012. To appear.

118

http://pagesperso.univ-brest.fr/~ballet/pages/8.html
http://pagesperso.univ-brest.fr/~ballet/pages/8.html
http://www.cs.stevens.edu/~abc/ComputationalSystemsBiology/Computational_Systems_Biology.html
http://www.cs.stevens.edu/~abc/ComputationalSystemsBiology/Computational_Systems_Biology.html

[16] M. Coppo, F. Damiani, M. Drocco, E. Grassi, E. Sciacca, S. Spinella, and A. Troina. Hybrid Calculus

of Wrapped Compartments. In Proc. of 4th Workshop on Membrane Computing and Biologically Inspired

Process Calculi (MeCBIC), Jena, Germany, volume 40, pages 102–120. EPTCS, 2010.

[17] M. Coppo, F. Damiani, M. Drocco, E. Grassi, E. Sciacca, S. Spinella, and A. Troina. Simulation Techniques

for the Calculus of Wrapped Compartments. Theoretical Computer Science, 431:75–95, 2012.

[18] M. Coppo, F. Damiani, M. Drocco, E. Grassi, and A. Troina. Stochastic Calculus of Wrapped Compart-

ments. In Proceedings Eighth Workshop on Quantitative Aspects of Programming Languages (QAPL), Pa-

phos, Cyprus, volume 28, pages 82–98. EPTCS, 2010.

[19] M. Dezani-Ciancaglini, P. Giannini, and A. Troina. A Type System for a Stochastic CLS. In Proc. of 4th

Workshop on Membrane Computing and Biologically Inspired Process Calculi (MeCBIC), Bologna, Italy,

volume 11, pages 91–105. EPTCS, 2009.

[20] D. T. Gillespie. Exact Stochastic Simulation of Coupled Chemical Reactions. The Journal of Physical

Chemistry, 81(25):2340–2361, Dec. 1977.

[21] M. John, R. Ewald, and A. M. Uhrmacher. A Spatial Extension to the Pi Calculus. Electron. Notes Theor.

Comput. Sci., 194:133–148, 2008.

[22] J. Li, V. Sharma, N. Ganesan, and A. Compagnoni. Simulation and Study of Large-scale Bacteria-materials

Interactions Via Bioscape Enabled Gpus. In Proceedings of ACM-BCB 2012, 2012. To appear.

[23] C. Macal and M. North. Tutorial on Agent-based Modelling and Simulation. Journal of Simulation, 4(3):151–

162, 2010.

[24] N. L. Novère and T. S. Shimuzu. Stochsim: Modelling of Stochastic Biomolecular Processes. BioInformatics,

17(6):575–576, 2001.

[25] A. Phillips and L. Cardelli. A Correct Abstract Machine for the Stochastic Pi-calculus. In Proc. of BIOCON-

CUR, London, England, Electr. Notes Theor. Comput. Sci., 2004.

[26] A. Phillips and L. Cardelli. Efficient, Correct Simulation of Biological Processes in the Stochastic Pi-calculus.

In Computational Methods in Systems Biology, volume 4695 of LNCS, pages 184–199. Springer, September

2007.

[27] A. Phillips and L. Cardelli. Efficient, Correct Simulation of Biological Processes in the Stochastic Pi-calculus.

In In Proc. of Intl. Conference on Computational Methods in Systems Biology (CMSB), Edinburgh, Scotland,

volume 4695 of LNCS, pages 184–199. Springer, 2007.

[28] N. F. Polys, D. A. Bowman, C. North, R. Laubenbacher, and K. Duca. Pathsim Visualizer: An Information-

rich Virtual Environment Framework for Systems Biology. In Web3D 04: Proceedings of the ninth interna-

tional conference on 3D Web technology, pages 7–14, New York, NY, USA, 2004. ACM, ACM.

[29] C. Priami, A. Regev, E. Y. Shapiro, and W. Silverman. Application of a Stochastic Name-passing Calculus

to Representation and Simulation of Molecular Processes. Inf. Process. Lett., 80(1):25–31, 2001.

[30] S. Ramsey, D. Orrell, and H. Bolouri. Dizzy: Stochastic Simulation of Large-scale Genetic Regulatory

Networks (Supplementary Material). J. Bioinformatics and Computational Biology, 3(2):437–454, 2005.

[31] N. Rapin, O. Lund, and F. Castiglione. Immune System Simulation Online. Bioinformatics, 2011.

[32] M. Rathinam, L. R. Petzold, Y. Cao, and D. T. Gillespie. Stiffness in Stochastic Chemically Reacting Sys-

tems: The Implicit Tau-leaping Method. The Journal of Chemical Physics, 119(24):12784–12794, 2003.

[33] A. Stefanek, M. Vigliotti, and J. T. Bradley. Spatial Extension of Stochastic Pi Calculus. In 8th Workshop on

Process Algebra and Stochastically Timed Activities, pages 109–117, 2009.

[34] D. S. Wishart, R. Yang, D. Arndt, P. Tang, and J. Cruz. Dynamic Cellular Automata: An Alternative Approach

to Cellular Simulation. In Silico Biology, 5(2):139–161, 2005.

119

A CPU and GPU Simulation Results

To substantiate our scalability claims, in this section we include simulation results comparing a CPU-

based and a GPU-based implementation of a model of an antibacterial surface embedded with antibacte-

rial agents (AmAs), where pH variations (Hydronium ion concentration) caused by the metabolic activity

of bacteria triggers the release of AmAs. We anticipate similar scalability results for the example in Sec-

tion 4.

The simulation results shown in Figure 11 are from our work “Simulation And Study Of Large-Scale

Bacteria-Materials Interactions Via BioScape Enabled By GPUs” to appear in the proceedings of ACM-

BCB 2012 [22]. In Figure 11(Left b), the GPU simulation results show that initial concentration of

surface bound AmAs of 10,000 particles are sufficient to kill 1000 bacteria in 1000 time steps, while

(Left c) and (d) plots exhibit insufficient initial concentrations to control infection.

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3
x 10

5

(d)

0 10 20 30 40 50
0

200

400

600

800

1000

(a)

P
ar

tic
le

 C
on

ce
nt

ra
tio

n

0 200 400 600 800 1000
0

2000

4000

6000

8000

10000

12000

14000

 (b)

MOLF
BACF
HION

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3
x 10

5

 (c)

P
ar

tic
le

 C
on

ce
nt

ra
tio

n

Time Step

Time Step

Time Step

Time Step

Figure 11: (Left) Results of CPU and GPU simulation. (a) CPU simulation results for 50 BacF/1,000

MolB. (b,c,d) GPU simulation results for different initial concentrations: (b) 1,000 BacF/10,000 MolB,

(c) 100,000 BacF/30,000 MolB, (d) 100,000 BacF/200,000 MolB. (Right) (a,b) Particle distribution at

time 10 and 100. (c) Performance of GPU simulation in real execution time w.r.t total number of particles.

120

Pre-Proceedings of 6th Workshop on Membrane

Computing and Biologically Inspired Process Calculi

MeCBIC 2012, Pages 121–132.

c© Masahiro Hamano

All the rights to the paper remain with the authors.

RNA-interference and Register Machines

Masahiro Hamano

PRESTO , Japan Science and Technology Agency (JST)

4-1-8 Honcho Kawaguchi, Saitama 332-0012, JAPAN.

hamano@is.s.u-tokyo.ac.jp

RNA interference (RNAi) is a mechanism where small RNAs (siRNAs) directly control gene expres-

sion without the bypass of proteins. This mechanism consists of interactions among RNAs and small

RNAs both of which are either of single or double stranded forms. The target of the mechanism

is mRNA to be degraded or aberrated and the initiator of it is double stranded RNA (dsRNA) to

be cleaved into siRNAs. Observing RNAi’s digital nature, we represent RNAi as a Minsky register

machine so that (i) The two registers hold single and double stranded RNAs respectively, and (ii)

Machine’s instructions are interpreted by interactions of enzyme (Dicer), siRNA (with RISC com-

plex) and polymerization (RdRp) to the appropriate registers. Interpreting RNAi as a computational

structure, we investigate computational meaning of RNAi, especially its complexity. First, the ma-

chine is interpreted by Chemical Ground Form (CGF), which interpretation though has an error to

have wrong jumps. Second, recursive RNAi is modelled in order to inhibit the wrong jumps, where

siRNA targets not only mRNA but also Dicer and RISC of the machine’s instructions of our interpre-

tations. Probabilistic termination is investigated in the machine interpreting recursive RNAi. Third,

we show that CGF with delayed inputs provides a precise encoding of RNAi in order to gain Turing

completeness.

1 Introduction

RNA interference (RNAi), also known as RNA silencing, is a mechanism where a small interfering RNA

(siRNA) originating from double stranded RNA (dsRNA) directly controls gene expressions of a target

mRNA [1, 7]. The two key steps of RNAi are as follows:

(i) A dsRNA is cleaved into small siRNA’s fragments by the enzyme called Dicer.

(ii) A single strand of one small siRNA is recruited by the argonaute protein to form a complex called

RISC. Then RISC, using the siRNA as a template, identifies matching sequences in a target mRNA, and

leads the mRNA to degradation or aberration (see the right semicircle of Figure 1).

Given the two steps, we can say that the initiator of RNAi is dsRNA (for supplying siRNAs) and its target

is mRNA (to be degraded or aberrated by a siRNA in a Watson-Crick complementary manner).

Moreover RNAi has a third step to provide a circular pathway from the target to the initiator [2, 11]:

(iii) By using an aberrant mRNA resulting from (ii) as a template, a dsRNA is produced by polymerization

of RNA-dependent RNA polymerase (RdRp) (see the left semicircle of Figure 1).

With each step being digital and their combination maintaining the circularity, RNAi resembles a

kind of (digital) computation. This observation is a starting point of the paper: Can RNAi be viewed as

a digital computation ? This leads to a natural question what is a computational meaning of RNAi and

how computationally complex RNAi is. The purpose of this paper is to answer this question.

In this paper, first, we observe that RNAi can be modelled as a Minsky register machine. The Minsky

register machine is a Turing complete model of computation, that (instead of an infinite tape for Turing

dsRNA

| ||

| ||
Dicer

��RdRp //

,4

||||||||||||||||||

||||||||||||||||||

||||||||||||||||||

||||||||||||||||||

siRNA’s

| ||

mRNAab

argonaute
⌢
||||||||||||

RISC

ltaberration

OW

|

⌢
|||||||||||||

||

mRNA

08

CK

transcription 0

Figure 1: RNA interference

machine) comes equipped with two registers (holding numbers) and a finite number of instructions (in-

crement and decrement/jump) on a certain register [18]. While most biological computational models so

far known are based on the Turing machine model via common analogy of DNA as a single tape [10], our

Minsky machine interpretation presented in this paper is intrinsic to the RNAi mechanism such that RNAs

have both formations of single and double strands. This makes the interference captured by interactions

of multi processes, which single and double stranded RNAs form in various length. We first present a

naive machine model RMRNAi of RNAi so that the two registers are realized respectively by the initiator

(dsRNA) and the target (mRNA) of RNAi. Increment/Decrement instructions on the registers are real-

ized by chemical reactions mediated by enzymes and proteins (e.g., RdRp and transcription/Dicer and

RISC). Second, however the above naive model lacks any rigorous computational language hence needs

giving a syntactical analysis. By virtue of the interactive nature of RNAi and of its machine RMRNAi, we

investigate process calculus interpretations, especially those based on CCS and the π-calculus. Milner’s

π-calculus is a mathematical model of concurrent computation, which is powerful even in comparison to

the lambda calculus (a functional model for computing) and Turing machines [16, 22]. Capturing RNAi

as a computational structure, our interpretation aims to extract the computational meaning of RNAi,

especially its complexity.

Motivated by Zavattaro-Cardelli [26], we describe our machine RMRNAi in the calculus of Chemical

Ground Form (CGF), which is a minimal fragment of CCS equipped with interaction rates for each chan-

nel, hence a subset of the stochastic π-calculus [20]. CGF is introduced by Cardelli [3] and in spite of its

simpleness, CGF sufficiently describes chemical kinetics compositionally by giving correspondence to

a stochastic semantics of continuous time Markov chains. However as computational language without

errors, the primitive description of CGF lacks any direct representation of the zero-tests for the regis-

ters, which causes certain errors of instructions of encoded RMRNAi to allow wrong jumps. To avoid the

wrong probabilistic jump, a kind of inhibitor is necessary for machine instructions. To realize this biolog-

ically we consider recursive RNAi (recRNAi), which is known to be an extension of RNAi [14, 21, 25],

where siRNA produced during RNAi inhibits not only mRNA but also RISC and Dicer. Biologically the

extension is obtained by adding a feedback linkage to RNAi. The recRNAi is directly represented by a

register machine RMrecRNAi, where the interactions of siRNAs are naturally interpreted as the inhibitors

to instructions. We describe the machine in terms of CGF with fixed points. A probabilistic termination

is investigated in the encoded system of recRNAi and Turing completeness up to any degree of precision

122

is shown.

Finally, we investigate a minimal extension over CGF to gain Turing completeness. For this we show

that CGF with delayed inputs interprets the register machine by finite and precise encoding without er-

rors. The delayed input is investigated for π-calculus in [15, 17, 24]. This kind of input enables self

communication to interact with the prefix itself, which communication does not exist in ordinary process

calculus. Answering to the same question how to complement CGF to gain Turing completeness, our

approach differs from Cardelli-Zavattaro [4]’s Biochemical Ground Form (BGF) to augment interactions

for association and dissociation over CGF. BGF makes possible representation of each register of ma-

chine by a linear polymer whose initial monomer represents the zero. The similar coding of register is

also found in [12] for higher order π-calculus. Rather than straightforwardly representing the zero flags

for the registers, whose biological substance is not necessarily clear, we propose a certain process algebra

language to represent whether chemical reactions of Dicer and of RISC have targets or not for collisions.

Our motivation is to understand the known biological mechanism of RNAi in terms of register ma-

chines and to investigate how computational languages, basing on the primitive fragment CGF of the

stochastic process calculus, are enhanced correspondingly to certain known biological mechanism over

RNAi. Concretely, starting from naive interpretation RMRNAi of RNAi in Section 2, we show the fol-

lowing: (i) In Section 3, RNAi is represented modulo certain errors in CGF. (ii) In Section 4, in order

to reduce the errors of (i), recRNAi is presented so that its register machine interpretation RMrecRNAi is

represented by CGF with fixed points. In the representation, inhibitors of the error jumps have certain

biological meaning in recRNAi and probabilistic termination is shown. (iii) In Section 5, in order to

remove the machines’ errors inherent in (i) and (ii), CGF is augmented with delayed inputs so that the

extended system precisely represents register machines.

2 A Naive Interpretation of RNAi in Minsky Register Machine

In this section, we show that RNAi is naively interpreted as Minsky register machine.

Definition 2.1 (Minsky Register Machine [18]) Minsky register machine consists of two registers r1

and r2, and a finite set of indexed instructions I1, . . . , In: Registers r j (j ∈ {1,2}) hold non negative

integer numbers and instructions Ii on a certain register r j are of two kinds:

- (increment on r j) Ii = Inc(r j) increments 1 to the register r j then proceeds to the next Ii+1.

- (decrement on r j) Ii = DecJump(r j,s) first tries to execute Dec(r j), then proceeds to Jumpi(s):
Dec(r j) decrements the register r j by 1 if r j does not hold 0, and Jumpi(s) is Ii+1 (respectively,Is)

if Dec(r j) has been executed (respectively, otherwise).

A configuration of a Minsky register machine is determined by a triple (Ii,r1 = p,r2 = q) where p,q ∈ N

are the states of the machine’s counters and i is a label of a instruction. The machine stops when i is not

defined.

Definition 2.2 (Register machine RMRNAi interpreting RNAi (cf. Figure 2)) RNAi is interpreted in the

Minsky register machine RMRNAi consisting of the following data: Registers r1 and r2 hold species

dsRNA and mRNA respectively so that the increment on r1 (res. r2) produces one dsRNA (res. one

mRNA) and the decrement on r1 (res. r2) removes one dsRNA (res.one mRNA). The producing and

removing for each molecules are realised by biological reactions as follows: The increment on the reg-

ister r1 is realized by polymerization RdRp with making aberrant mRNA template and that on the r2 is

123

realised by transcription. The decrement on r1 is realized by the enzyme Dicer which cleaves dsRNA

into siRNAs and that on the r2 is realized by RISC’s complementary degradation of mRNA.

register values increment/decrement

r1

m1
︷ ︸︸ ︷

dsRNA | · · · | dsRNA Inc(r1) := RdRp | ||||||||||||||||||||||||||||||||

RdRp

//

Dec(r1) := Dicer

||||||||||||||

||||||||||||||

||||||||||||||

||||||||||||||

(a) register r1

register values increment/decrement

r2

m2
︷ ︸︸ ︷

mRNA | · · · |mRNA Inc(r2) := transcription | ||

Dec(r2) := RISC ⌢
||||||||

| ||

(b) register r2

Figure 2: Register Machine RMRNAi

Remark 2.3 (Restriction to primer-independent synthesis of dsRNA) In order to realize the register

machine interpretation of Definition 2.2, this paper assumes that the two species of dsRNA and mRNA

have no connections so that the decrement and increment of the both species are independently done

without affecting each other. The assumption corresponds to a biological restriction such that the synthe-

sis of dsRNA considered in this paper is only primer-independent so that dsRNA is directly duplicated

without any primer, as defined for the increment of the register r1 of dsRNA. The another biological

known synthesis of primer-dependent one violates the disconnection of the two species, in which syn-

thesis siRNA triggers polymerization, hence enables RdRp to copy a normal mRNA on the register r2.

That is, the register r2 may decrease in order to increase the register r1. Our assumption is biologically

appropriate since the two syntheses of dsRNA are investigated among experimental biologists from the

standpoint that the two syntheses could explain difference of RNAi between plants and animals. See

[2, 9] for the two syntheses of dsRNA.

3 RNAi as Chemical Reaction and Register Machines

In this section, we describe the register machine RMRNAi in Section 2 in terms of a rigorous computa-

tional language of stochastic process algebra. Chemical Ground Form (CGF) is introduced by Cardelli

[3] as a subset of π-calculus and of CCS [16] enriched with transition rates to channels. CGF models

collision between molecules by complementary synchronous interactions (input ? and output !) by with

channels with stochastic rates. The formal definition of CGF is as follows, where the notation
... separates

syntactical lists.

Definition 3.1 (Chemical Ground Form [3])

(Interaction Prefix)

π := τ(r)

... ?a(r)
... !a(r)

where τ for molecular decay and complementary ?a and !a for molecular inaction. The parenthesized

subscript (r) denotes reaction rate of the channel.

(parallel composition)
∣
∣

(choice)

⊕

Parrnell composition
∣
∣ models concurrent activities of events and choice ⊕ models race between events.

124

Then a CGF is a pair (E,P) of a set E of reagents and a initial solution P. A reagent Xi = Mi for nam-

ing a chemical specie and molecules Mi for describing the interaction capabilities of the corresponding

species. Solution is a multiset of variables, which is released by interactions:

(Reagents) E := 0
... X = M,E (Molecule) M := 0

... π.P⊕M (Solution) P := 0
... X

∣
∣ P

Computation of CGF is given in terms of Labelled Transition Graph of Definition 3.2. This is deter-

mined by reductions of the two kinds:

(decay of molecule) · · ·⊕ τ(r).Q⊕·· · −→ Q

(collision of molecules) · · ·⊕?a(r).Q⊕·· ·
∣
∣ · · ·⊕?a(r).R⊕·· · −→ Q

∣
∣ R

Definition 3.2 (Labelled Transition Graph of CGF (Definition 3.2.1 of [3])) Given a CGF (E,P), Next(E,P)
is defined to consist of the following labelled transition, where P† denotes the normalized form of a pro-

cess P where the variables are sorted in lexicographical order.

- ({m.X .i} : P† →r S†) such that P†.m = X and E.X .i = τ(r).Q and S = P†\m
∣
∣ Q.

- ({m.X .i,n.Y. j} : P† →r S†) such that P†.m = X and P†.n = Y and m 6= n and E.X .i =?a(r).Q and

E.Y. j =!a(r).R and S = P†\m,n
∣
∣ Q

∣
∣ R.

The labelled transition graph LT G(E,P) of (E,P) is defined as follows:

LT G(E,P) = ∪nΨn with Ψ0 = Next(E,P) and Ψn+1 = ∪{Next(E,Q) | Q is a state of Ψn}

The increment operators on r1 and on r2 are realized by the following chemical reactions, where

mRNAab denotes an aberrant mRNA.

(Polymerization)

RdRp+mRNAab −→ dsRNA for r1

(Transcription)

−→mRNA for r2

After the reactions, we go to the next instruction Ii+1. Hence every increment instruction Ii = Inc(r j) is

formalized directly for j ∈ {1,2} as follows:

(Increment Ii = Inc(r j))

Ii = RdRp
∣
∣ τ.Ii+1 j = 1

Ii = mRNA
∣
∣ τ.Ii+1 j = 2

The more subtle part is decrement operators. The decrement operators on r1 and on r2 are realized by

the following chemical reactions:

(cleavage)

dsRNA+Dicer −→ siRNA′s for r1 (1)

(degradation)

mRNA+RISC −→ m̃RNA+RISC for r2 (2)

where in (2) m̃RNA denotes either 0 or mRNAab.

125

The above chemical reactions guarantee that Dicer and RISC interact to the respective registers of

dsRNA and mRNA for the sake to eliminate each one of them. Although the two are the key agents for

the decrement of each registers, Dicer and RISC have a different nature observed in the above chemical

reactions: RISC is reused for degradation so that it retains its occurrence at right-hand-side of (2), while

Dicer catalyzes (1) by disappearing throughout the reaction (1).

In order for the registers to be decremented, we interpret registers as follows:

(Registers)

Register r1

dsRNA :=?a1.(siRNA
∣
∣ · · ·

∣
∣ siRNA)

Register r2

mRNA :=?a2.(τ.0⊕ τ.mRNAab)

They represent that dsRNA and mRNA disappear respectively by transforming into siRNAs and by degra-

dation or aberration.

If the chemical reaction happens in the presence of dsRNA (res. mRNA), then we proceed to the

instruction Ii+1. Otherwise (i.e., if the reaction does not take place due to the absence of dsRNA (res.

mRNA)), then we jump to the instruction Is. Thus in a primitive description of CGF, every decrement

instruction Ii = DecJump(r j,s) may be represented as follows:

(decrement instruction Ii = DecJump(r j,s))
j = 1

Ii =!a1.(0
∣
∣ Ii+1)⊕ τ.Is with Dicer =!a1.(0

∣
∣ Ii+1)

j = 2

Ii =!a2.(RISC|Ii+1)⊕ τ.Is with RISC=!a2.(RISC
∣
∣ Ii+1)

The above recursive definition of RISC for j = 2 corresponds to the recycle of RISC described in the

degradation (2).

The above definition of decrement instructions has a certain error that the jump to Is accidentally

happens even if the register is non zero (i.e., in spite of the presence of the channel ?a j). The error is due

to the absence of zero-test of the registers in the above interpretations of decrement instructions, which

test though is impossible to be directly represented in terms of CGF. The absence is also discussed in

Soloveichik, et al.[23] for investigating stochastic chemical reaction networks. The lacking of zero-test

is a main origin of Turing incompleteness of CGF shown in [26] and in order to recover this, Cardelli-

Zavattaro presents Biochemical Ground Form [4] as minimalistic extension of CGF.

4 Recursive RNAi and Probabilistic Termination

In this section, we model recursive RNAi in order to improve the defect of Section 3 that the machine

interpretation RMRNAi has wrong jumps in terms of CGF. We extend RNAi mechanism into recursive

RNAi (recRNAi) so that its register machine interpretation RMrecRNAi in terms of CGF + fixed points

guarantees a probabilistic termination of the machine. In this extended mechanism, siRNAs produced

during the interference targets not only mRNA but also Dicer and RISC themselves. See Figure 3(a),

126

whose left hand is the usual RNAi but siRNAs are produced not only by Dicer but also by RISC’s degrad-

ing mRNA. The right hand of Figure 3(a) describes inhibition arrows from the right most siRNA to Dicer

and to RISC in the circle. The mechanism is called recursive because RISC complex containing siRNA

is not only for degrading but also for being degraded. With the recursiveness of RNAi, the defect of the

decrement operators of Section 3 to have wrong jumps is ameliorated so that siRNAs growing during

RNAi work as inhibitors of the decrement operators.

dsRNA

| ||

| ||
Dicer

��RdRp //

,4

||||||||||||||||||

||||||||||||||||||

||||||||||||||||||

||||||||||||||||||

siRNA’s

| ||

mRNAab

argonaute
⌢
||||||||||||

RISC

ltaberration

OW

|

⌢
|||||||||||||

||

mRNA

$,

CK

transcription 0, siRNA’s

||||||||

siRNA

✛

✩

(a) Recursive RNAi

r1

Dicer☛

dsRNA
❵

siRNA

r2

RISC☛

mRNA
❵

siRNA

(b) reciprocal interactions

Figure 3: Recursive RNAi

In recRNAi, the chemical reactions involved in Dicer and in RISC are not only (1) and (2) respectively

but also the following (3) and (4), respectively.

- (degradation of Dicer)

siRNA+Dicer −→ 0 (3)

- (degradation of RISC)

siRNA+RISC −→ 0 (4)

(1) and (3) provide reciprocal interactions on Dicer such that Dicer either makes dsRNA disappear by

cleavage or Dicer is degraded by siRNA. Similar reciprocal interactions (2) and (4) for RISC. See Figure

3(b), for these reciprocal interactions for Dicer and RISC, each of which concerns a register r j with

j ∈ {1,2} and the arrows are for inhibitions.

We interpret recRNAi into a register machine RMrecRNAi in terms of CGF with fixed points.

Definition 4.1 (RMrecRNAi in CGF with fixed points)

RMrecRNAi is interpreted in CGF as follows:

- Registers and Ii = Inc(r j) are the same as Section 3: That is

- (Register r1)

dsRNA :=?a1.(siRNA
∣
∣ · · ·

∣
∣ siRNA)

- (Register r2)

mRNA :=?a2.(τ.0⊕ τ.mRNAab)

- (Increment Ii = Inc(r j))

Ii = RdRp
∣
∣ τ.Ii+1 j = 1

Ii = mRNA
∣
∣ τ.Ii+1 j = 2

127

The decrement instruction is represented as follows together with interpretation of siRNA.

- (Decrement Ii = DecJump(r j, Is))

Ii = !a j.(0
∣
∣ Ii+1)⊕ τ.(!s.Ii ⊕ τ.Is) (5)

siRNA = ?s.siRNA

In the above definition (5) of Ii, when j = 1 (res. j = 2), the left term !a j.(0
∣
∣ Ii+1) corresponds to

Dicer (res. RISC) as an agent cleaving dsRNA (res. degrading mRNA) and the right term τ.(!s.Ii ⊕ Is)
corresponds to Dicer (res. RISC) as an agent being degraded by siRNA. Hence our definition of Ii is

intrinsic to the reciprocal interactions of Dicer and RISC, intrinsic to recursive RNAi in the presence of

siRNA.

The iterative definition of (5) is a fixed point definition of Ii in CGF by using agent variable X so that

Ii = fixX .[a.(0
∣
∣ Ii+1)⊕ τ.(!s.X ⊕ τ.Is)]

The fixed point definition stems from Zavattaro-Cardelli [26], but we point out that the definition has a

certain biological counter part as discussed above. We follow their line to obtain the main theorem of

this section by slightly modifying the corresponding result of [26].

Given a state (Ii,r1 = l1,r2 = l2) of register machine and a natural number h, the solution in RMrecRNAi

is defined by

(Ii,r1 = l1,r2 = l2) h := Ii

∣
∣ ∏

l1

dsRNA
∣
∣ ∏

l2

mRNA
∣
∣ ∏

h

siRNA

where Ii on the right hand is that of Definition 4.1.

That is, (Ii,r1 = l1,r2 = l2) h is the encoding of the state in RMrecRNAi together with h iterative siRNAs.

Proposition 4.2 (correspondence of computations between machine and RMrecRNAi) Suppose a one

step computation of register machine is given by the following:

(Ii,r1 = l1,r2 = l2) 7−→ (I j,r1 = l
′

1,r2 = l
′

2)

We have the following for the solutions of the two states of the computation:

- If l j = 0 and Ii = Inc(r j) or Ii =DecJump(r j,s), then the solution (Ii,r1 = l1,r2 = l2) h can reach

to the solution (I j,r1 = l
′

1,r2 = l
′

2)
†
h with the probability 1.

- If l j > 0 and Ii = DecJump(r j,s), the solution (Ii,r1 = l1,r2 = l2) h can reach to a solution

(I j,r1 = l
′

1,r2 = l
′

2)
†
k for some natural number k ≥ h+1 with the probability > 1− 1

h
.

Proof.

- The case where l j = 0. Since the assertion is direct for Ii = Inc(r j), we demonstrate for Ii =DecJump(r j,s).
The probability for computations in RMrecRNAi pass through the solution of R.H.S. is

∞

∑
i=0

(
h

h+1
)i ×

1

(h+1)
= 1

128

The calculation corresponds to the following diagram:

l j = 0 Ii
1 // •
h

oo
1 // Is = I j

- The case where l j 6= 0.

The probability for computations in RMrecRNAi pass through the solution of R.H.S. is

∞

∑
i=0

(
1

l j +1
×

h

h+1
)i ×

l j

l j +1
> 1−

1

h

See the following diagram for the calculation:

l j 6= 0 Ii
1 //

l j ""❋
❋❋

❋❋
❋❋

❋❋
❋ •

h
oo

1 // Is

Ii+1 = I j

�

We have the main theorem of this section.

Theorem 4.3 (probabilistic termination) The following are equivalent:

- A Minsky register machine starting from a state (I j,r1 = l1,r2 = l2) terminates.

- A CGF (RMrecRNAi, (I j,r1 = l1,r2 = l2) h) probabilistically terminates with probability

> 1−
∞

∑
k=h

1

k
.

Proof. Note first that after the execution of a decrement instruction, the number of siRNA increases

at lease one. This is because at least one siRNA is produced by Dicer cleavage or by RISC’s degrading

mRNA. By Proposition 4.2 a computation of register machine containing d decrement instructions is

faithfully reproduced with probability greater than the following:

(1−
1

h
)(1−

1

h+ k1

) · · ·(1−
1

h+ k1 + · · ·+ kd

) ≥ ∏
h+d
k=h(1−

1
k
) > 1−

h+d

∑
k=h

1

k

where ki ≥ 1 is the number of siRNAs produced by the corresponding decrement instruction. �

5 Precise Embedding of Register Machine into CGF with Delayed Inputs

In this section, we investigate a minimal extension over CGF to gain Turing completeness. For this, we

extend CGF by allowing a new kind of interaction, delayed inputs among entangled channels of CGF.

Our extended system is naturally induced by delayed inputs system of π-calculus (Section 10.4 of [22]),

given that CGF is a subsystem of π-calculus with reaction rates. The related systems are investigated in

Milner’s synchronous version of π-calculus [17] and πε -calculus (enabled pi) of [24]. We augment two

features, (self communication) and (guarding), which are not present in CGF.

129

We first extend the definition of molecules of CGF to allow nesting inputs and outputs:

(Molecule) M := 0
... π.P⊕M

... π.M

The first feature enables a process to communicate with itself. This arises by entangling prefixes of

inputs and outputs. In its simple form, self communication amounts to

(Self Communication)

!a.(?a.P⊕M) −→ P

The second feature is for regulating the first feature so that self communication is inert while there is

a complementary channel outside. In its simple form, guarding amounts to

(Guarding)

The following self communication is enabled only when b 6= a.

?b.R⊕N
∣
∣!a.(?a.P⊕M) −→ ?b.R⊕N

∣
∣ P

That is, when b = a, the self communication is guarded.

The two additional features are formally specified in terms of LTG for the extended system:

Definition 5.1 (Labelled Transition Graph for CGF with delayed inputs) Given a CGF (E,P) with

delayed inputs, Next(E,P) is defined to consist of the labelled transitions defined in Definition 3.2 to-

gether with the following labelled transition:

- ({m.X .i j} : P† →r S†) such that P†.m = X and E.X .i =!a(r).Q and Q j =?a(r).Q̄ and S = P†\m
∣
∣ Q̄.

This transition is subject to the following guarding condition:

∀n 6= m ∀i no prefix of E.Y.i is ?a(r) with Y = P†n

CGF with delayed inputs provides a precise encoding of Minsky Register Machine:

Definition 5.2 (encoding of register machine in CGF with delayed inputs)

- (Register r j holding a number l j)

r j =

l j

︷ ︸︸ ︷

?a j.?b.0
∣
∣ · · ·

∣
∣?a j.?b.0

- (Instructions Ii of two kinds)

Ii = Inc(r j) = τ.(!a j.0
∣
∣ Ii+1)

Ii = DecJump(r j,s) = !a j.(?a j.Is⊕!b.Ii+1) (6)

The preciseness of the encoding of Definition 5.2 is shown for the decrement instruction as follows:

- (The case where l j = 0)

In the absence of ?a j.b.0, the decrement instruction (6) communicates by itself through the outer-

most !a j

!a j.(?a j.Is⊕?b.Ii+1) −→ Is

130

- (The case where l j 6= 0)

In the presence of ?a j.b.0, the decrement instruction (6) interacts to the register r j we have

?a j.?b.0
∣
∣ DecJump(r j,s)

which is reduced to the following:

?a j.?b.0
∣
∣!a j.(?a j.Is⊕!b.Ii+1) −→ ?b.0

∣
∣?a j.Is⊕!b.Ii+1

−→ 0
∣
∣ Ii+1

Formally, a state (Ii,r1 = l1,r2 = l2) of Minsky Register Machine is encoded in CGF with delayed inputs

by

(Ii,r1 = l1,r2 = l2) := Ii

∣
∣ ∏

l1

?a1.?b.0
∣
∣ ∏

l2

?a2.?b.0

where Ii on the right hand is that of Definition 5.2.

Then the preciseness of the encoding shown above proves the following theorem.

Theorem 5.3 (correctness) Suppose a one step computation of register machine is given

(Ii,r1 = l1,r2 = l2) 7−→ (I j,r1 = l
′

1,r2 = l
′

2).

Then the solution (Ii,r1 = l1,r2 = l2) reaches deterministically to the solution (I j,r1 = l
′

1,r2 = l
′

2)
†.

Corollary 5.4 CGF with delayed inputs is Turing complete.

6 Conclusion and Future Works

In this paper, RNAi is represented by register machine RMRNAi by virtue of multi-strand formations

to which RNAs take (Section 2). A stochastic process algebra CGF provides a primitive description

of RMRNAi (Section 3). In order to prevent errors caused by the description, recursive RNAi is shown

to realize a biological counterpart of inhibitors of the machine so that siRNAs growing during RNAi

targets to the decrement instructions (Section 4). A probabilistic termination is obtained in the recursive

RNAi (Theorem 4.3). As a completion of CGF to gain Turing completeness, CGF with delayed inputs is

presented (Section 5).

As a future work, we are interested in investigating RNAi with another biological pathway of primer

dependent synthesis of dsRNA [19]. The pathway is also for maintaining the circularity depicted in Intro-

duction. While polymerization considered in this paper is primer independent so that dsRNA is directly

duplicated without any primer, in the primer dependent one, polymerization for producing dsRNA is trig-

gered by siRNA, which enables RdRp to copy non-aberrant mRNA. Computational meaning of RNAi

with primer dep. synthesis is much more involved because siRNA does not only work for inhibitor but

also for trigger to produce the initiator of dsRNA. Comparison of the two pathways is an important topic

for experimental biology in order to explain difference of RNAi between plants and animal [1, 2, 7, 19].

From an aspect on computational language, it is an interesting future work how the κ-calculus [5, 6]

captures recRNAi. The κ-calculus is known to be a Turing complete fragment of the stochastic π-

calculus, and the author of this paper in [9] shows that the rule based modelling of κ-calculus provides a

compact description to discriminate the two syntheses for dsRNA.

131

References

[1] David Baulcombe, RNA Silencing in Plants, Nature. 431, 356-63, (2004)

[2] Peter Brodersen and Olivier Voinnet, The Diversity of RNA Silencing Pathways in Plants, TRENDS in

Genetics 22(5), 268280 (2006)

[3] Luca Cardelli, On Process Rate Semantics, Theor. Comput. Sci. 391(3): 190-215 (2008)

[4] Luca Cardelli and Gianluigi Zavattaro, Turing Universality of the Biochemical Ground Form. Mathemati-

cal Structures in Computer Science 20(1): 45-73 (2010)

[5] Vincent Danos, Jérôme Feret, Walter Fontana, Russell Harmer and Jean Krivine, Rule-based Modelling of

Cellular Signalling, (CONCUR 2007), LNCS 4730, Springer-Verlag. 17-41 (2007)

[6] Vincent Danos and Cosimo Laneve, Formal Molecular Biology, Theor. Comput. Sci., 325 (1), 69 - 110

(2004)

[7] A. Fire, S. Xu, M. Montgomery, S. Kostas, S.Driver and C. Mello, Potent and Specific Genetic Interference

by Double-stranded RNA in Caenorhabditis Elegans, Nature 391 (6669): 806811 (1998)

[8] M.A.C. Groenenboom, A.F.M. Marée and P. Hogeweg, The RNA Silencing Pathway: The Bits and Pieces

That Matter, PLoS Comput. Biol. 1(2), 155165 (2005)

[9] Masahiro Hamano, “Sustainability of RNA Interference in Rule Based Modelling”, accepted by the third

International Workshop on Static Analysis and Systems Biology (SASB 2012), 12pages.

[10] Zoya Ignatova, Karl-Heinz Zimmermann, Israel Martı́nez-Pérez, “DNA Computing Models”, Springer

(2008)

[11] Richard A. Jorgensen, RNA Traffics Information Systemically in Plants, Proc. Natl. Acad. Sci. USA,

99(18) 11561-11563 (2002)

[12] Ivan Laney’s, Jorge A. Pérez, Davide Sangiorgi and Alan Schmitt, On the Expressiveness and Decidability

of Higher-orderb Process Calculi. Inf. Comput. 209(2): 198-226 (2011)

[13] E. Levine, Z. Zhang, T. Kuhlman, and T. Hwa, Quantitative Characteristics of Gene Regulation by Small

RNA, PLoS Biol 5, e229 (2007)

[14] W. F. Marshall, Modeling Recursive RNA Interference, PLoS Computational Biology, 4 (9) e1000183.

(2008)

[15] M. Merro and D. Sangiorgi, On Asynchrony in Name-passing Calculi, In Proc. of (ICALP’98) LNCS,

1443, pp. 856-867, (1998)

[16] Robin Milner, “Communicating and Mobile Systems: the π-calculus”, Cambridge University Press (1999).

[17] Robin Milner, Action Structure for Synchronous pi-Calculus, FCT (1993) LNCS 710, Springer-Verlag.

87-105 (1993)

[18] Marvin Minsky, “Computation Finite and Infinite Machines (1st ed.).” Englewood Cliffs, N. J.: Prentice-

Hall (1967)

[19] Julia Pak and Andrew Fire, Distinct Populations of Primary and Secondary Effectors During RNAi in C.

elegans, Science. 315, 241-244 (2007)

[20] C. Priami, A. Regev, E. Shapiro and W. Silverman, Application of a Stochastic Name-passing Calculus to

Representation and Simulation of Molecular Processes, Information Processing Letters 80, 25-31. (2001)

[21] MW. Rhoades, BJ. Reinhart, LP. Lim, CB. Burge, B. Bartel, et al. Prediction of Plant microRNA Targets.

Cell 110 51320. (2002)

[22] Davide Sangiorgi and David Walker, “The π-calculus: a Theory of Mobile Processes”, Cambridge Uni-

verstity Press (2001)

[23] David Soloveichik, Matt Cook, Erik Winfree and Shuki Bruck, Computation with Finite Stochastic Chem-

ical Reaction Networks. Natural Computing, 7 (4), 615-633. (2008)

[24] Franck van Breugel, A Labelled Transition System for πε -Calculus, Proceedings of (TAPSOFT), volume

1214 LNCS, Springer-Verlag. 312-336. (1997)

[25] Z. Xie, KD. Kasschau and JC. Carrington, Negative Feedback Regulation of Dicer-like1 in Arabidopsis

by microRNA-guided mRNA Degradation. Curr Biol 13: 784789. (2003)

[26] Gianluigi Zavattaro and Luca Cardelli, Termination Problems in Chemical Kinetics. Proc. CONCUR 2008,

LNCS 5201, Springer-Verlag. 477-491(2008)

132

	Philippou.pdf
	Introduction
	The Process Calculus
	The Syntax
	The Semantics
	Model Checking PALPS

	Examples
	Concluding remarks

	Basso.pdf
	Introduction
	gubs language
	Semantics of gubs

	Compilation
	Functional synthesis

	Example
	Related works
	Conclusion

	Vink.pdf
	Introduction
	Biological Motivation
	Guided insertion/deletion
	Guided rewriting
	Rewrite sequences and slice sequences
	Guided rewriting preserves regularity
	Related work and concluding remarks

	Hamano.pdf
	Introduction
	A Naive Interpretation of RNAi in Minsky Register Machine
	RNAi as Chemical Reaction and Register Machines
	Recursive RNAi and Probabilistic Termination
	Precise Embedding of Register Machine into CGF with Delayed Inputs
	Conclusion and Future Works

	Miculan.pdf
	Introduction
	Brane Calculus
	Stochastic Structural Operational Semantics for the Brane Calculus
	The COW Generic Stochastic Abstract Machine
	Implementing the Stochastic Brane Calculus in COWGSAM
	Encoding of the Stochastic Brane Calculus
	Adequacy results
	Example

	Conclusions
	Some measure theory
	Proof of Prop. 5.4

	Dezani.pdf
	Introduction
	Related Work
	Summary

	Syntax
	Operational Semantics
	Stochastic Fully Parallel Reductions

	Concurrent Modeling of Bacteria–DNase–Antimicrobial Interactions
	BioScape Modeling

	Conclusions
	CPU and GPU Simulation Results

	Milazzo.pdf
	Introduction
	Modelling Biochemical Pathways with a Notion of Fairness
	Syntax and semantics of the modelling notation
	Fairness
	Modelling the EGF receptor-induced MAP kinase cascade

	Identification of Molecular Components
	Assumptions
	Components identification
	Initial state
	Visualisation of component interaction
	The model

	Modular Verification
	Abstract pathways: syntax, semantics and fairness
	Logic for specifying properties
	Modular verification theorems

	Experiments
	Modular verification of a global property
	Reasoning on molecular components

	Discussion and conclusions

