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Abstract

We cast the problem of corner detection as acorner search process. We develop principles of foveated

visual search and automated fixation selection to accomplish the corner search, supplying a case study

of both foveated search and foveated feature detection. The result is a new algorithm for finding corners

which is also a corner-based algorithm for aiming computed foveated visual fixations. In the algorithm,

long saccades move the fovea to previously unexplored areas of the image, while short saccades improve

the accuracy of putative corner locations. The system is tested on two natural scenes. As an interesting

comparison study we compare fixations generated by the algorithm with those of subjects viewing the

same images, whose eye movements are being recorded by an eye-tracker. The comparison of fixation

patterns is made using an information-theoretic measure. Results show that the algorithm is a good locater

of corners, but does not correlate particularly well with human visual fixations.

Index Terms

Foveated vision, corner detection, machine vision, feature detection.

I. I NTRODUCTION

One of the most difficult, ill-posed, and unsolved problems in the field of image analysis is that of

visual search. Indeed, the problem remains poorly defined from an engineering perspective. Does visual

search mean an algorithm for finding and identifying a specific object or class of objects in an image?

The extensive literature on automated target recognition (ATR) exemplifies this philosophy [1]. Or, does

visual search imply a general framework for finding information from visual data, but without object-

specific guidance? There is only a small literature on generic automated visual search. Methods include

search based on contrast [2], [3]; image and depth gradients [4]; other edge factors [5]; proximity between

objects [3]; object similarity [6], [7], [8], and combinations of randomized saliency and proximity factors

[9]. These automated methods, while reaching in interesting directions, remain generally unsuccessful,

although active, directed search methods show promise in reducing the complexity of this severely ill-

posed problem [10], [11].
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While there are merits to both strategies, great benefit would result from the development of basic

principles guiding the design of algorithms for visual search, which could be applied to a diversity of

search applications, and which would address some of the factors that limit the success of visual search.

Indeed, primate and other biological vision systems have taken this approach, at least at the mechanical

and data sampling level. A striking feature of primate and other animal visual systems is that they are

foveated, with high resolution near the center of gaze that falls off as a power function of eccentricity,

the angle away from the center of gaze. In humans, the fovea is a circular region of tightly packed cones,

roughly 1.5 mm in diameter [12][3]. This density decreases rapidly with eccentricity. In the central fovea,

receptors are packed at a density of about 120/degree [13], [14]. This corresponds to a resolution of .291

mm at a viewing distance of 100 cm. The optics of the eye filters out higher spatial frequencies, which

could cause aliasing [15].

Foveated primate vision systems mechanically direct the fovea around a scene over time via very fast

ballistic eye movements called saccades, resulting in series of static fixations [16], [17]. Foveation is an

effective compromise between the demand for high-resolution vision and the limited transmission and

processing bandwidths of the optic nerve and subsequent brain regions; foveation is a powerful form of

visual data compression - the amount of information flowing from the retina to the brain is far less than

if the entire retina was sampled at foveal density.

The brain uses peripheral, low-resolution information to decide which region of the image warrants the

next fixation. This is accomplished quickly - the human eye typically makes more than 10,000 saccades

per hour, ranging in distance from a few seconds of arc to up to over 70◦ [13], [14], [18], [19]. Certainly

the computation of new fixations must be fast, automatic, and image-driven to accomplish visual search

with active, mobile cameras or eyes [20], [4], [21].

Rather than processing a wide field of view (FOV) visual stream all at once, high-spatial-resolution

search is conducted over a very small FOV (the image on the fovea) while wide-FOV search, rich with

context but lacking detail, occurs over the peripheral field of view. Candidate discoveries in the periphery

can be rapidly analyzed at high resolution via saccadic eye movements that redirect the candidate to an

area of interest; in the absence of candidates, eye movements may be sequentially deployed to enlarge

the search space.

Much more research has been applied to the problem of how visual search is accomplished by primate

and other biological vision systems. Results from the cognitive and perceptual sciences provide interesting

insights into how humans search visual environments [22], [23], [24]. These studies have revealed

limitations imposed by low-level factors [24] and the relationship between stimuli and the distribution of
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attention [22]. Other studies have revealed the rules regarding where a saccade will land on a complex

form [25]. Several workers studied the problem of integrating information across eye movements [26],

[27], [28], [29], [30], relating shifts in attention and gaze [31], [32], relating top-down and bottom-up

search [61]-[62], and relating visual search with visual memory [33], [34], [35]. Yet little is known about

the tremendous amount of learning and plasticity needed to efficiently search for objects in complex visual

environments. Only recently has the influence of learning and memory loads on search been investigated

[36]. Little is known about fixation-selection mechanisms, how attention is distributed over time [37],

and how these mechanisms maximize visual search efficiency.

In any case, it is clear that visual information gathering and visual search is greatly augmented by

deploying the highly efficient foveation-fixation-scanpath process. We believe that this elegant solution

can, and should, be adapted into computational systems for visual information acquisition and processing.

Most practical image processing systems, however, do not operate with mobile cameras, which means that

the role of foveation in such systems takes a modified role. Such foveated systems that operate without

moving cameras we shall callstatic foveated systems. Instead of the foveation being determined by the

fixation of the acquisition hardware (camera or eye), it is accomplished in software according to some

criteria. One powerful and popular example isfoveated image compression, where images or videos are

foveated to achieve substantially increased compression [20], [21], [38]. This requires knowing where the

spatial fixation on the image of the human observer is, and the distance of the observer from the image,

so that the foveated fall-off can be matched to that of the observer’s eye. This can be accomplished by

eye-tracking, head tracking and other physical measurements [39].

Less work has been done on foveated computer processing algorithms that do not require eye-tracking.

Exceptions include early work by Burt [1] on scene analysis and Klarquist et al. [4] on computational

stereopsis. Broadly speaking, the idea is to allocate dense visual data representation and processing

resources to those regions of the image which seem to have promising information, while applying fewer

resources to the peripheral data processing - while retaining potentially valuable peripheral information

which may guide further fixations and processing.

Biological visual systems that perform visual search certainly benefit from the mechanical fixation-

foveation process. We believe that automated systems will realize similar benefit by the use of static

foveated processing - even in the absence of moving cameras, and without the benefit of eye-tracked

human observers. However, since there is no well-developed theory of visual search - foveated or otherwise

- we must begin from scratch. While there is no general agreement on how visual search is conducted,

there is support for the notion that it contains both “bottom-up” elements as well as “top-down” elements.
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Top-down processing suggests that algorithms should retain internal models of what is being searched

for, and that the search process becomes essentially that of matching these models to the image on a

local basis. Bottom-up processing supplements this concept by the idea that these internal models are

constructed from simple features, such as contrast, contours, surfaces, disparities, colors, etc.

In foveated visual search systems, there is also the interesting central problem of deciding where to

place the center of foveation during the search process. In such systems, the goal of the placement is not

to match the position of gaze, but rather, to optimize the gathering of information that is likely relevant to

the object(s) being searched for. Subsequent fixations should be chosen based on the available foveated

data. The amount of information available to the search algorithm regarding the object(s) of interest

(assuming it is present in the image) is then determined by the proximity of the object to the current

fixation. There is some evidence that in human visual search, the selection of next fixations is effected by

such low-level features as contrast [40], [41], and also by primitive shape attributes [42], [43]. However,

the visual psychophysics literature, while certainly more advanced on the topic of foveated visual search

than the computational literature, still supplies little guidance towards the development of computational

algorithms.

We believe that both high- and low-level factors are necessary for visual search, but that low-level

features are a pre-requisite to high-level modeling. Determining which low-level features are best utilized

is an open problem that will require reconciling high- and low-level issues. In this paper, we address both

issues by proposing an approach to foveated search of low-level features, specifically corners - points of

locally maximum contour curvature, and discontinuities in contour orientation.

Corners have long been recognized as rich bearers of visual information, and numerous algorithms

have been proposed for detecting corners and using them as features in basic visual tasks such as object

recognition, stereo matching, shape analysis and optical flow computation [44], [45], [46], [47], [48],

[49], [50], [51], [52], [53], [54], [55]. In their early seminal work on computational vision, Marr and

Hildreth [56], [12] regarded corners as being of high visual saliency, and designated them as being

members of the discontinuity class in the theory of the full primal sketch. They viewed corners as an

important member of the class of image primitives that are used as building blocks for representing

objects in image understanding systems, whether biological or computational. Other features exist, of

course, such as edges. However, corners are more localized than edges, and as pointed out by Nobel

[44], are superior to edges for defining the shapes of objects, since edges detectors only provide location

information in a single direction (normal to the edge). Shi and Tomasi [57] derived a simple model to

determine which features are best for tracking in a video signal. They determined that corners belong
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to this class. Tommasiniet. al. [58] extended their work by adding an algorithm to reject unreliable

features. Schmidt et. al. [59] discuss the detection of “interest points” - intensity changes in 2-D that

include corners, T-junctions, dots and other features - and evaluate their usefulness for image registration.

Kenneyet. al. [60] derive a “condition number” to assess the sensitivity of feature/corner detectors to

perturbations in feature position. Gordon and Lowe [61] used a scale invariant feature transform [62] to

extract features defined as the extrema of a scale-varying Difference of Gaussian (DoG) convolved with

the image.

Features detected in this manner included edges and corners. In a paper with a general philosophy

similar to ours, Reid and Murray [63] describe a method of obtaining a fixation point on a moving object

in an active vision system using two or three cameras. They track corners in real time over a cluster

of frames using a Kalman filter. Another feature of their system is a simple pseudo-foveated processing

scheme with a small pseudo-fovea surrounded by a lower-resolution pseudo-periphery [64].

Certainly corners present advantages as a discrete image feature, since they are simultaneously information-

rich, yet require minimal description. Accurate corner information is not easy to acquire; for example,

Mehrotraet al. [46] points out that edge detectors tend to perform poorly near corners, suggesting that

corner detection by locating intersections between edges can lead to poor performance.

In this paper, we cast the problem of corner detection as acorner search process. We apply principles

of foveated visual search and automated fixation selection in accomplishing the corner search. Thus, we

approach the search process from a low level, searching for objects without requiring building blocks

to represent them, since the objects being searched for are the same as the features. In this way, we

hope to contribute by supplying a case study of both foveated search, and foveated feature detection. The

result is a new algorithm for finding corners (viewed from the perspective of foveated feature detection),

but which may also be considered as a corner-based algorithm for aiming computed visual fixations

(along with a computed fovea), with the eventual goal of extracting information that is useful for more

sophisticated object recognition systems.

With this last interpretation in mind, as an interesting comparison study we also compare fixations

generated by this algorithm with those of subjects viewing the same images, whose eye movements are

being recorded by an eye-tracker. The comparison is made using an information-theoretic measure.

II. COMPUTING EDGE AND CORNERFEATURES IN FOVEATED IMAGES

While foveation presents significant advantages for visual search via an efficient allocation of resources,

it presents new challenges for accomplishing low-resolution and spatially-varying object recognition, since
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each foveated view distorts the image away from fixation by reducing the resolution. Near the fixation

point, fine features, such as edges and corners, are resolved well. Away from the fixation point, these

fine details may be attenuated, distorted, or lost.

The overall approach that we will take towards searching for corners in images will involve foveating

the image, deciding a most likely location of a corner, moving the fixation to that vicinity, refining the

corner location estimate, identifying the corner - then choosing a next likely corner location, and so on.

The details of the overall search methodology will be given later. An essential ingredient for choosing

likely corner locations is a corner detection algorithm that operates on foveated data, and the output of

which can be analyzed and interpreted in the context of foveation.

In the following we describe, in order, the method we use to create foveated images; the method of

edge detection we use on foveated images, and the method of corner detection we use on the detected

foveated edge maps.

A. Foveation Filtering

There are several possible methods for creating foveated images, the most popular of are those based

on spatial-domainfoveation filtering, and those based on wavelet-domain foveation. Foveation filtering

is the most straightforward method [20], [38], [65] wherein a bank of low-pass filters is applied to the

image on a point-wise basis, with bandwidths monotonically decreasing with eccentricity. The filters used

are usually symmetric, unit-volume 2-D Gaussians of the form [20], [38]

Gσ(x, y) =
1√
2πσ

e−
x2+y2

2σ2 (1)

The other popular approach is to selectively subsample and quantize the image data in the wavelet

domain, leading to decreased resolution away from the fovea. Such techniques have proven very effective

for image and video compression [21], [38], [65]. We choose to use the simple and direct method of

foveation filtering with Gaussian filters, owing to the simplicity of the method, and since the artifacts that

naturally arise in accomplishing wavelet-domain quantization might lead to spurious corner responses.

While wavelet-domain methods are certainly of high interest, in this first study we choose to adopt the

direct approach, which yields foveated images which vary smoothly.

The cutoff frequencies of the Gaussian filters in Eq. (1) can, in principle, be made to decrease

continuously with eccentricity, to match the sampling grain of the image, it is also possible to more

coarsely quantize the cutoff frequencies so that concentric rings of constant cutoff frequency are formed
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on the image surrounding the point of foveation. This simplifies practical implementation while effecting

the foveated appearance of the image only slightly. The half magnitude cutoff frequency of the Gaussian

in Eq. (1) is

ωc =

√
2ln2
σ

(2)

Hence one can implement foveation filtering by makingσ an increasing function of eccentricity.

Several approximations serve to simplify implementation and to improve performance. The support of

a Gaussian is infinite but a good approximation can be made by centering it in an array of about 3σ

pixels square. Instead of continuously varyingσ with eccentricity, the image is divided into a series ofn

bands, that are concentric about the fixation point. The innermost ring is actually a circle centered about

the fixation point, while the outermost ring extends to the borders of the image.

We use a simple formula to determine the radius of each ring:

r0 = 0, ri = (i + 2)1.6, i = 3, 4, . . . , n− 1, rn = ∞ (3)

where the radius of theith ring is ri(pixels). The innermost ring has a radius of 5.8 pixels, and

the distances between the rings increases with eccentricity. This formula provides a reasonable trade-off

between execution time and continuity at the ring boundaries. The image between theith and the(i−1)th

ring is convolved with a GaussianGσi
(x, y) whereσi increases monotonically with eccentricity.

Since convolving Gaussians with small values ofσ takes less processing time than with larger values,

efficiency is achieved by implementing larger Gaussian convolutions via repeated convolutions of smaller

Gaussians. Repeated convolutions with Gaussians of spatial parameters designatedσi, i = 1, . . . , k is

equivalent to a single convolution with a Gaussian with spatial parameter

σ =
√∑

i=1

kσ2
i (4)

The foveation filtered image is created by the following process. The input image is first convolved

with a Gaussian of spatial parameterσ1 and the results stored. This blurred image is next convolved

with a Gaussian of spatial parameterσ2 and the results stored. The process continues for the maximum

possible number of bands. Later, when a fixation point is created, each band is filled from the appropriate

stored image. Hence, thekth filtered image is

Ik = I ∗k
i=1 Gσi

(x, y) (5)
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whereI is the original input image.

The values ofσi used in the algorithm are set to approximate the spatial frequency response of the

human vision system (HVS) based on the following widely used formula [38], [66], [65]:

CT (f, e) = CT0e
αf

e+e2
2 (6)

HereCT (f, e) is the contrast threshold expressed as a function of spatial frequencyf (cycles/degree)

and eccentricitye (degrees).CT0 is the minimum contrast threshold,α a spatial frequency decay constant,

ande2 is the eccentricity in degrees at which the contrast threshold drops to one half of maximum. The

half-magnitude spatial cutoff frequencyfc can be expressed a function of eccentricity by solving:

−log(CT0) = αfc
e + e2

e2
(7)

which yields:

fc = − log(CT0)e2

α(e + e2)
(8)

In arriving at this formula, Geisler and Perry [66] fit Eq.(6) to various sets of experimental data

taken from the vision literature. They found good consistency with the following parameter selections:

α = 0.106, e2 = 2.3, and1/76 < CT0 < 1/64. Substituting these values into Eq.(8) and using an average

for the high and low values forCT0 yields a numeric relationship between cutoff spatial frequency and

eccentricity:

fc =
92.024
e + 2.3

(9)

The spread parameters of the Gaussians may then be found from Eq. (2).

B. Foveated Edge Detection

In our approach to corner search, edges recovered from the foveated images are used as features input to

a corner detection apparatus. Edge detection is a subject that has been studied with considerable intensity

for more than four decades. As such, there is a great variety of edge detection choices and considerable

variance in edge detection philosophies. The most prominent categories of edge detectors are probably

those which compute image derivatives, such as the gradient, the Laplacian, or directional derivatives of

the image intensity, with appropriate smoothing either built-in or accomplished before implementation
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of discrete derivative approximations [[67], and those which modify this process by using smoothing

along preferred directions prior to differentiation, viz., anisotropic filtering [67]. There is no doubt that

a great variety of edge detection operators may be applied to foveated data. In the approach given here,

we will utilize the relatively simple and straightforward Canny edge detector for several reasons [39].

First, the Canny operator provides excellent localization in the edge detection results; second it is simple

and naturally defined; third, it gives good performance where the edge curvature is high, and lastly, it

does not require any kind of iterative processing, unlike anisotropic schemes. Given the framework of

corner-finding via sequential fixations that we are presenting here, direct, locally-computed approaches

appear to be a more natural choice, because of the need for rapid, localized processing.

We briefly describe the Canny operator in the context of foveated edge detection. Given an image

I(x, y), the usual method is to form the Gaussian smoothed image

Sσ(x, y) = Gσ(x, y) ∗ I(x, y) (10)

from which an estimate of the gradient5Sσ is computed. In our application,I is not convolved by

a single Gaussian, but is instead smoothed by a space-variant Gaussian. In the Canny formulation, the

unit vector in the gradient direction∠5 Sσ estimates the direction normal to the edge:

nσ(x, y) =
5Sσ(x, y)
| 5 Sσ(x, y)| (11)

Putative edge locations are then marked by the zero crossings of the twice directional derivative in the

direction of the normal in Eq. (11):

∂2Sσ(x, y)
∂n2

σ(x, y)
= n(x, y).5

[5Sσ(x, y).5 Sσ(x, y)
|nσ(x, y)|2

]
(12)

It is easily shown [39] that the zero crossings of Eq. (12) are conveniently the same as those of

D(x, y) = 5Sσ(x, y).5 [5Sσ(x, y).5 Sσ(x, y)] (13)

Discrete implementation of Eq.(13) is accomplished using space-varying discrete directional Gaussian

derivativesGσ,x(x, y) = ∂/Gσ,x(x, y)/∂x and Gσ,y(x, y) = ∂/Gσ,y(x, y)/∂y to compute the discrete

gradient expressions5Sσ(i, j) at each discrete image coordinate(i, j).

The zero-crossing maps obtained by a space-varying edge detector may be viewed as an oriented slice

through edge scale-space [68], [69] as the distance from the foveation point increases; it is possible that

this outlook may provide valuable insights into foveated edge detection processes.
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C. Detection of Corners

Many researchers have studied corner detection, although there has not been any prior work that we

have been able to find involving corner detection on foveated data. However, corners are usually regarded

as points of high curvature, or of curvature discontinuity, along the contours of detected boundaries,

edges, or local image intensity profiles. Of course, different definitions of curvature exist. A common

and effective definition is to take the curvatureκ as the derivative of tangent angle, with respect to arc

length, of a parametric curvex = x(t), y = y(t) [48]:

κ =
dφ

ds
=

dφ
dt√(

dx
dt

)2
(

dy
dt

)2
(14)

wheres is arc length,φ is the tangent angle, and where

φ = arctan

(
dy/dt

dx/dt

)
(15)

Shortening the notation and taking the derivative gives:

dφ

dt
=

x′y′′ − x′′y′

1 +
( y′

x′
)2 (16)

which substituted into Eq.(14) yields:

κ =
x′y′′ − x′′y′

(
x′2 + y′2

)3/2
(17)

It can be easily shown from the definition thatκ equals the reciprocal of the radius of curvature. The

curvature measure Eq.(17) on a digitized curve is highly sensitive to noise because of the computed

derivatives, so commonly the curve is smoothed, e.g., a low order polynomial is fit to the curve in a

sliding window, and the derivatives of the polynomial are used in Eq.(17) to calculate a value for curvature

at the center of the window. A local maximum of|κ| may be taken to indicate the presence of a sharp

bend in the curve or a corner.

Mehrotra et al. [46] developed corner finders based on directional first and second derivatives of

Gaussians, which can detect half-edges at any desired angle to each other. Flynn and Jain [45] describe

a series of corner detectors based on a variety of curve fitting methods. They also mention the necessity

for smoothing the curves.
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The Moravec interest operator is based on the response of a small averaging window to an image. If

the window straddles an edge, then moving it parallel to the edge direction creates a small change in

response whereas moving it normal to the edge creates a large response. If the window straddles a corner,

however, moving it in any direction will cause a large response. The Moravec [49] detector declares a

corner if the minimum change produced by a shift exceeds some threshold.

The Plessey corner finder [49], [44] is based on a matrixM of products and squares of directional

image derivatives. At points where two eigenvalues ofM are large, small shifts of the window position

in any direction will cause a large change in its average response, indicating that the point may be a

corner.

The SUSAN corner [70]] detector applies a moving circular template to an image and declares a corner

at points where the value at the center of the template is approximately equal to a small portion of the

entire template.

Mokhtarian and Suomela [50] developed a variable scale corner detector based on the curvature formula

Eq.(14) and the Canny edge detector. They initially convolve the image with a wide Gaussian, smoothing

corners into broad curves. Locating the position of maximum curvature gives an estimate of the corner

position, which they refine by narrowing the scale of the Gaussian, and by tracking the corner as it

moves.

While there has not been any definitive study conducted which would indicate which corner detection

algorithm is to be preferred - unlike, e.g., edge detection theory, where a variety of optimal criteria have

led to so-called optimal edge detectors - we use the formula Eq.(14) for a variety of reasons: it uses a

very natural definition, it is a localized computation, it is widely used, and although derivative-based, the

use of smoothing in our approach to creating foveated images reduces the sensitivity of the operator to

noise.

III. SEQUENTIAL COMPUTATION OF FIXATION POINTS

A fixation selection measuremi,j is then computed over the entire edge map (as explained below),

and the next fixation is placed at the pixel with the highest value of this measure. A new foveated edge

map is created based on the new fixation position and the search algorithm is invoked to produce a

short saccade, using a different calculation for the fixation selection measure than for a long saccade.

A new foveated edge map is created and another short saccade generated. Short saccades are generated

until a corner is deemed found, or until a corner is not found, which is assumed when short saccades

are continually generated. If seven short saccades are generated in succession, or if a corner strength
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measure is sufficiently large to positively identify a corner, then the search is deemed to have failed and

a long saccade is generated, which moves the fovea to a different region of the image.

We now describe the fixation selection algorithm in detail. At each fixation a foveated edge map is

computed as described in Sections II-B and II-C. A curvature map is computed along the edge (zero-

crossing) loci. In order to reduce the effects of noise on the derivative computations, a simple third-order

polynomial is locally fit at each point on the zero-crossing contour. The curvature Eq. (17) is then

computed at each point(i, j) that lies on the smoothed zero-crossing contours. The curvature strength

κi,j is one of the multiplier factors in the fixation selection measuremi,j .

Figure 1 illustrates the calculation of a curvature map: Figure 1(a) depicts a contour with two points

indicated: A and B. Figure 1(b) depicts a close-up of point (A) - a high curvature point - along with

its local polynomial fit, while Fig. 1(c) shows the same for the low curvature point B. Finally, Fig. 1(d)

shows the original contour in Fig. 1(a) with curvature coded by the intensity of the line (darker = higher

curvature).

We believe that curvaturealone is not a suitable measure for placement of subsequent fixation points

for two reasons. First, even if the fixation selection algorithm were probabilistically-driven, very high-

curvature locations would be visited repeatedly. Our goal is to successfully search for as many corners

that are in the image as possible. Secondly, noise or low-contrast curves may create zero-crossing loci

having high curvatures, thus attracting the fovea to uninteresting regions or artifacts in the image.

To address the first of these problems, an array of history information is maintained and used to define

a second multiplier factor in the fixation selection measuremi,j . Let

hi,j =





1; |i− ifk| ≤ 12, |j − jfk| ≤ 12

0; otherwise
(18)

where the coordinates of thekth fixation point are denoted byifk andjfk. Whenever a fixation point

is generated, a 25×25 unit square centered at the fixation is added to the history array. In this way, long

saccades are prevented from landing too close to previously-visited locations.

Two observations motivate the next term used in the fixation selection measure. First, corners that lie

further from the current fixation point(if , jf ) will be more severely blurred by foveation, so the apparent

curvature of distant corners will be reduced. Secondly, once a corner is found at(if , jf ), a large saccade

is desired to cause the algorithm to scan the image more quickly. Hence the distance factor

di,j =
√

(i− if )2 + (j − jf )2 (19)

October 23, 2006 DRAFT



IEEE TRANSACTIONS ON IMAGE PROCESSING 13

is used as a multiplier in the fixation selection measuremi,j . This term compensates for the fact that

corners away from the foveation point turn into broad curves by giving extra weight to curves far from

the fovea. In addition, it forces the fixation point to move large distances between fixations, forcing it to

scan the entire image more quickly.

We have also chosen to include an edge strength factor in the fixation selection measure. Our viewpoint

is that corners having large edge magnitudes are more likely to be associated with significant image

structure. The edge strength factor is simply the squared gradient magnitude of the Gaussian-smoothed

space-variant image

si,j = | 5 Sσ(i, j)|2 (20)

The use of this term introduces an additional problem. A high contrast edge of low curvature may

attract the fovea to an uninteresting region of the image. To eliminate edges of low curvature, we apply

a thresholdτ to the curvature data:

κi,j = 0, if κi,j < τ (21)

However, since foveation greatly reduces the apparent curvature of corners (an effect that increases

with distance), it is possible that no computed curvature may exceedτ . In such instances,τ is temporarily

set to zero until a new long saccade is generated.

The overall fixation selection measure is

mi,j =





κi,j

1+κi,j
.

s2
i,j

max(si,j)+si,j
. di,j

max(di,j)+di,j
. 1
1+5h2

i,j
; C = 0

κi,j

1+κi,j
. si,j

1+50si,j
. di,j

1+di,j
;C > 0

(22)

where the maxima are taken over the entire image, and whereC controls the length of the saccade.

When C = 0, a long saccade is to be generated, and whenC > 0 a short saccade is to be generated

according to the formula in Eq.(22).C is initially given a value of zero, and is incremented by one with

each saccade, until it is reset to zero. There are two conditions under whichC is reset to zero:

• The measured curvatureκ(if ,jf ) at the current fixation point exceeds a threshold (0.9 in our algo-

rithm), indicating the presence of a corner.

• Seven short saccades have been generated: C ¿ 7.

The value of 7 is arbitrary and is normally never reached. Its purpose is to force a long jump should

the fixation point ever reach an empty part of the image where short saccades are unable to remove it.
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Note that long saccades (C = 0) are discouraged from approaching previous saccades owing to the

inclusion of the history term Eq. (18) in Eq. (22), but this is excluded for short saccades (C > 0) which

attempt to zero in on strong local corners.

The global maximum ofmi,j provides the coordinates for the next fixation point. When the next

fixation is made, the saccade length control variableC is incremented from 0. After reaching 7 (following

6 subsequent short saccades) it is reset to 0 forcing another long jump. This produces a sequence of one

long saccade, intended to explore a new region of the image, followed by several short ones (fewer than

7), which pinpoint the corner accurately.

Finally, the algorithm may be terminated in a number of ways, depending on the application. It may be

terminated after a fixed number of fixations, or after the fixation selection measuremi,j fails to exceed a

predetermined threshold over several attempts, indicating that the pool of available and unvisited corners

in the image is exhausted. We illustrate the steps of the algorithm by example. Figure 2(a) is the image

lighthouse. In each image, the fixation point is designated by the symbol “X”. In this example, the current

fixation point is presumed to be at the peak of the lighthouse, as indicated. Figure 2(b) shows a foveated

version oflighthouse- although, of course, this image is not calculated by the algorithm, since Eq. (13) is

discrete form is used to generate the zero crossings. Figure 2(c) depicts the foveated edge map calculated

by the foveated Canny edge detector, and Figure 2(d) is the foveated curvature map, with intensity made

proportional to curvature.

IV. A SSESSING THEFIXATION POINTS

It is desirable to be able to assess the efficacy of any image feature extraction mechanism, since accurate

extraction is necessary to the success of most image analysis or classification algorithms. However, testing

the effectiveness of corner-finding algorithms is difficult, for reasons similar to those which limit methods

for testing edge detectors. Corners, like edges, lack a precise definition; they manifest innumerable

variations in attributes such as magnitude, sharpness, scale, duration, and so on. Indeed, detected corners

are more difficult to assess since they are usually computed from already vaguely-defined edges. For

edges and corners, there is no existing effective ground truth in natural images.

Nevertheless, we have attempted to validate our method through comparisons to corner maps computed

by humans in two different ways.

In the first method, we compare the corners detected by our algorithm tohandpickedcorners chosen

by a human. To eliminate any questions of bias on the part of the human corner-finder, we have applied

this method only to an image of a geometric object with corners that are evident. This is useful since it
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benchmarks our algorithm on an image with an effective ground truth.

In the second method, we compare the algorithms results against the visual fixations, measured by

a precision eye-tracker, of human subjects viewing a naturalistic image. The subjects were asked to

accomplish a simple task: to search for corners in the image. Each subject was briefed beforehand to

give them idea of what was meant by a corner (without referring to any image used here). This experiment

has the virtue of supplying a ground truth of sorts of images of the real world. However, the results are

naturally limited by the fact that human visual fixations are guided by many low-level and high-level

mechanisms, even in subjects instructed to perform a specific visual task.

A. Method of Comparison

Before explaining the procedures for obtaining comparison data, we explain the method used to make

the comparisons. The method used needed to satisfy several criteria: (a) computed and handpicked corners

and fixations are defined on sparse sets of singleton points in the image plane; (b) exact hits between

detected corners and either fixations or handpicked points are likely to be relatively rare. Owing to these

limitations we opted to use a method of comparing sparse sets of visual fixations similar to one used in

[42].

The first step is to create a dense fixation-point (or handpicked point, or corner point) image by a process

of interpolation. Begin with a zero array with domain the same as the image. Then, at the coordinates of

each fixation point (for eye-tracked results), handpicked point, or algorithm-computed corner, compute an

isotropic 2-D Gaussian with space constant chosen such that the half-peak width is equal to the diameter

of the foveola - or about1◦ of visual angle - for the eye-tracked observers. Each Gaussian has unit peak

value. The same space constant is used for the Gaussians that interpolate the handpicked and computed

results. In each dense fixation/corner image, the Gaussians are summed to create an overall “fixation”

map. As each Gaussian is generated, it is integrated into the current dense fixation map using the summed

weighting 1 − (1 − p)(1 − q), where at any coordinatep is the value of the existing map andq is the

value of the Gaussian centered at the new fixation. When the map is completed, it is normalized to have

unit volume (unit array sum). This makes it possible to interpret the dense fixation images as probability

maps (2-D empirical mass functions) of fixation placement associated with each image.

This process is illustrated in Fig. 3, which shows the Gaussians computed from a set of sample

fixation points (marked as “X”), with overlapping envelopes summed. Replacing each fixation point by a

2D Gaussian is a simple method for approximating the probability that a neighborhood region around the

fixation could have been selected as a fixation point. Using a Gaussian to interpolate each fixation point
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allows for uncertainty in its location which can arise from small errors in the calibration, and allows for

imperfect accuracy of the eye movement measurements.

To compare the probability maps from visual fixations, from handpicked corners, and from computed

corners, we use a standard information-theoretic measure of the similarity between probability density

functions: a modified Kullback-Leibler distance (KLD). The KLD measure the relative entropy between

two probability functions

D(p||q) =
∑

x∈X
p(x)log

p(x)
q(x)

(23)

The KLD is not a true distance function, since it is not symmetric and does not obey the triangle

inequality. However, it is convex andD(p, q) = 0 if and only if p(x) = q(x) [71]. Since there is no

reason to prefer an asymmetry, we use the symmetric distance [72]:

DS(p||q) =
1(

1
D(p,q) + 1

D(q,p)

) (24)

to quantify the distance between (interpolated) corner locations computed using our proposed algorithm

with either (interpolated) handpicked corners, or with (interpolated) recorded eye fixations (measured from

observers looking for corners).

B. Comparison With Handpicked Corners

Our first comparison is made with an image of an object with reasonably well-defined corners. The

algorithm was run on this and the resulting computed corners compared with those obtained by human

handpicking of corners. Figure 4 contains image of a polyhedron. We counted 85 vertices in this image

and handpicked the coordinates of each using a graphics program with a cross-hair cursor. While many

of the vertices result in unambiguous corners, other vertices present less obvious corners owing to their

geometric placement, the shading of the object, and so on.

We ran the algorithm until it computed 85 fixations on the polyhedron, for three different values of

τ (see Eq. (21)), and calculated the KLD between the algorithmic and handpicked vertices. Results are

shown in Figures 4(a),4(b) and 4(c).

C. Comparison With Eye-tracked Fixations

In addition to testing algorithm generated fixations with handpicked ones, we have compared the

algorithm generated ones with those of four human subjects viewing each test image through an eye-

tracker. The experimental protocol is described in the Appendix.
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Comparison Subject

HHC IVDL UR YL

Polyhedron 0.411 0.603 0.876 0.398

Polyhedron 0.317 0.492 1.065 0.408

Lighthouse 2.743 2.216 2.505 1.927

TABLE I

KLD VALUES FOR (A) POLYHEDRON IMAGE - EYE-TRACKER VS. HAND PICKED 50 FIXATIONS (B) POLYHEDRON IMAGE -

EYE-TRACKER VS. ALGORITHM 50 FIXATIONS (C) L IGHTHOUSE IMAGE - EYE-TRACKER VS. ALGORITHM 50 FIXATIONS

Comparison

Polyhedron - 50 fixations 0.269

Polyhedron - 85 fixations 0.132

TABLE II

KLD VALUES FOR ALGORITHM VS. HANDPICKED FOR50 AND 85 FIXATIONS

Here we test the algorithm on the two images shown above: the lighthouse on a seashore and the

polyhedron. Table I provides KLD values of algorithm vs. eye-tracker generated fixations for each of the

seven subjects. It also has a KLD value for polyhedron handpicked versus algorithm generated fixations.

Values were calculated using the symmetrical KLD shown in Eq. (24). Each subject ran about 50 fixations

on the eye-tracker, so the algorithm was run for 50 fixations, as shown in Table I. The thresholdτ was set

to 0.1 since that yielded the lowest measured value of the KLD for the case of the polyhedron handpicked

versus algorithm.

Table II shows algorithm versus handpicked for 50 and 85 algorithmic fixations. The lowest measured

distance is between the polyhedron handpicked and algorithmic, demonstrating that the algorithm performs

its intended task of finding corners well. Since there were 85 handpicked vertices, it was to be expected

that the run with 85 algorithmic fixations would give a lower distance than the one with 50 fixations,

which was the case. The polyhedron handpicked versus eye-tracker comparison is consistently worse than

the handpicked versus algorithm. The eye-tracker versus algorithm is worse still. From this one might

deduce that corners are poor predictors of visual fixations, yet, in a complex scene such as this, corners

are one of many different classes of features that attract fixations.
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To test the accuracy of the algorithm for finding corners, we calculated (for the polyhedron image) the

distance from each algorithmic fixation to the nearest handpicked one, and repeated the process for all

eye-tracker fixations. If the minimum distance for each fixation point was less than or equal to a given

value, a “match” was declared. Figure 5 shows a comparison of matches as tolerance varies from zero

to one degree. At zero tolerance, neither method shows matches. As tolerance increases, the handpicked

matches increase much faster than the eye-tracker ones. This further demonstrates that the algorithm

locates corners far more accurately than human subjects.

Figures 6 and 7 show algorithmic versus eye-tracker fixations for four subjects apiece, for the lighthouse

and polyhedron. The polyhedron images include the handpicked vertices. In addition, Figure 8 shows

algorithmic fixations on an image of tools from the Rutgers Tool Database [73] and on a natural scene

from the van Hateren database of naturalistic images [74].

V. CONCLUDING REMARKS

We have presented a foveated, multi-fixating strategy for locating corners in natural images. Our

approach combines foveation, directional detection, and calculation of edge curvatures with generation

of long and short saccades to establish foveal locations. We demonstrate the system on a complex natural

scene and on a view of a polyhedron. Results show that the algorithm performs well on strong edges

with sharp corners and less well in areas of fine detail. Applications might include robotics directed

applications involving scenes containing corners.

APPENDIX

Four male observers, aged 32, 28, 29, 29, none of them familiar with the corner finding algorithm or

the objectives of this work, were used for the experiment. All observers either had normal or corrected-

to-normal vision. The stimuli consisted of two images: the lighthouse on the seashore, and the view of

a polyhedron illustrated in Fig. 1. The images were 1024× 768 pixels and were displayed on a 21”

monitor at a distance of 134 cm. from the observer. This set-up corresponds to about 60 pixels/degree of

visual angle, so the images extend 20.67 by 12.8 degrees. Observers were presented with each image for

30 seconds and instructed to look for corners in the displayed image. About 50 fixations were recorded

for each observer. Human eye movements were recorded using an SRI Generation V Dual Purkinje eye

tracker. It has an accuracy of< 10′ of arc, precision of∼ 1′ of arc and a response time of under 1ms.

A bite bar and forehead rest was used to restrict the observer’s head movements. The observer was first

positioned in the eye tracker and a positive lock established onto the observer’s eye. A linear interpolation
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on a 3×3 calibration grid was then done to establish the linear transformation between the output voltages

of the eye tracker and the position of the observer’s gaze on the computer display. The output of the eye

tracker (horizontal and vertical eye position signals) was sampled at 200Hz and stored for offline data

analysis.
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fig1a.eps

(a) Sample line of varying curvature
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(b) Edge data points and Fit Polynomial
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(c) Edge Data Points and Fit Polynomial
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(d) Curvature Map

Fig. 1. Generation of curvature map on smoothed zero-crossing contour. (a) Zero-crossing contour; (b) Local polynomial fit

near the low-curvature point A. The axis coordinates are relative to A (c) Local polynomial fit near the low-curvature point

B. The axis coordinates are relative to B. (d) Zero-crossing contour in 1(a) with curvature coded as intensity (darker = higher

curvature).
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(c)
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(d)

Fig. 2. Example of calculation of subsequent fixations. (a) Originallighthouseimage (b) Foveated version by space-varying

Gaussian filtering (c) Foveated edge map by foveated Canny edge detection (d) Foveated curvature map.
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Fig. 3. Sample fixation points with Gaussian interpolation
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(a)
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(b)
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(c)

Fig. 4. Polyhedron image used to compare the corner detection algorithm with handpicked corners for 85 fixations. (a) For

τ=0.1, the KLD = 0.1323. (b) Forτ=0.2, the KLD=0.1490. (c) Forτ=0.3, the KLD=0.3702.
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fig5.eps

Fig. 5. A comparison of the accuracy of corner locations, algorithm vs. eye-tracker for 50 fixations
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(a) YL-Lighthouse
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(b) UR-Lighthouse
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(c) IVDL-Lighthouse

fig6d.eps

(d) HHC-Lighthouse

Fig. 6. Four observers vs. 50 algorithmic fixations - lighthouse
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(a) YL-Polygon, Hand Picked

fig7b.eps

(b) UR-Polygon, Hand Picked

fig7c.eps

(c) IVDL-Polygon, Hand Picked

fig7d.eps

(d) HHC-Polygon, Hand Picked

Fig. 7. Four observers vs. 50 algorithmic fixations - lighthouse
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(a)
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(b)

Fig. 8. Test of algorithm on tool image (left) and natural scene (right)
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