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Abstract—We view scenes in the real world by moving our eyes

three to four times each second and integrating information across

subsequent fixations (foveation points). By taking advantage of this

fact, in this paper we propose an original approach to partitioning

of a video into shots based on a foveated representation of the video.

More precisely, the shot-change detection method is related to the

computation, at each time instant, of a consistency measure of the

fixation sequences generated by an ideal observer looking at the

video. The proposed scheme aims at detecting both abrupt and

gradual transitions between shots using a single technique, rather

than a set of dedicated methods. Results on videos of various con-

tent types are reported and validate the proposed approach

Index Terms—Attentive vision, dissolves, hard cuts, shot detec-
tion, video segmentation.

I. INTRODUCTION

D
ETECTION of shot boundaries provides a base for nearly

all video abstraction and high level video segmentation

methods [27], [34]. In this paper, we propose a novel approach

to partitioning of a video into shots based on a foveated repre-

sentation of the video.

A shot is usually conceived in the literature as a series of

interrelated consecutive frames taken contiguously by a single

camera and representing a continuous action in time and space.

In other terms, a shot is a subsequence generated by the camera

from the time it “starts” recording images, to the time it “stops”

recording [16]. However, shot segmentation is ill-defined. On

the one hand, a video is generated by composing several shots

by a process called editing, and due to edit activity different

kinds of transitions from one shot to another, either abrupt or

gradual, may take place. An abrupt transition, or hard cut, oc-

curs between two consecutive frames and is the most common

type. An example is provided in Fig. 1.

Gradual transitions such as fades, wipes and dissolves (see

Fig. 2) are spread over several frames and are obtained using

some spatial, chromatic or spatiochromatic effect; these are

harder to detect from a purely data analysis point of view

because the difference between consecutive frames is smaller.

It has been observed [2] from a study of video production

techniques that the production process originates several con-

straints, which can be useful for video edit classification in the
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framework of a model based approach to segmentation. How-

ever, the use of such constraints implies high costs in designing

shot models due to the high number of degrees of freedom avail-

able in shot production (for review and discussion, see [16] and

[27]).

On the other hand, for the purposes of video retrieval, one

would like to mark the case of any large visual change, whether

camera stops or not (e.g., a large object entering the scene).

Thus, from a general standpoint, shot detection should rely on

the recognition of any significant discontinuity in the visual con-

tent flow of the video sequence [16]. Meanwhile, the detection

process should be unaffected by less significant changes within

the same shot, like object/camera motion and lighting changes,

which may contribute to missed or false detections. In such a

complex scenario, despite the number of proposals in the liter-

ature, robust algorithms for detecting different types of bound-

aries have not been found, where robustness is related to both

detection performance and stability with minimum parameter

tuning [21].

At the heart of our ability to detect changes from one view of

a scene to the next is the mechanisms of visual attention. Film

makers have long had the intuition that changes to the visual de-

tails across cuts are not detected by audiences, particularly when

editing allows for smooth transitions [51]. In the movie Ace Ven-

tura: When Nature Calls, the pieces on a chess board disappear

completely from one shot to the next. In Goodfellas, a child is

playing with blocks that appear and disappear across shots. In

fact, almost every movie, and almost every cut, has some con-

tinuity mistake, yet, most of the time people are blind to these

changes. It has been noted that change blindness is evident when

mistakes occur far from the viewer’s focus of attention [51].

The term attention captures the cognitive functions that are

responsible for filtering out unwanted information and bringing

to consciousness what is relevant for the observer [7], [23], [52].

Visual attention, in turn, is related to how we view scenes in

the real world: moving our eyes (saccade) three to four times

each second, and integrating information across subsequent fix-

ations [60]. Saccades represent overt shifts of spatial attention

that can be performed either voluntarily (top-down), or induced

automatically (bottom-up) by salient targets suddenly appearing

in the visual periphery and allow an observer to bring targets of

interest onto the fovea, the retinal region of highest spatial res-

olution. Eye movements, though being characterized by some

degree of randomness [6], [48], are likely to occur in a specific

path (the scanpath, [37]) so as to focus areas that are deemed im-

portant. The scanpath can be conceived as a visuomotor pattern

resulting from the perceptual coupling of observer and observed

scene. An example generated on the third frame of Fig. 1 is il-

lustrated in Fig. 3.

In the course of a scan, we have a rich visual experience from

which we abstract the meaning or gist of a scene. During next
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Fig. 1. Example of hard cut effect from a TREC01 video. Abrupt transition occurs between the second and the third frame.

Fig. 2. Example of dissolve effect.

Fig. 3. Scanpath eye-tracked from a human observer while viewing the third
frame presented in Fig. 1. The scanpath has been graphically overlapped on
the original image: circles represent fixations, and lines trace displacements
(saccades) between fixations.

scan, if the gist is the same our perceptual system assumes the

details are the same. Clearly, this “sketch” representation not

only serves the information reduction purpose of filtering un-

wanted information, but also, by integrating the gist from one

view to the next, to achieve the impression of a stable world.

However, the lack of a detailed representation of the outside

world from one view to the next can rise failures of change de-

tection [51].

The background question which motivates this work is

whether these mechanisms that are useful to prevent audiences

noticing the transitions, can conversely be exploited to detect

such transitions, and thus help for video segmentation. Intu-

itively, one could argue that if the playback speed is reduced

(or, equivalently, the saccade rate increased) change blindness

effects would be reduced too. This corresponds to introducing

an ideal observer or agent, capable of tuning his saccadic

rate. In some sense, this is akin to Gargi’s experimental study

of human ground-truthing, where most consistent results in

marking shot changes were obtained when subjects performed

such task at half speed after viewing the sequence once at full

speed [16].

The rationale behind our approach is that perceptual capacity

of an observer can be defined at two levels [38]. At the first level

there is the ability of the agent to explore the scene in ways

mediated by knowledge of patterns of visuomotor behavior, that

is the ability to exploit the interdependence between incoming

sensory information and motor behavior (eye movements). At

the second, higher level, there is the accessing by the observer of

information related to the nature of observer’s own exploration.

For example, while viewing a video sequence, it is reason-

able that in the presence of similar visual configurations, and in

the absence of an habituation mechanism, an observer should

consistently deploy attention to visually similar regions of in-

terest and by following a similar motor pattern; clearly, when

the gist of the world observed undergoes a significant change,

the visuomotor pattern cannot be exploited further, since incon-

sistent, and a new scanpath will be generated. Such an intuitive

assumption can be theoretically motivated on the basis that after

an abrupt transition the video signal is governed by a new statis-

tical process [28]. Indeed, it has been shown [6] that gaze-shift

is strongly constrained by structure and dynamics of the under-

lying random field modeling the image. Quantitatively, if a mea-

sure of attention consistency is defined, should decrease

down to a minimum value. For instance, this is what is likely to

occur when a view abruptly changes.
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On the other hand, a view change may occur across long

delay intervals, as in gradual transitions. In this case, should

account for a behavior similar to that experienced in change

blindness experiments, where subjects fail to detect a slow,

global spatiochromatic editing of a sequence presenting the

same image [38], but suddenly succeed when the frame rate

of presentation is increased, due to the reduction of the time

lag between the first and the last frames of the transition. In

this case, the function should vary smoothly across the

interval, while decreasing rapidly if measured on the first and

the last frames of the same interval. It is worth remarking that

shots involved in a dissolve transition may have similar color

distribution, which a color histogram would hardly detect [28],

while differing in structural information that can be detected

by appropriate algorithms (e.g., edge based); as in the case

of hard cuts, the sequence of attention shifts can be suitably

exploited, since its dynamics [6] is strongly intermingled with

the complexity of the statistical process modeling the signal

(e.g., two-source model for a dissolve [28]).

As regards the second level, namely the evaluation of in-

formation about the nature of visual exploration itself, it can

be stated as an inference drawn by the observer from its own

sensorimotor behavior under prior knowledge available. On

such assumption, the problem of detecting a shot change given

the change of the observer’s behavior , naturally leads to

a Bayesian formulation, and can be conceived as a signal

detection problem where the probability that a shot boundary

occurs, given a behavior , is compared against the probability

that a shot boundary is not present.

The introduction of this approach has several advantages,

both theoretical and practical. First, it allows to find a uni-

form method for treating both abrupt and gradual transitions.

As discussed previously, this result stems from relations oc-

curring between the dynamics of gaze-shifts and statistical

processes modeling the observed image [6]; also, the method

is well grounded in visual perception theories [37], [38]. As

such, it is suitable to overcome usual shortcomings of other

simpler techniques proposed so far (e.g, histogram manipu-

lations). In this sense, higher robustness can be achieved, as

regards performance and stability in detecting important visual

changes while discarding negligible ones. Then, once the dis-

tinctive scanpath has been extracted from a frame, subsequent

analysis needs only to process a sparse representation of the

frame. Eventually, attentive analysis can, in perspective, pro-

vide a sound and unitary framework at higher levels of video

content analysis. For instance, key frame selection/genera-

tion could be conceived in terms of average scanpath of shot

frames; multimodal processing for deriving semantic proper-

ties of a scene, can be stated in terms of attentive audio/visual

integration.

In Section II, we briefly discuss background and related work

on shot segmentation. In Section III, we outline the model for

foveated analysis of a video sequence. In Section IV, the com-

putation of patterns of visuomotor behavior is discussed. In Sec-

tion V, we derive the procedure to calculate the function and

the boundary detection algorithm. Sections VI presents the ex-

perimental protocol and results obtained. Some concluding re-

marks are given in Section VII.

II. BACKGROUND AND RELATED WORK

Assume as input to a segmentation system a video se-

quence, that is a finite sequence of time parameterized images,

, where each image is called a

frame. Each frame is a color image, namely a mapping from

the discrete image support to an -dimensional

range, ; in other terms, it is a set of

single-valued images, or channels, sharing the same domain,

i.e., , where the index ,

defines the th color channel and denotes a point in the

lattice. is the set of colors used in the

image. Each frame displays a view, a snapshot, of a certain

visual configuration representing an original world scene.

A time segmentation of a video defined on the time

interval is a partition of the video sequence into

subsequences or blocks. One such partition can be obtained

in two steps. First, a mapping of the frame

to a representation , being a

suitable feature space, is performed. Then, given two consec-

utive frames and , where is the skip or

interframe distance, a discriminant function

is defined to quantify the visual content variation between

and , such that a boundary occurs at

frame if , where is a

suitable threshold.

Thus, in principle, to solve the shot detection problem three

steps must be undertaken: choose an appropriate mapping ;

define a robust discriminant function ; devise a (universal)

threshold .

As regards the first two points, different techniques have been

used: pixel based methods, such as the mean absolute value of

intensity between frames [24], [39], or block matching [21],

[50], histograms difference [15], [16], [34], [61], [64] motion

difference [63] and perceived motion energy [31], and differen-

tial geometry [58].

For what concerns the third point, heuristically chosen

thresholds have been proposed [34], [39]. However a fixed

thresholding approach is not feasible especially when con-

sidering gradual transitions. In particular, dissolve effects are

reputed the most common ones, but also the most difficult to

detect [13], [57]. A dissolve can be obtained as a combination

of fade-out and fade-in, superimposed on the same film strip;

fade-out occurs when the visual information gradually disap-

pears, leaving a solid color frame, while fade-in takes place

when the visual information gradually appears from a solid

color frame (refer again to Fig. 2).

Dissolve detection is still a challenging problem. Few tech-

niques have been published [29]. Variable thresholding has been

proposed in [61] and [64], the latter relying on gaussian distribu-

tion of discontinuity values. For instance, in [64], the twin-com-

parison approach using a pair of thresholds, for detecting hard

cuts and gradual transitions, respectively, has been introduced.

More significant improvements have been achieved by recasting

the detection problem in a statistical framework. A novel and ro-

bust approach has been presented by Lienhart [30], which relies

on multiresolution analysis of time series of dissolve probabili-

ties at various time scales; experiments achieved a detection rate
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Fig. 4. General model of attentive/foveated video analysis. At a lower level,
the observer generates visuomotor patterns, related to the content of the
sequence. At a higher level, the observer detects scene changes by judging his
own visuomotor behavior in the context of prior knowledge available.

of 75% and a false alarm rate of 16% on a standard test video set.

Further, it has been recently argued that a statistical framework

incorporating prior knowledge in model based [20], statistical

approaches leads to higher accuracy for choosing shot bound-

aries [21], [58].

III. OUTLINE OF THE MODEL FOR FOVEATED VIDEO ANALYSIS

The evaluation of attention consistency relies on the model of

foveated analysis outlined in Fig. 4.

In the preattentive stage, salient features are extracted by spe-

cific detectors operating in parallel for all points of the image,

at different spatial scales, and organized in the form of con-

trast maps. In order to obtain such a representation different

methods can be adopted, e.g., [14], [22], and [42]. It is worth

remarking that the model presented in this paper is unaffected

by the method chosen to implement such preattentive stage.

We experimented with schemes proposed in [14] and [22], and

opted for the latter due to simplicity and limited computational

complexity. Precisely, low-level vision features are derived from

the original color image decomposed at several spatial scales

using Gaussian [8] and oriented pyramids (via convolution with

Gabor filters [19]). Note that pyramid computation is an

method, where represents the number of samples in the

image support .

The features considered are: brightness (I); color channels

tuned to red (R), green (G), blue (B), and yellow (Y) hues;

and orientation (O). From color pyramids, red/green (RG) and

blue/yellow (BY) pyramids are derived by subtraction. Then,

from each pyramid a contrast pyramid is computed encoding

differences between a fine and a coarse scale for a given fea-

ture. As a result, one contrast pyramid encodes for image inten-

sity contrast, four encode for local orientation contrast, and two

encode for RG and BY contrast (see [22], for details).

Successively, this preattentive representation, undergoes spe-

cialized processing through a “Where” system devoted to local-

izing objects, and a “What” system tailored for identifying them.

Clearly, tight integration of these two information pathways is

essential, and indeed attentive mechanisms play a fundamental

role. A plausible assumption is that, in the “What” pathway,

early layers provide feature extraction modules, whose activity

is subjected to temporal modulation by the “Where” pathway

and the related attention shifting mechanism, so that unmodu-

lated responses are suppressed.

In the “Where” pathway, the preattentive contrast maps are

combined into a master or saliency map [1], [22], [33], which

is used to direct attention to the spatial location with the highest

saliency (attention shifting stage). The region surrounding such

location represents the current focus of attention (FOA), . By

traversing spatial locations of decreasing saliency, a scanpath

is obtained by connecting a sequence of FOAs, and

stored.

It is important to note that, in general and specifically in this

work, such “working memory” retains either a representation of

a set of visual features (measured at FOAs) and a motor map of

how such features have been explored; indeed, the memory of

an attentive system is a visuomotor trace of a world view [18],

[38], rather than a classical feature representation of the orig-

inal scene, and any subsequent information-lookup task entails

a prediction/confirmation upon such visuomotor scheme. De-

note the visuomotor trace (simply, the trace) of frame

.

At the higher perceptual level, the observer infers scene

changes by judging his own visuomotor behavior. To this end,

given two frames and (for notational simplicity,

), an effective procedure is needed to compute the

function which gauges the consistency between the two

traces and . A way to solve this problem, is

suggested by experiments performed by Walker and Smith [59],

who provided evidence that when observers are asked to make

a direct comparison between two simultaneously presented

pictures, a repeated scanning, in the shape of an FOA by FOA

comparison, occurs. Using this procedure, which we name

information look-up loop, the consistency will eventually be

calculated as the average of the local consistencies measured on

pairs of FOA’s, iteratively selected from the two traces

and according to a “best fit” prediction strategy.

The behavior of the function, is then used by a detection

module, based on Bayesian decision theory, which, under prior

contextual knowledge available, infers from the presence of

a scene transition, either abrupt or gradual.

In Sections IV and V, we detail how the different levels of our

attentive system have been designed.

IV. LOW PERCEPTUAL LEVEL: GENERATION OF

VISUOMOTOR PATTERNS

At this lower perceptual level, the agent observes the se-

quence and generates patterns of visuomotor behavior (traces).

A. Where System: From Preattentive Features to Attention

Shifting

The goal of the “Where” system is to build a saliency map

of the frame and define over this map the motor trace, that is
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the sequence of FOAs . To this end, the contrast

features for intensity, color, and orientation, obtained from the

preattentive stage, are summed across scales (pyramid levels)

into three separate contrast maps, one for intensity, one for color

and one for orientation. Eventually, the three maps, normalized

between 0 and 100, are linearly summed into a unique master

map (for simplicity, we compute the latter as the average of the

three maps), or saliency map (SM).

By using the SM map, the attention shifting mechanism could

be implemented through a variety of ways (e.g., [6], [17], [22],

[42], and [54]). One intuitive method for traversing spatial loca-

tions of decreasing saliency, is to use a winner-take-all (WTA)

strategy [22], [54], in which the most salient location “wins” and

determines the setting of the FOA; the winner is subsequently

inhibited in order to allow competition among less salient loca-

tions, for predicting the next FOA. A simple and efficient way of

implementing such strategy is through a WTA neural network,

e.g., an array of integrate-and-fire neurons with global inhibi-

tion [22]. It is worth noting that a WTA algorithm, due to fast

convergence properties, has time complexity, being the

number of processing elements (neurons) of the network. In our

scheme, the number of neurons is constrained by the number of

samples in the saliency map (each point of the map, represents

the input to one neuron). Since the map resides at an interme-

diate scale between the highest and the lowest resolution scales,

namely at scale 4, a reduction factor 1:16 is achieved with re-

spect to the original image, thus the time complexity of the WTA

stage is given by time units.

This solution has the advantage of providing information on

the fixation time spent on the FOA (the firing time of WTA

neurons) and our model, differently from others proposed in

the literature, explicitly exploits such information. After the

“Where” processing, the frame is represented by a spa-

tiotemporal, or motor trace representing the stream of foveation

points , where is the center

of FOA , and the delay parameter is the observation time

spent on the FOA before a saccade shifts to .

As outlined in Fig. 5 the generation of spatiotemporal infor-

mation is basically an information reduction step in which we

assume that the “Where” system “projects” toward the “What”

system and signals the FOA to be analyzed.

B. What Pathway: Properties Encoding

In the “What” pathway, features are extracted from each

highlighted FOA, relative to color, shape and texture. An FOA

is represented in the intensity and color opponent pyramids,

at the highest resolution scale. Note that in biological vision,

the spatial support of the FOA is usually assumed as circular;

here, for computational purposes, each FOA is defined on

a square support , centered on , of dimension

. In the following, we drop the parameter

for sake of simplicity.

Color features. Given a set of representative colors

, a color histogram of the FOA

is defined on bins ranging in [1, ], such that given

for any pixel in , is the probability that the color of the pixel

is . Here, is used. For a three-channel

frame, the FOA histogram calculation time is .

Fig. 5. Generation of the visuomotor trace of a single frame. The scheme
shows the selection of a FOA by the “Where” pathway, and the extraction of
FOA information by the “What” pathway. For visualization purposes, the trace
is represented as a graph-like structure: each node corresponds to a single FOA,
and the arc joining two FOAs denotes a saccade.

Shape and texture features. A wavelet transform (WT) of the

FOA has been adopted [32]. Denote the wavelet coefficients

as , where , indicates the decomposi-

tion level and indexes the sub-bands. In our case, due to the

limited dimension of the FOA, only a first level decomposition

is considered, and in the sequel, for notational sim-

plicity the index is dropped. Decomposition gives rise to four

subregions of dimension . Then, only the details com-

ponents of the WT are taken into account, in order to charac-

terize shape (edges) and texture. Namely, for , the

detail sub-bands contain horizontal, vertical and diagonal direc-

tional information, respectively, and are represented by coeffi-

cient planes . Next, the Wavelet Covariance

Signature is computed, i.e., the feature vector of coefficient co-

variances , where

(1)

The pair is in the set of coefficient plane pairs

, and being used to index the three channels, and

span over the sub-band lattice of dimension . Note

that, the FOA wavelet representation at level 1 can be obtained

through operations, where is the size of convolution

filters (here ) [32], while calculation of covariances can

be accomplished in operations. Clearly, .

As summarized in Fig. 5, the saccadic movements together

with their resultant fixations, and feature analysis of foveated

regions, allow the formation of the trace , briefly ,

of the view observed in frame

(2)

where .
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Fig. 6. Traces generated on four frames embedding an hard cut. The first four FOAs are shown for each frame. The red rectangle represents the first FOA of the
trace. The trace sequence abruptly changes between frames 2 and 3.

V. HIGH PERCEPTUAL LEVEL: INFERENCE OF SCENE CHANGES

FROM VISUOMOTOR BEHAVIOR

At this level, the observer evaluates the information regarding

the nature of visual exploration itself and infers the presence of

a shot boundary from its own sensorimotor behavior under prior

knowledge available on the kinds of transitions with which he

is dealing.

A. Attention Consistency via Information Look-Up

An agent observing views that present similar configurations

of objects will generate consistent traces until a transition oc-

curs. An example of such behavior is provided in Fig. 6 where

a trace of three FOAs is tracked in a subsequence embedding a

hard cut.

Formally, we need to define a measure of consistency

, such that , where the

traces and have been generated by observing

frames and . A strategy to

solve this problem is to make an FOA by FOA comparison [59].

This information look-up loop is summarized in the scheme of

Fig. 7.

The procedure, which we denote attention consis-

tency (AC), given a fixation point in a first

frame, selects the homologous point in a

second frame among those belonging to a local tem-

poral window defined in the interval , i.e.,

. The

choice is performed by computing, for the pair and ,

the FOA consistency

(3)

where , , , and by choosing the FOA as

. Such “best fit” is retained and eventually used

Fig. 7. Information look-up loop for determining the attention consistencyM
related to framesm and n, by exploiting the visuomotor traces T (m), T (n).

to compute as the average of the first FOA

consistencies

(4)

This “best fit” strategy has been chosen in order to reduce the

sensitivity of the algorithm both to the starting FOA point and to

the fact that, in similar images, some FOAs could be missing due

to lighting changes and noise, even if this is unlikely to occur for

small interframe distances.

The right-hand terms of (3), namely , ,

and , account for local measurements of spatial tem-
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poral and visual consistency, respectively. These are calculated

as follows.

Local spatial consistency. is gauged through the

distance between homologous FOAs centers

(5)

The distance is “penalized” if, for the two frames, the displace-

ment between the current FOA and the next one is not in the

same direction

(6)

being the difference of direction between two FOAs

(7)

where is a penalization constant. Thus, after normal-

ization

(8)

Local temporal consistency. takes into account

the difference of time that the observer gazes at two different

fixation points. To this end, the distance is introduced

(9)

The distance measured in (9) is normalized with respect to the

maximum fixation time of the scanpath. Then temporal consis-

tency is calculated as

(10)

Local visual consistency. is defined using either

color and texture/shape properties. Evaluation of consistency

in terms of color is performed by exploiting well-known his-

togram intersection, which again is an distance on the color

space [53]. Given the two color histograms and ,

defined on the same number of bins

(11)

where is a normalization factor. Then

(12)

Computational complexity for the histogram analysis part is

proportional to the number of bins in the histogram, thus taking

time units.

Shape and texture consistency is measured as

(13)

where is a normalization factor to bound the sum in [0,1],

and the number of features in the feature vector com-

puted through (1). Eventually, FOAs visual content consistency

is given from the weighted mean of terms calculated via (12)

and (13)

(14)

The computation cost of (3) is approximately linear in the

number of histogram bins , since , and (8) and

(10), are performed in constant time units. Thus, the algorithm

[see (4)] requires operations, which means

that, once and have been fixed as in our case, the AC

algorithm is linear in the number of FOA’s ; in particular,

a value of for the best fit window provides suitable

results. The value of was chosen either because, in

this way, each FOA is only visited once, and for the bottom-up

importance of earliest FOAs [40]. For what concerns the setting

of equation parameters, considering again (3), we simply use

, granting equal informational value to the

three kinds of consistencies; similarly, we set

in (14).

B. Using Attention Consistency and Prior Knowledge for

Detecting Shot Transitions

The observer’s behavior can be formalized as the attention

consistency gauged over subsequences of the video sequence

. To this end, let us generalize the local attention consistency

measure to a parametrized family ,

which accounts for the attentive behavior over the full sequence

, namely .

In such framework, the problem of inferring a shot change

given the change of observation behavior can be con-

ceived as a signal detection problem where the probability that a

shot boundary occurs, given a behavior , ,

is compared against the probability that a shot boundary is not

present, . More precisely, the observer’s judgement

of his own behavior can be shaped in a Bayesian approach

where detection becomes the inference between the following

two hypotheses:

• : no shot boundary occurs between the two frames

under analysis ( );

• : a shot boundary occurs between the two frames

.

In this setting, the optimal decision is provided by a test where

is chosen if and

is chosen, otherwise. Namely, a cut occurs if

(15)

where represents a likelihood

ratio.

In general, the prior shot probability models shot

boundaries as arrivals over discrete, nonoverlapping temporal
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Fig. 8. Plot ofM(t) function for a sequence characterized by one a dissolve
region embedded between two abrupt transitions.

intervals, and a Poisson process seems an appropriate prior

[21], [58], which is based on the number of frames elapsed

since the last shot boundary. Hanjalic has suggested [21] that

the prior should be more conveniently corrected by a

factor depending upon the structural context of the specific shot

boundary, gauged through a suitable function.

It is possible to generalize this suggestion resorting to con-

textual Bayesian analysis [47] in which an occurrence of the

property is detected by taking into account the behavior

given a context , that is a set of events charac-

terizing . Namely, is chosen if

. Thus, a cut is detected according to the

likelihood ratio

(16)

where now the right-hand side of the equation defines the adap-

tive threshold

(17)

The prior probability models the Poisson process of

boundary arrival according to the cumulative probability

[21].

As regards , under weak coupling assump-

tion [62] of structural events , we can set

. The events that constitute

the structural context can be described as follows.

Consider the behavior of function for both abrupt and

gradual transitions. An example related to a video sequence

characterized by the presence of two hard cuts embedding a dis-

solve is depicted in Fig. 8.

The first event we deal with is a shape event: when the gist of

the world observed abruptly changes (hard cut), decreases

down to a minimum value.

Thus, as regards hard cuts, to calculate the probability

, we use a sliding window of dimension ,

centered on the frame , thus including all frames in the

Fig. 9. Attention consistencyM in a dissolve region and its parabolic fitting.

temporal interval , chosen with the

interframe distance . For each frame, we consider the

probability that the difference between the first minimum of

, , and the second minimum detected within

the temporal window, be significant

shape (18)

where represents the normalized difference

.

On the contrary, during a dissolve, the difference between

consecutive frames is reduced, and a frame is likely to be sim-

ilar to the next one. Thus, the consistency function will vary

smoothly across the transition interval. Indeed, the behavior of

along a dissolve region is of parabolic type, and can be

more precisely appreciated in Fig. 9, where decreases

very slowly till a local minimum point (fade-out effect), then

slowly increases (fade-in effect).

A second event, which we denote , stems from the fact

that the first derivative function of is approximately con-

stant and about zero in those frames characterized by dissolve

effects (see Fig. 10). Clearly, previous events are not sufficient

to completely characterize the context of a dissolve region: in

fact, could exhibit a similar trend, e.g., in shots featuring a

slow zoom. Thus, the inconsistency between the edge frames,

that is the first and last frames of an hypothetical dissolve re-

gion, must be taken into account. We denote this event a change

event.

Summing up, in the case of dissolves we can assume

shape

(19)

To calculate the probability , we use a sliding

window of dimension , centered on the frame

, which includes all frames in the temporal interval

, chosen with the interframe distance

. The first term on the right-hand side of (19) is defined as

shape (20)
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Fig. 10. First derivative ofM(t) in the same region shown in Fig. 9.

where represents the distance between the absolute min-

imum of within the temporal window and the minimum of

the parabolic fitting performed on values occurring in the

same window.

The second term accounting for the probability

that derivative be close to zero, is modeled as

(21)

where is the mean value of within the time window. To

compute derivatives, the curve is preprocessed via median

filtering [41] in order to avoid noise boost-up.

The third term , representing the probability

that the first and the last frame of the dissolve be different, is

given by

(22)

where and are the first and last frame of the sliding

window, and respectively.

The variation is defined as

(23)

where and represent the absolute minimum and

maximum values of the function within the window, respec-

tively.

The likelihood in (16) is estimated, on training sequences,

by computing the histograms of the values within a shot

and at its boundaries, respectively; then, ideal distributions are

derived in non parametric form through Parzen windows [12]

using kernels (boundaries) and

(within shot), where

, , , are the estimated parameters.

Eventually, the decision module can be outlined as in Fig. 11.

The input is represented by the sequence computed by

applying the AC algorithm on the video sequence, together with

Fig. 11. Decision module for inferring boundary presence from M(t)
behavior and prior/contextual knowledge.

contextual knowledge. Boundary detection is accomplished ac-

cording to a two-step procedure, which we denote inconsistency

detection (ID).

In a first step abrupt transitions are detected by means of

(16)–(18). At the end of this phase, we obtain the positions of

hard cuts, which partition the original video in a sequence of

blocks representing candidate shots.

In a second step, the frames interested in dissolve effects are

detected. For each block, dissolve regions are individuated by

means of (16), (17), and (20)–(22), computed through a sliding

window centered on each frame of the block, chosen according

to an interframe distance . Eventually, the output of the

system is represented by the list of shot boundary positions,

defining the shot segmentation of the original video.

The first step of the ID algorithm has complexity ,

being the number of frames of the video sequence. The second

step is , where , , are the dimension of

the sliding window, the number of blocks partitioned along the

first step, and the maximum block length, respectively.

The dimensions of the sliding windows have been chosen by

means of an analysis of ROC curves obtained for the training set

in order to maximize true detections with respect to false alarms.

VI. EXPERIMENTS AND RESULTS

To evaluate the performance of the proposed shot detection al-

gorithm, a database of video sequences has been obtained from

documentaries and news belonging to TREC01 video reposi-

tory and from famous movies. The database represents a total of

1694 cuts and 440 dissolves in approximately 166 min of video.

The selected sequences are complex with extensive graphical

effects. Videos were captured at a rate of 30 frames/s, 640

480 pixel resolution, and stored in AVI format. These video se-

quences are also characterized for presenting significant dis-

solve effects. For each sequence a ground-truth was obtained

by three experienced humans using visual inspection [16].

To obtain an estimate of parameters for detection, the training

set, shown in Table I, has been used.

Experiments for performance evaluation were carried out on

a test set including a total of 1304 cuts and 336 dissolves in

130 min of video, which is summarized in Table II.
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TABLE I
DESCRIPTION OF THE VIDEO TRAINING SET

TABLE II
DESCRIPTION OF THE VIDEO SEQUENCES IN THE TEST SET

The comparison between the proposed algorithm’s output

and the ground truth relies on the well-known recall and

precision figures of merit [16]

recall
detects

detects
(24)

precision
detects

detects
(25)

where detects denotes the correctly detected boundaries, while

and denote missed detections and false alarms, respec-

tively. In other terms, at fixed parameters, recall measures the

ratio between right detected shot changes and total shot changes

in a video, while precision measures the ratio between right de-

tected shot changes and the total shot changes detected by algo-

rithm.

Results obtained are provided in Tables III and IV and sum-

marized in Table V.

The proposed method achieves a 97% recall rate with a 95%

precision rate on abrupt transitions, and a 92% recall rate with

a 89% precision rate on gradual transitions (Table V). In order

to provide an idea about the quality of this results, we refer to

the discussion published by Hanjalic [21]. In particular, on dis-

solve detection, it is worth comparing with Lienahrt [30] and

the works therein reported [29], [63].

Also, Table V provides results in terms of the metric,

precision recall precision recall , which

is commonly used to combine precision and recall scores [43],

being high only when both scores are high. Summing up,

the method proposed here achieves an overall average per-

formance of 0.91 when considering both kinds of transitions.

This result can indicatively be compared to the performance of

TABLE III
ABRUPT TRANSITION PERFORMANCE OF THE FOVEATED DETECTION METHOD

TABLE IV
GRADUAL TRANSITION PERFORMANCE OF THE FOVEATED DETECTION METHOD

TABLE V
PERFORMANCE OF THE METHOD

a recently proposed method [43] that uses global and block wise

histogram differences, camera motion likelihood, followed by

k-nearest neighbor classification. Such method achieves an

performance of 0.94 and 0.69, for hard cuts and gradual transi-

tions, respectively, resulting in an average performance of 0.82;

interestingly enough, this result is higher than average scores

(0.82 and 0.79) obtained by the two best performing systems at

2001 TREC evaluation [43]. It is worth noting that, in our case,

the overall score of 0.91 also accounts for results obtained by

processing movies included in our test set, which eventually re-

sulted to be the most critical. For completeness sake, by taking

into account only TREC01 video sequences, the overall perfor-

mance of our method is 0.925.

As regards the efficiency of the method, recall that to ob-

tain the visuomotor trace of the frame, main effort is spent on

pyramid and WTA computation, which can be estimated as an

step, where represents the number of samples in the
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TABLE VI
AVERAGE FRAME PROCESSING TIME FOR EACH STEP

image support , while FOA analysis involves lower time com-

plexity, since each of the FOAs is defined on a limited sup-

port with respect to the original image ( ) and only ten

FOAs are taken into account to form a trace. The AC algorithm

is , that is linear in the number of FOAs. The first step of

ID algorithm has complexity , and being the number

of frames of the video sequence and the interframe distance, re-

spectively. The second step is , where , ,

are the dimension of the sliding window, the number of blocks

partitioned along the first step, and the maximum block length,

respectively. From this analysis, by considering operations per-

formed on a single frame, we can expect that most of the time

will be spent in the low-level perception stage, while the AC and

ID algorithms will have higher efficiency, the former only per-

forming on a sparse representation of the frame and

the latter working on values of the sliding window of di-

mension . This is experimentally confirmed from the results

obtained and reported in Table VI.

The system achieves a processing speed per frame of about

35 ms on a Pentium IV 2.4-GHz PC (1-GB RAM). It is worth

noting that the current prototype has been implemented using

the Java programming language, running in Windows XP oper-

ating system, without any specific optimization.

Clearly, for time critical applications, the bottleneck of the

proposed method, that is the computing of visuomotor traces,

could be easily reduced by resorting to existing hardware im-

plementation of pyramidal representations ([9]) and more effi-

cient realizations of the WTA scheme (e.g., in [4] a network is

presented, which has time complexity).

VII. CONCLUSION

In this paper, we have defined a novel approach to partitioning

of a video into shots based on a foveated representation of the

video. To the best of our knowledge, foveation mechanisms have

never been taken into account for video segmentation, while

there are some recent applications to video compression (refer to

[26]). The motivation for the introduction of this approach stems

from the fact that success or failure in the perception of changes

to the visual details of a scene across cuts are related to the atten-

tive performance of the observer [51]. By exploiting the mech-

anism of attention shifting through saccades and foveations,

the proposed shot-change detection method computes, at each

time instant, a consistency measure of the foveation se-

quences generated by an ideal observer looking at the video. The

problem of detecting a shot change given the change of consis-

tency has been conceived as a Bayesian inference of the

observer from his own visual behavior.

The main results achieved can be summarized as follows. The

proposed scheme allows the detection of both cuts and dissolves

between shots using a single technique, rather than a set of dedi-

cated methods. Also, it is well grounded in visual perception the-

ories and allows to overcome usual shortcomings of many other

techniques proposed so far. In particular, features extracted are

strictly related to the visual content of the frame; this, for in-

stance is not true for simpler methods, such as histogram based

methods, where, in general, totally different frames may have

similar histograms (e.g., a frame generated by randomly flipping

the pixels of another frame has the same histogram of the orig-

inal one). Further, the FOA representation is robust with respect

to smooth view changes: for instance, an object translating with

respect a a background, gives rise to a sequence of similar visuo-

motor traces. Meanwhile, a large object entering the scene would

be recognized as a significant discontinuity in the visual content

flow of the video sequence; in this sense, the approach accounts

for the more general definition of shot as a sequence of frames

that was, or appears to be, continuously captured from the same

camera [16]. Once the distinctive scanpath has been extracted

from a frame, subsequent feature analysis need only to process

a sparse representation of the frame; note that for each frame,

we consider ten FOAs, each FOA being defined on a square sup-

port region whose dimension is 1/36 of the original image; fur-

ther reduction is achieved at the detection stage, where only the

function is processed (cfr. Table VI). Last, the perceptual ca-

pacity of an observer to account for his own visual behavior, natu-

rally leads, in this framework, to a Bayesian decision formulation

for solving the detection problem, in a vein similar to [21] and

[58]. In particular, by resorting to recently proposed contextual

Bayesian analysis [47], we have generalized some suggestions

introduced in [21] for exploiting structural information related

to different types of transitions.

It is worth remarking that, with respect to the specific problem

of gradual transitions, the present work focuses on dissolve de-

tection. However, the detection scheme can be easily extended

to other kinds of transitions; for instance, preliminary experi-

ments performed on wipes (not reported here, because out of

the scope of this paper) show a behavior of the function

characterized by a damped oscillatory pattern. Also, beyond the

context of video segmentation, the proposed technique intro-

duces some novelties per se with respect to the “Where” and

“What” integration problem, the explicit use of the fixation time

in building a visuomotor trace, and as regards the way to exploit

the extracted information for comparing different views (infor-

mation look-up problem).

Results on a test set representing a total of 1304 cuts and

336 dissolves in 130 min of video, including videos of different

kinds are reported and validate the proposed approach. The per-

formance of the currently implemented system is characterized

by a 97% recall rate with a 95% precision rate on abrupt transi-

tions, and a 92% recall rate with a 89% precision rate on gradual

transitions. Meanwhile it exhibits a constant quality of detection

for arbitrary complex movie sequences with no need for tuning

parameters. Interestingly enough, the system has been trained

on a small data set with respect to the test set used.

However, the introduction of an attention based approach

not only is motivated by performance in shot-detection, but in

perspective it could constitute an alternative to traditional ap-

proaches, and overcome their limitations for high-level video

segmentation. Consider, for instance, the issue of scene change

detection by jointly exploiting video and audio information.

Audio and pictorial information play different roles and, to
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some extent, complementary. When trying to detect a scene

decomposition of the video sequence, the analysis of visual data

may provides candidate cuts, which are successively validated

through fusion with information extracted from audio data. How

to perform such fusion, in a principled way, is unclear. However,

behavioral studies and cognitive neuroscience have remarked the

fundamental role of attention in integrating multimodal informa-

tion [5]; and the approach proposed here could serve as a sound

basis for such integration. In this way, the low-level and high-

level video analysis could share the processing steps, making

the entire content analysis process more effective and efficient.
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