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Fig. 1. The heat-maps show our metric’s predictions for 4 types of distortions (blur, JPEG compression, 30Hz flicker and Gaussian additive noise) at three

di�erent eccentricities. The flicker is simulated as a dot that appears in every second frame. All types of artifacts are predicted to be much less noticeable

when seen with peripheral vision at large eccentricities. Refer to Figure 20 for the color scale of the heat-map.

FovVideoVDP is a video di�erence metric that models the spatial, temporal,
and peripheral aspects of perception. While many other metrics are avail-
able, our work provides the �rst practical treatment of these three central
aspects of vision simultaneously. The complex interplay between spatial
and temporal sensitivity across retinal locations is especially important for
displays that cover a large �eld-of-view, such as Virtual and Augmented
Reality displays, and associated methods, such as foveated rendering. Our
metric is derived from psychophysical studies of the early visual system,
which model spatio-temporal contrast sensitivity, cortical magni�cation
and contrast masking. It accounts for physical speci�cation of the display
(luminance, size, resolution) and viewing distance. To validate the metric, we
collected a novel foveated rendering dataset which captures quality degra-
dation due to sampling and reconstruction. To demonstrate our algorithm’s
generality, we test it on 3 independent foveated video datasets, and on a large
image quality dataset, achieving the best performance across all datasets
when compared to the state-of-the-art.
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1 INTRODUCTION

Quality metrics are a basic feature of modern image processing
algorithms. Whether by avoiding costly user studies, providing the
user with a standardized measure of the expected e�ect, or �ag-
ging areas of content where artifacts are present, metrics are widely
relied upon. Furthermore, accurate metrics are essential to the de-
velopment of cost functions — a central component of optimization
processes and highly popular machine learning methods.

Image and video di�erence metrics have historically been the sub-
ject of a great deal of investigation. In spite of this, the complexity
of the human visual system does not allow for a simple algorithmic
representation. While visual computing researchers have leveraged
discoveries in vision science to craft ever more accurate and biolog-
ically inspired metrics, many modern applications remain poorly
served by available metrics that do not account for certain aspects
of novel displays, resulting in sub-optimal performance. This is par-
ticularly relevant in rendering applications for wide-�eld-of-view
(FOV) displays, notably virtual and augmented reality (VR/AR).

In the central (foveal) region, the human eye can perceive fre-
quencies in excess of 60 pixels per visual degree. Matching such a
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high spatial resolution uniformly across a wide FOV display, such
as a 110◦ VR headset, demands unreasonable performance from
algorithms and hardware. This issue can be addressed by employing
foveated rendering, i.e., rendering pixels more densely in the cen-
tral (foveal) region, and more sparsely in the periphery of vision,
away from the gaze location. For such methods to be e�ective, a
full resolution frame must be perceived as indistinguishable from
traditional, full-resolution rendering. Unfortunately, most state-of-
the-art quality metrics are not suitable to estimate the quality of
foveated content, as they do not consider all the necessary aspects
of vision. Crucially, most practical metrics ignore the signi�cant ef-
fect of peripheral perception. Despite the loss of spatial acuity with
eccentricity (angular distance from the center of �xation), spatio-
temporal artifacts can become even more prominent in wide FOV
displays as peripheral vision retains a high degree of sensitivity to
temporal changes [Hartmann et al. 1979].
This work presents the �rst uni�ed full-reference metric of vis-

ible di�erences over space, time, and eccentricity1. Our metric is
based on psychophysical models of human vision and is rigorously
validated on both existing data sets and the results of a novel psy-
chophysical study. The new study has been designed to characterize
how artifacts produced by foveated rendering methods a�ect quality.

2 RELATED WORK

Webegin by discussing existingmetrics, followed by the applications
that motivate metrics like ours, in particular foveated rendering. We
discuss the state-of-the-art in perceptual research used to build this
model in detail as we outline our method in the following sections.

2.1 �ality metrics

Visual quality metrics are a mature �eld of research, and an im-
portant tool in research and development. They both help avoid
costly user studies and lend to automation through optimization or
as elements in cost functions for neural networks. The metrics that
are the most relevant for our considerations are listed in Table 1.
We will center our discussion around their principal approach and
capabilities, listed in the columns of the table.

Principal approaches to quality prediction. A successful quality
metric should predict the visual impact of distortions of di�erent
character and type. For example, if a denoising method needs to
�nd a compromise between noise and blur, an image quality metric
should indicate such a compromise, which is consistent with human
judgment. Simple signal quality metrics, such as Peak Signal-to-
Noise Ratio (PSNR), are known to fail in this task [Huynh-Thu and
Ghanbari 2008]. Metrics based on di�erent measures of correlation
between the reference and distorted content (e.g. the Structural
Similarity Index Measure or SSIM [2001]) are much more successful.
Another statistical measure that has proven to correlate well with
human quality judgment is the entropy of the distributions extracted
from image content [Soundararajan and Bovik 2012]. A more fun-
damental, bottom-up approach involves modeling low-level vision
based on psychophysical models, such as contrast sensitivity func-
tion (CSF). The bene�t of relying on psychophysical models is that a

1Source code at: https://github.com/gfxdisp/FovVideoVDP

metric can account for physical properties of the display (brightness,
size, viewing distance). Since the focus of our work is foveation with
respect to a display, we follow that approach for our metric. Finally,
the convolutional neural networks used in machine learning have
been shown to serve as remarkably robust quality predictors when
the activations values of their inner layers are used as features for
comparing pairs of images [Zhang et al. 2018].

Image metrics. Canonical methods for assessing visual quality
work by comparing a pair of images. Some of these metrics only
consider per-pixel numerical di�erences, e.g. L1, L2, and PSNR, and
do not account for spatial or temporal visual perception. Other
metrics like SSIM [Wang et al. 2001] build on spatial image statistics
and are often psychophysically calibrated [Mantiuk et al. 2011]. A
recent class of image metrics utilizes deep image features in layers
of deep neural networks trained for image-based tasks [Zhang et al.
2018]. While image-only metrics are popular for measuring image
quality, they do not extend to videos. Speci�cally, although we
can apply them to each frame of a video, the lack of inter-frame
information makes these metrics unsuitable in identifying temporal
visual artifacts. We demonstrate this in the accompanying video.

Video metrics. Assessing video quality requires di�erent methods
and assessing image quality, mostly due to interaction of spatial
and temporal vision. For example, high frequency noise could be
well visible in an image but it can disappear in high frame-rate
video due to temporal integration of visual system. The notable
examples of metrics that address temporal aspects are MOVIE [Se-
shadrinathan and Bovik 2009], STRRED [Soundararajan and Bovik
2012] and HDR-VQM [Narwaria et al. 2015]. MOVIE metric assesses
spatial artifacts separately from motion artifacts. It decomposes test
and reference video sequences using spatio-temporal Gabor �lter
bank and estimates optical �ow on the reference video to analyze
di�erences along motion directions. Motion artifacts are assumed to
cause deviations from reference motion, which are found by analyz-
ing the Gabor channel amplitude responses in the frequency domain.
STRRED is Spatio-Temporal Reduced Reference Entropy Di�erence,
which estimates the quality degradation by calculating the entropy
di�erence between reference and distorted video sequences. The
entropy is computed from the distribution of wavelet coe�cients,
which is modeled as Gaussian Scale Mixture. The entropy di�erence
is evaluated in non overlapping blocks, separately for spatial and
temporal dimensions. STRREDwas one of the fewmetrics that could
predict some aspects of temporal quality in our new dataset. We
also included in our analysis HDR-VQM, which is one of the most
popular metrics for HDR video that accounts for physical calibration.
The metric decomposes video into spatial bands, which are then
split into spatio-temporal "tubes". The distortion is estimated by
two stage temporal pooling, which uses the percentile of the largest
distortions to focus on most salient artifacts. None of those video
metrics models the visibility of high temporal frequency artifacts
associated with �icker, which are critical for assessing the quality
of foveated rendering methods.

Foveated metrics. The lower sensitivity to artifacts appearing out-
side the fovea has been modeled in a number of foveated metrics.
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Table 1. �ality metrics and their capabilities. Columns indicate whether a metric has been designed for video, foveated viewing, operates on photometric

units (accounts for display brightness) and physical size of the display. We also mention the main approach of each metric and the datasets that were used to

calibrate/validate the metric in the original paper.

Metrics Video Foveated Photometric Disp. geometry Approach Calibration dataset

PSNR No No No No Signal quality N/A
MS-SSIM [Wang et al. 2003] No No No No Correlation LIVE
HDR-VDP-3 [Mantiuk et al. 2011] No No Yes Yes Psychophysical model UPIQ
FA-MSE/SSIM [Rimac-Drlje et al. 2011] No Yes No Yes Correlation LIVE video
FWQI [Wang et al. 2001] No Yes No Yes Correlation None
HDR-VDP2-FOV [Swa�ord et al. 2016] No Yes Yes Yes Psychophysical model Own (3 stimuli)
Contrast-Aware [Tursun et al. 2019] No Yes Yes Yes Psychophysical model Own experiment
HDR-VQM [Narwaria et al. 2015] Yes No Yes Yes Psychophysical + corr. Own dataset (10 videos)
MOVIE [Seshadrinathan and Bovik 2009] Yes No No No Gabor �lterbank VQEG FRTV Phase 1
STRRED [Soundararajan and Bovik 2012] Yes No No No Entropy di�erence LIVE video
LPIPS [Zhang et al. 2018] No No No No Machine learning BAPPS (own)
FovVideoVDP (ours) Yes Yes Yes Yes Psychophysical model FovDots (own) + UPIQ + Deep-

Fovea + LIVE-FBT-FCVR

FWQI (Foveated Wavelet Quality Index) is a correlation-based in-
dex in which image locations at large eccentricities are assigned
lower sensitivity. FA-MSE and FA-SSIM metrics [Rimac-Drlje et al.
2011, 2010] extend the popular MSE and SSIM metrics by weighting
them by a sensitivity function. The sensitivity function combines
the eccentricity term from [Wang et al. 2001] with a new term that
decreases at high retinal velocities. Swa�ord et al. [2016] extended
HDR-VDP-2 to account for eccentricity by scaling the contrast sensi-
tivity by the cortical magni�cation factor [Virsu and Rovamo 1979].
More recently, Tursun et al. [2019] proposed a metric speci�cally tar-
geting foveated rendering, allowing sampling rate to vary with both
eccentricity and spatial image content. The e�ect of eccentricity is
modeled using the contrast sensitivity function proposed by Peli et
al. [1991], which had to be modi�ed to �t the new data. In contrast
with the two latter works, we predict the e�ect of eccentricity while
relying on existing contrast sensitivity functions [Kelly 1979; Laird
et al. 2006; Mantiuk et al. 2020] and models of cortical magni�cation
[Dougherty et al. 2003; Virsu and Rovamo 1979].

Physically calibrated metrics. It is important to make a distinction
between metrics that operate on stimuli speci�ed in physical units
and those that operate on gamma-encoded images. Most popular
image quality metrics, such as PSNR and MS-SSIM [Wang et al.
2003], take as input a pair of gamma-encoded images and ignore all
aspects of their physical presentation, including screen resolution,
size, viewing distance, and display peak luminance. This simpli�ca-
tion makes these metrics easier to use but ignores important factors
that a�ect image quality. Display-independent quality measures are
no longer su�cient in an era where we routinely encounter displays
with diverse characteristic. Physically-calibrated metrics, such as
VDP [Daly 1993] or HDR-VDP [Mantiuk et al. 2011], require full
physical speci�cation of the input images, including e�ective reso-
lution in pixels per visual degree and images calibrated in absolute
units of luminance ( cd/m2). Our proposed metric belongs to this
latter category, as we aim to account for displays of varying sizes
and peak-luminance levels. Finally, note that some metrics, such as
FWQI, account for the display’s spatial speci�cation (size, resolution
and viewing distance) but do not model its photometric properties.

As we focus on methods that could be used as optimization cri-
teria, we do not analyze the metrics intended to produce visual
di�erence maps [Aydin et al. 2010; Daly 1993; Wolski et al. 2018; Ye
et al. 2019] but that do not o�er single-valued quality predictions.

2.2 Applications

A foveated spatio-temporal metric has several applications in visual
computing, which we will discuss here.

Foveated compression and rendering. Mobile head-mounted dis-
plays are often limited in the quality and complexity of their content
due to the technical challenges of generating or transmitting large
�eld-of-view videos. To overcome this constraint, foveated video
compression [Geisler and Perry 1998] has become an active �eld of
research, and could potentially bring bene�ts beyond VR/AR. Recent
methods like Deep Fovea [2019] reduce the peripheral resolution
of an image and train a semi-supervised adversarial network to
reconstruct missing details, reducing the number of pixels required
to render or transfer, while striving to maintain spatio-temporal
consistency.
Another crucial scenario for immersive displays is foveated ren-

dering, where foveation is used in real-time to signi�cantly reduce
the computational cost. Guenter et al. [2012] introduced the �rst
real-time method, using gaze tracking to display and degrade the
rendered image resolution for concentric rings around the gaze
location. Three layers are rendered with di�erent pixel densities,
then combined with a soft stepping function to avoid a sharp step
at the boundaries. Patney et al. [2016] use a gaze-tracker-equipped
VR headset and achieve foveation through variable shading, where
visibility is computed at full resolution across the whole visual �eld,
but materials and lighting are evaluated at lower rates in the pe-
riphery. This reduces the pixel shading cost by up to 70%. While
foveated rendering has come a long way in the past decade, there is
no proven visual metric to evaluate new algorithms, or to compare
existing solutions for novel AR/VR hardware.

Other Applications. A well-calibrated video metric is also useful
in predicting spatio-temporal visual di�erences between videos in
a general, non-foveated scenario. For example, it can be used to
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measure the visibility of temporal motion artifacts due to limited
frame rate, which we demonstrate in Section 6.2. Further, in pre-
dicting visual di�erences for varying �elds-of-view, such a metric
can account for viewing conditions like display size and viewing
distance, providing a more accurate estimate of whether and which
artifacts would be most visible to the end users. We demonstrate
this in Section 6.1, where we show how our proposed metric can
account for viewing distance.
Subtle Gaze Direction [Bailey et al. 2009] is another application

for a foveated video metric. This method uses subtle peripheral
modulations of an image or video to direct a user’s attention, and
has utility in �elds like medical image analysis [Sridharan et al. 2012]
and VR redirected walking [Sun et al. 2018]. Since the method relies
on spatio-temporal peripheral feedback, a foveated video metric is
uniquely applicable. Speci�cally, as shown in Section 6.4, it can help
calibrate peripheral imagemanipulations so that they are su�ciently
visible to capture a user’s attention, but not too distracting.

3 FOVEATED VIDEO QUALITY METRIC

Our goal is to design a full-reference visual di�erence metric, which
models the major stages of the early visual system. We aim to make
this metric as simple as possible while modeling the relevant aspects
of low-level vision. Finally, it is valuable for the resulting metric
to be di�erentiable, so it may be implemented as a loss function
for reconstruction algorithms. Unlike some other metrics model-
ing low-level vision, such as the Visual Di�erence Predictor (VDP)
[Daly 1993], which model just-detectable di�erence (detection and
discrimination), our focus is on quantifying supra-threshold dif-
ferences. This is an important requirement, as threshold metrics
do not produce discriminative results when comparing inputs that
contain signi�cant di�erences, and so can be unsuitable for use as
an optimization criterion. Furthermore, the focus of this work is on
obtaining a single-value quality score that would correlate well with
psychophysical measurements and guide optimization of foveated
rendering methods according to a perceptual criterion. This sin-
gle quality value is scaled in interpretable units of (JOD, explained
in Section 3.9), which corresponds to the increase in preference
across the population.

Limitations. To ensure low complexity, we did not consider sev-
eral processing stages that can be found in more complex metrics.
We do not model glare due to scattering of light in the optics of
the eye and on the retina as it involves convolutions with large
kernels. We also do not model orientation-selective visual chan-
nels and cross-channel masking as that would further increase both
processing and memory overhead. We do not model the loss of sen-
sitivity due to eye movements as most datasets do not provide this
information. Color vision is currently not modeled by FovVideoVDP
because there is only scarce data available for color contrast sen-
sitivity across eccentricities and temporal frequencies. However,
chromatic distortions are typically much less noticeable than lumi-
nance distortions [Winkler et al. 2001].

Overview. A schematic of our method is shown in Figure 2. Our
metric operates on inputs described in physical units of luminance
(videos or images), which are obtained by employing a displaymodel.

In addition, the distance from the display is used to model the view-
ers’ e�ective retinal resolution. The luminance map is decomposed
into sustained and transient temporal channels, which are then con-
verted to Laplacian pyramids. Next, each spatial-frequency pyramid
band is encoded in units of physical contrast, and then passed to
the masking model, which estimates the perceived di�erence for
each band. These values can be used to produce a per-pixel visual
di�erence map or pooled to obtain a single-valued quality score,
which is then scaled in just-objectionable-di�erence (JOD) units.

The following sections follow the �ow of Figure 2, explaining
each step in detail and contextualizing with respect to the state-of-
the-art. While we investigated many variations of this metric, the
following sections describe the version with the best performance.
Other variants are discussed in Section 5.4. We currently do not
model display blur (MTF) and VR lens aberrations, which could be
relevant for some displays.

3.1 Display model

Since the visual models we employ are speci�ed in physical units,
we need to linearize the input pixel values so they are represented
in units of luminance. Inputs can be provided in any color space,
such as ITU-R Rec. BT.709 RGB with gamma-encoding, or ITU-R
Rec. BT.2100 RGB with PQ coding. We convert input values by
employing a display model, consisting of its basic characteristics
(peak luminance, contrast and color space), to transform the in-
put pixel values into the luminance emitted from a given display,
scaled in absolute units of cd/m2. When inputs are given in standard
dynamic range (SDR), we use a gain-gamma-o�set (GOG) display
model [Berns 1996].

Angular display resolution. To accurately model spatial e�ects, we
need to convert distances and frequencies speci�ed in display space
into units on the retina. Because of the approximately spherical
shape of the eye, we express the distances in visual degrees and
frequencies in cycles per visual degree. For displays spanning a small
�eld-of-view, the angular resolution in pixels per visual degree can
be approximated as:

=ppd.0 =
c

360 atan
(

0.53width
Ah 3v

) , (1)

where 3width is the display width in meters, Ah is the horizontal res-
olution in pixels and 3v is the viewing distance in meters. However,
since our focus is on wide-�eld-of-view VR/AR displays, we need to
account for the changes in angular resolution with the eccentricity
(the viewing angle relative to central view direction). The angular
resolution changes with eccentricity 4 (in visual degrees) as:

=ppd (4) = =ppd.0

tan
(

c 4
180 + 0.5=−1ppd.0

)

− tan
( c 4
180

)

tan(0.5=−1
ppd.0

)
. (2)

Figure 3 shows how the angular resolution changes with the eccen-
tricity for di�erent displays. The change is particularly substantial
for VR/AR displays, which tend to have low angular resolution and
wide �eld of view.
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Fig. 2. This figure shows a diagram of the method proposed in this work. The test and reference videos are processed in the same manner up to the masking

model block, where the perceived di�erence between the two is evaluated.
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3.2 Temporal channels

It has been argued that the visual system encodes temporal changes
in a pair of temporal channels [Burbeck and Kelly 1980; Hammett
and Smith 1992]: a sustained channel encodes slow changes, and
a transient channel encodes fast changes. Smith [1998] models the
response of the sustained system as a cascade of exponential �lters.
We observe that the same characteristic can be obtained with a
simpler Gaussian function of logarithmic time C (in seconds):

'S (C) = :1 exp

(

(log(C + n) − log(VS))
2

2f2
S

)

(3)

where VS = 0.06 [B] represents the o�set (lag) of the response and
fS = 0.5 controls the bandwidth of the �lter. The parameters were

selected to match the functions from [Smith 1998]. The normal-
ization constant :1 = 0.00573 ensures that the �lter response to a
static (0Hz) signal is not a�ected and is equal to the inverse of the
integral of the exponential function. n = 0.0001 is a small constant
that ensures the logarithm is �nite at C = 0. As in [Smith 1998], we
model the response of the transient channel as the �rst derivative
of the response of the sustained channel:

'T (C) = :2
'S
3C

(C) = :2
−'S (C) (log(C + n) − log(VS))

f2
S
(C + n)

(4)

The impulse response functions for both channels and their Fourier
transforms are plotted in Figure 4. The plot shows that the peak
frequency response for sustained is at 5S = 0Hz and at 5T = 5Hz
for the transient channel. We will later use those values to model
sensitivity. The normalization constant :2 = 0.0621 ensures that the
contrast at the peak frequency of 5Hz is preserved.
The dashed line on the right side of Figure 4 shows a 4 cpd slice

of the spatio-temporal contrast sensitivity function (stCSF) [Laird
et al. 2006] plotted as a dotted black line. It can be seen that the
sum of both sustained and transient channels matches the stCSF
well, con�rming our choice of �lters. We generate digital �lters
broad enough to cover the non-zero portions of the temporal �lters
(250ms), which we then apply as sliding windows.

3.3 Multi-scale decomposition

Both psychophysical data [Foley 1994; Stromeyer and Julesz 1972]
and neuropsychological recordings [De Valois et al. 1982] show
evidence for the existence of mechanisms that are selective to nar-
row bands of spatial frequencies and orientations. To mimic the
decomposition that happens in the visual cortex, visual models com-
monly employ multi-scale image decompositions, such as wavelets
or pyramids [Simoncelli and Freeman 2002], or band-pass �lters
in the Fourier domain [Daly 1993; Watson 1987]. Considering that
such a decomposition is one of the most computationally expensive
parts of a visual model, we employ the decimated Laplacian pyramid
[Burt and Adelson 1983], which can be e�ciently computed and
stored. The main drawback of the Laplacian pyramid is that it does
not isolate patterns of di�erent orientation, which are known to
contribute di�erently to visual masking [Foley 1994] and sensitivity
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[Barten 2004]. However, we found that such orientation-selectivity
has little impact on the predictions made for complex images.
Figure 5 shows the frequency response of the �lters and the

consecutive levels of the Laplacian pyramid found by the discrete
Fourier transform of the corresponding �lters. The numbers above
each band indicate the peak frequency of each band. It is worth
noting that the highest frequency band has twice the amplitude
of that of the following bands. This is because all other bands are
computed as a di�erence of two low-pass �ltered bands. Another
important observation is that the peak frequencies cannot be ob-
tained with halving by the Nyquist frequency of 0.5 samples/cycle, as
commonly assumed. All those nuances must be accounted for to
ensure that the response is scaled in the correct units. We model
the peak frequency of each band in cycles-per-degree (cpd) as:

d1 =

{

0.5=ppd if 1 = 1
0.1614
21−2

=ppd otherwise
, (5)

where =??3 is the angular image resolution given in pixels per
visual degree. We select the height of the pyramid so that the lowest
frequency is at least 0.5 cpd. This is because lower frequencies are
not relevant for the types of distortions we consider and also because
distortions in low frequencies cannot be well localized, leading to
issues with pooling across multiple bands.

3.4 Contrast coding and local adaptation

Psychophysical models of contrast sensitivity, which we will discuss
in the next section, are typically de�ned in terms of Michelson
contrast and expressed as:

� =

!<0G − !<8=

!<0G + !<8=
=

Δ!

!<40=
. (6)

For sine gratings and Gabor patches, such as those shown on the
right, Michelson contrast is equal to Weber contrast on the right
side of the equation. Our goal is to �nd a local measure of such
contrast in complex images. Furthermore, for e�ciency, we want
this measure to be easily computed from the Laplacian and Gaussian
pyramids, which we use for multiscale decomposition.
The coe�cients of the Laplacian pyramid encode information

about the amplitudes of the band-pass �ltered signal and, therefore,
approximate Δ! from Eq. 6. Kingdom and Whittle [1996] argued
that that contrast discrimination thresholds can be well explained

by the Weber law (Δ�/�≈const.) when the denominator in Eq. 6
represents the adapting luminance rather than the mean luminance.
The adapting luminance is mostly in�uenced by a small neighbor-
hood of a given image location of around 0.5 deg [Vangorp et al.
2015]. For e�ciency reasons, we approximate this region using the
value from the Gaussian pyramid at the level that is one higher than
the given level of the Laplacian pyramid. We can then express the
local contrast as:

�1,2 (x) =
L1,2 (x)

G1+1,S (x)
=

L1,2 (x)

!a (x)
(7)

where L1,2 (x) is the coe�cient of the Laplacian pyramid at the
pixel coordinates (x), pyramid level 1 and temporal channel 2 (sus-
tained or transient). G1+1,S (x) is the corresponding coe�cient of
the Gaussian pyramid for the sustained channel. The contrast en-
coding above is similar to the local band-limited contrast proposed
by [Peli 1990], except that, for e�ciency, we rely on Laplacian and
Gaussian pyramids rather than Fourier-domain cosine log �lters,
we de�ne contrast for temporal channels and we use a higher level
of the Gaussian pyramid to account for local adaptation.
It should be noted that we do not model photoreceptor non-

linearity (luminance masking) as done in many other visual models
[Daly 1993; Mantiuk et al. 2011]. We attempted introducing this
non-linearity but we found a degradation in the performance as
compared with simple contrast encoding. The e�ect of luminance
is modeled in the contrast sensitivity function, as explained in the
next section.

3.5 Spatio-temporal contrast sensitivity

The CSF is a psychophysical model that describes the smallest con-
trast, � , that is detectable by an average observer. The CSF predicts
the sensitivity ( , which is de�ned as the inverse of the contrast
detection threshold �T:

( (d,l, !a, 0) =
1

�T
=

!a

Δ!T
, (8)

where Δ!T is the smallest detectable luminance di�erence and !a is
the background/adaptation luminance. In our metric, we need to pre-
dict sensitivity as a function of the spatial frequency, d , in cycles per
degree, the temporal frequency, l , in Hz, the adapting/background
luminance, !a, in cd/m2, and the size, 0, in deg2. The size parameter
is particularly important for modeling extrafoveal vision, which we
will discuss in the next section. The sensitivity is also a�ected by the
orientation of the spatial stimulus (horizontal, vertical and diagonal),
which we ignore because it is a much weaker factor and because
orientations are not isolated in our multiscale decomposition.

Unfortunately, there is no existing model that accounts for all the
required dimensions. Popular CSF models, such as that of Barten
[1999] or Daly [1993], do not account for temporal frequency. Kelly’s
spatio-temporal CSF [Kelly 1979; Laird et al. 2006] accounts for
spatial and temporal frequencies, but does not account for lumi-
nance and the size of the stimulus. To build a model that accounts
for all the factors, we rely on approximate independence between
spatial/temporal frequencies and other dimensions [Watson and
Ahumada 2016], and combine two sensitivity models: the Kelly-Daly
spatio-velocity CSF [Laird et al. 2006] ((BE ) with a recent model of
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Fig. 6. The magnitude of cortical magnification according to several models

[Dougherty et al. 2003; Horton 1991; Rovamo and Virsu 1979; Virsu and

Rovamo 1979]. Rovamo et al. model provides di�erent estimates for each

part of the visual field.

spatio-chromatic contrast sensitivity modeled up to 10,000 cd/m2

[Mantiuk et al. 2020] ((B2 ):

(fov (d,l, !a, 0) = (sc (d, !a, 0)
(sv (d,l/d)

(sv (d, 0)
= (sc (d, !a, 0)

(st (d,l)

(st (d, 0)
.

(9)
As noted by Daly [1998], the spatio-velocity CSF ((sv) is equivalent
to the spatio-temporal CSF ((st) when velocity is set to E = l/d. The
combined CSF relies on the Kelly-Daly CSF to model the relative
change of sensitivity due to temporal frequency and predicts the
e�ect of other factors using the spatio-chromatic CSF. The obtained
CSF predicts the sensitivity for foveal vision when the central por-
tion of the retina is used to perceive a stimulus. In the next section,
we will extend the model to account for extrafoveal vision.

3.6 Cortical magnification and peripheral sensitivity

To model foveated vision, we need to understand how the sensitivity
changes outside the foveal part of the visual �eld. It have been
argued that the changes in detection threshold can be explained
by the concept of cortical magni�cation. This model describes how
many neurons in the visual cortex are responsible for processing
a particular portion of the visual �eld [Horton 1991]. The central,
foveal region is processed by many more neurons (per steradian of
visual �eld) than the extrafoveal region. The cortical magni�cation
is expressed in millimeters of cortical surface per degree of visual
angle. Factors of cortical magni�cation for several models proposed
in the literature are plotted in Figure 6. We rely on the model by
Dougherty et al. [2003], which was �tted to fMRI measurements of
V1. The cortical magni�cation is modeled as:

" (4) =
00

4 + 42
, (10)

where 4 is eccentricity in visual degrees and the �tted parameters
are 00 = 29.2mm and 42 = 3.67◦. Virsu and Rovamo [1979; 1979]
showed that the di�erences in detection of sinusoidal patterns and
also discrimination of their orientation or direction of movement,
can be compensated by increasing the size of the stimuli in the
peripheral vision and the size increase is consistent with the inverse
of cortical magni�cation. We follow that observation to extend our
CSF model (Eq. 9) to extra-foveal spatio-temporal CSF, with the
extra parameter of eccentricity. The extended extra-foveal model
modulates both the frequency and size of the stimulus using the

relative cortical magni�cation factor"rel:

(exfov (d,l, !a, 4) = (corr·(fov

(

d

"rel (4)
, l, !a, c (fs"rel (4))

2

)

.

(11)
where "rel (4) = (" (4)/" (0)):cm and :cm is a free parameter. We
model the size of the stimulus as the area of a disk that is modulated
by the inverse of the cortical magni�cation (the last parameter of
(5 >E ). It should be noted that as the size of the stimulus increases,
its spatial frequency decreases proportionally, therefore the spatial
frequency d is modulated by the relative cortical magni�cation
"rel (4). Furthermore, since lower frequencies are detected by larger
receptive �elds, the size of the stimulus, fs, varies with frequency:

fs =
f0

d
, (12)

where f0 is a free parameter. Here we model the area of the stimulus
as the area of a disk with the radius given by fB "rel (4). Finally,
we also add a sensitivity correction factor (corr, which we use as
a free parameter to adjust the sensitivity of our metric. Our CSF
for several eccentricities is compared Daly’s CSF in Figure 7 (top).
While the trends are similar, the shape of our function at lower
frequencies is closer to the data reported by Virtsu and Rovamo
[1979, �g. 2c]. In Figure 7 (bottom) we show our CSF as the function
of luminance and eccentricity for both sustained and transient tem-
poral channels. These functions show how the sensitivity can vary
inside each spatial-frequency band as both the adapting luminance
and eccentricity can be di�erent for each pixel position. Our CSF is
a 4-dimensional function, however, as we rely on only two temporal
frequencies (0Hz and 5Hz), it can be discretized as two 3D look-
at-tables, or a family of 2D look-up tables, with an individual 2D
table for each spatial and temporal band. If no foveated viewing is
desired and the metric should operate as other non-foveated metrics
(HDR-VDP, MS-SSIM, etc.), we set the eccentricity 4 = 0.

3.7 Contrast masking

Contrast is less visible when superimposed on another contrast due
to the phenomenon known as contrast masking [Foley 1994; Legge
and Foley 1980; Watson and Solomon 1997]. This e�ect is illustrated
in Figure 8, in which a Gabor patch is more di�cult to detect when
presented on the background of the same spatial frequency. The
model of contrast masking in our metric is responsible for trans-
forming a pair of band-limited contrast values, coming from test and
reference images, into perceived di�erences. It is the core compo-
nent of the metric and much of the metric performance depends on
the execution of that processing block. We have experimented with
several masking models, some of them compared in Section 5.4, but
here we describe the model that resulted in the best performance.

The majority of the masking models found in the literature oper-
ate on contrast that has been normalized by the detection threshold:

� ′
1,2

(x) = �1,2 (x) (1,2 (x) (13)

where the contrast �1,2 is given by Eq. (7). Daly [1993] has shown
that such a normalization by the sensitivity helps to eliminate the
variations in the shape of the masking function between spatial
frequencies. The contrast sensitivity is given by:

(1,2 (x) = (exfov (d1 (x), l2 , !a (x), 4 (x)) , (14)
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tricity. Our function, based on the cortical magnification factor, is compared

with that of Daly [1993]. Bo�om: The same contrast sensitivity as the func-

tion of luminance and eccentricity for two temporal channels. The function

is plo�ed for the band with the peak frequency of 1 cpd. The transient

channel is more sensitive in that band at low to medium eccentricities and

the sustained channel is more sensitive at higher eccentricities.

where d1 (x) is the peak spatial frequency of the band 1 (Eq. (5)) at
the coordinates (x) (spatial frequency varies with position due to
screen projection — Eq. (2)), l2 is the peak temporal frequency of
the sustained or transient channel (0Hz or 5Hz, see Section 3.2),
!a (x) is the local luminance of adaptation (see Section 3.4) and 4 (x)
is the eccentricity at the pixel coordinates x . It is worth noting that
multiplication by the sensitivity expresses the contrast as a multiple
of threshold contrast: � ·( = Δ!/!a·!a/Δ!T = Δ!/Δ!T.

From several variants of the masking models we tested, the best
performance was achieved by the model that encoded the perceived
di�erence between a pair of test (� ′ test

1,2
) and reference (� ′ ref

1,2
) con-

trast values as:

�1,2 (x) =

�

�

�� ′ test
1,2

(x) −� ′ ref
1,2

(x)

�

�

�

?

1 + (: �mask
1,2

(x))@2
(15)

where ? , @2 and : are the parameters of the model. The masking
parameter @2 was found separately for the sustained and transient
channels (@S and @T ). The mutual masking signal (see [Daly 1993,
p.192]) is given by:

�mask
1,2

(x) = min
{�

�

�� ′ test
1,2

(x)

�

�

� ,
�

�

��
′,ref
1,2

(x)

�

�

�

}

. (16)

Fig. 8. Illustration of the contrast masking e�ect. The contrast of a masker

(sine grating) is increasing from le� to right, making the test contrast (Gabor)

more di�icult to detect.

We experimented with variants that included local summation of
the masking signal (convolution with a Gaussian), but we did not
achieve a noticeable improvement in performance.

3.8 Pooling

Once we have computed the perceived di�erence measures, we need
to pool the values across all coe�cients in each band, across spatial
frequency bands (1), across temporal channels (2) and �nally across
all the frames (5 ):

�pooled =

1

�
1/V5















F2



























1

#
1/VG
1



�1,2 (x)




VG ,x













V1 ,1















V2 ,2















V5 ,5

, (17)

where ∥·∥?,E is a ?-norm over the variable E :

∥ 5 (E)∥?,E =

(

∑

E

|5 (E) |?

)1/?

. (18)

F2 is the weight of sustained or transient component. It should
be noted that the ?-norms across the coe�cients and frames are
normalized by the number of coe�cients in each band (#1 ) and
the number of frames (� ). This is because we do not want the vi-
sual error to grow with the resolution and the number of frames.
The exponents in the ?-norms (V5 , V2 , V1 and VG ) are related to
the slope of the psychometric function, assuming that the pooling
represents probability summation [Robson and Graham 1981]. All
those coe�cients are optimized parameters in our model.
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Fig. 9. Mapping of di�erence in quality between condition A and B in JOD

units to interpretable quality di�erence. The di�erence of 1 JOD means

that 75% of the population will select condition A over B. This corresponds

to a relative increase in preference of 50% (relative to a random choice:

?inc =
? (�>>�)

0.5 − 1).

3.9 JOD regression

In the �nal step, we regress the pooled visual di�erence into just-
objectionable-di�erence (JOD) units:

&JOD = 10 − UJOD (�pooled)
VJOD , (19)

to obtain the �nal quality of the video sequence. UJOD and VJOD are
optimized parameters. Following the tradition of quality indices,
the JOD units increase with quality. The highest quality, reported
for no di�erence between a pair of content, is anchored at 10 JODs
to avoid negative values.
The di�erence between JOD and more commonly known just-

noticeable-di�erence (JND) units is that the former represents the
di�erence with respect to the reference image while the latter rep-
resents the di�erence between a pair of images [Perez-Ortiz et al.
2020, Fig.5]. Two distorted images could be very di�erent from each
other in terms of JNDs but they can have similar JODs with respect
to the reference. The main advantage of the JOD units is that they
provide an interpretable scale of quality for which we can estimate
the increase in preference across the population. For example, if
method A resulted in image di�erence of 9.5 JOD and method B in
8.5 JOD, we can interpret this di�erence of 1 JOD as 50% increase in
preference for method A (over a random choice). This is illustrated
for other di�erences in JODs in Figure 9.

Di�erence maps. In some application it is desirable to know not
only the overall level of distortion as an JOD value, but also how
the distortions are distributed within an image or video. For that
purpose, we extract the visual di�erence map by reconstructing each
frame (�rec) from the Laplacian pyramid coe�cients �1,2 . Then,
we use the same JOD regression coe�cients as in Eq. (19) but we
represent increasing distortions levels rather than quality:

�map (x) = UJOD (�rec (x))
VJOD . (20)

Unlike the visual di�erence maps produced by other metrics [Man-
tiuk et al. 2011; Wolski et al. 2018; Ye et al. 2019], which saturate
when the distortions are well visible, our maps represent both near-
threshold and supra-threshold distortions, scaled in JOD units. We

R
e
fe
re
n
c
e

L
o
w
-
F
P
S

B
lu
r

N
o
is
e

Fig. 10. This figure shows a sample output of our method for a simple video

consisting of a sideways panning inside of a larger image (shown on the

top le�). The pan has a speed of 5 deg/s, and the video is sampled at 120Hz.

This reference is compared against the same video, but at a lower 30Hz

frame rate, with the di�erence map shown on the top right. In addition, we

compare against a version of the 120Hz video with added blur and temporal

noise, shown on the 2nd and 3rd rows respectively. Note the fall-o� in

response strength away from the fixation point, set to the center of the

image in all three rows and marked with a cross. As expected, in the top

row di�erences are most visible around vertical edges. In the middle row,

high frequencies everywhere are significantly distorted, while the opposite

is true in the bo�om row where the noise is most visible in flat areas.

use the color coding scheme with the contextual image from HDR-
VDP-3. Some examples of such di�erence map can be found in
Figures 1, 10 and 20.

3.10 Implementation details, timings

Themetric has been initially implemented and tested inMatlab, then
ported to PyTorch. The Matlab implementation used gpuArrays to
move the processing to CUDA cores on the GPU. The temporal
�lter was implemented as a sliding window, so that only a �xed
number of frames had to be present in the GPU memory. The most
computationally expensive part of the metric was the construction
of the Laplacian pyramid. We could accelerate this part by forming
a width×height×4 image from sustained and transient channels
of test and reference images and decomposing them all into the
pyramid in a single step (instead of 4).
The execution times of both implementations of our metric, for

images and video can be found in Table 2. The execution times of
FovVideoVDP are substantially shorter than for other metrics of
similar complexity (see the supplementary). The short execution
times of FovVideoVDP make it practical for processing images of
large resolution and video.
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Table 2. Run time performance of our metric, measured for various input

sizes and on bothMATLAB and Pytorch.Measurements taken on a computer

with Intel Core i7-7800X CPU and NVIDIA GeForce RTX 2080 GPU.

Resolution Frames Metric Time
MATLAB Pytorch

1280×720 1 91.07ms 65.11ms
1920×1080 1 119.82ms 93.61ms
3840×2160 1 214.94ms 242.13ms
1280×720 60 3.71 sec 3.43 sec
1920×1080 60 5.17 sec 5.51 sec
3840×2160 60 23.61 sec 14.68 sec

4 FOVEATED RENDERING DATASET (FOVDOTS)

Our goal is to obtain a metric suitable for foveated rendering. How-
ever, there are very few relevant datasets that could help us eval-
uate such a metric, and even these have severe limitations (see
Section 5.1). Speci�cally, they either contain overly simple stimuli
(such as sine gratings), which are not representative of the content
used in the target applications of foveated video transmission and
rendering. Other datasets contain a limited number of natural videos
usually with compression artifacts which are not representative of
foveation artifacts and do not have su�cient spatio-temporal varia-
tion. Therefore, we collect a new dataset2 in which we isolate the
most relevant factors: velocity, contrast, luminance, and the trade-
o� between blur and temporal noise (aliasing) due to low sampling
rates. The new dataset provides foveation artifacts with su�ciently
varied content, and is hence a suitable benchmark to test which
quality metrics can correctly account for all these factors.

4.1 Content

We designed a synthetic stimulus containing a uniformly distributed
collection of dots moving with controllable velocity, luminance and
contrast levels. The stimulus was monochromatic, as the visual
system is more sensitive to changes in luminance than chromatic-
ity [Kelly 1983]. Such a synthetic stimulus has several bene�ts over
using photographic content or complex computer graphics scenes.
(1) parameters can be precisely controlled, which ensures that the
measured content covers a large range of key variables; (2) uni-
formity ensures that a single salient feature does not distract the
observer during trials. We also decided not to use fundamental
psychophysical stimuli, such as Gabor patches, as these are not
representative of the target content. In our experiments we used
two luminance levels (. = {32.5, 65} cd/m2), three contrast levels
(2 = {0.25, 0.5, 1.0}, Weber contrast), and three di�erent movement
speeds (E = {0, 2, 5} visual degrees per second). These values are typ-
ical in normal video content, while also �tting within the dynamic
range of a modern VR display.

Foveation. Foveated rendering can be considered a low-sampling-
rate rendering with a non-uniform sampling pattern. We use the
sampling rate B to describe how many samples are considered rela-
tive to the full-resolution render target. As discussed in Section 2,
there are two key stages of a foveated rendering algorithm: (1)

2The dataset is available at: https://doi.org/10.17863/CAM.68683
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Fig. 11. Illustration of foveation at B = 1%. Dark purple color indicates miss-

ing samples from the full image with pixels magnified to aid visualization.

This is first in-painted with natural neighbors, then box-filtered to produce

the rendered image.

V = 0.6

V = 0.01

frame 0 frame 1 di�erence

Fig. 12. Flicker and ghosting artifacts on two consecutive frames. When

the top sequence is viewed, irregularities in the circular shapes result in

perceivable flicker. The bo�om sequence is temporally stable but blurry.

sampling in a non-uniform (foveated) manner, and (2) reconstruc-
tion of a uniform raster image from the sparse samples. For (1)
we use a blue-noise-based sparse sampling pattern, with sample
density decreasing with eccentricity in the same fashion as in Deep-
Fovea [Kaplanyan et al. 2019]. For reconstruction we selected an
in-painting method with natural neighbors (computed in real-time
with GPU jump-�ooding [Rong and Tan 2006]). To remove sharp
edges, the image was then box �ltered with a variable �lter size
equal to the Euclidean distance to the nearest sample at each pixel.
Figure 11 illustrates each of these steps.

Temporal consistency. As the blue noise pattern has a new seed for
each frame, the content is temporally unstable. We employ temporal
anti-aliasing with amortized supersampling [Yang et al. 2009] with
no reprojection. Each frame � at time C is computed by combining
the rendered frame �R with the history frame �C−1.

�C = V �R + (1 − V)�C−1, (21)

where V is the free parameter controlling the trade-o� between
temporal artifacts (�icker, ghosting) and spatial artifacts (blur). See
examples in Figure 12. Once again, we selected this algorithm due to
its simplicity and high level of control over spatio-temporal artifacts
expected to be present in a generic foveated renderer.

In our experiments we used four sampling rates typical of state-of-
the-art foveated rendering algorithms (B = {1, 5, 10, 100}%with 100%
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as the reference, and three values of V ({0.01, 0.1, 0.6}), controlling
the trade-o� between spatial and temporal artifacts.
This implementation of foveated rendering is inspired by state-

of-the-art techniques but it is not meant to compete with their
performance; rather it attempts to capture two generally prominent
subsampling artifacts — burring and �ickering (temporal aliasing) —
in a controllable manner. Low V values result in blur, whereas high
V values result in temporal aliasing.

4.2 Experiment procedure

We performed a pairwise comparison experiment with a sequen-
tial presentation (2IFC) of two animations, 2 seconds each with a
one-second gap displaying a blank screen. Each comparison started
with the participant pulling the trigger on either controller, which
allowed for short rests to be taken between trials. Participants then
made their selection by pulling either the left or the right controller
triggers. There was no option to rewatch a comparison, and partici-
pants did not receive any feedback.
Since testing all combinations of pairs in 5-dimensional space

would result in a prohibitively large number of comparisons, we used
a block design, in which luminance (. ), contrast (2), and velocity (E)
were kept constant in each block and only the sampling rate (B) or
the temporal trade-o� V parameter changed. We further reduced the
number of comparisons by presenting only neighboring conditions
(e.g. directly comparing B = 10% with B = 5% and with the reference
B = 100%, but not with B = 1%).

Task. During each 2s clip, participants were asked to maintain
�xation on a red �xation cross displayed in the middle of the VR
screen. An eye tracker recorded gaze location during the experiment
to validate this. Gaze location during the inter-trial gaps were not
considered. After both stimuli were played, the task was to select
the sequence with higher visual quality, where visual quality was
de�ned as “comfortable to look at”, and “consistent quality within
the �eld of view”. This intended to capture the concept of �icker
and blur. Participants received a brief training, where they were
familiarized with the content, the controllers, and these two types
of artifacts were pointed out to them. Participants were instructed
to weigh the two artifacts with their own subjective preference.

Setup. We used an HTC Vive Pro Eye with a Unity application for
rendering with custom compute shaders for sparse sampling and
jump-�ooding. A suitably powerful PC was driving the rendering
at 90 frames per second. We kept the head position stable with a
chinrest.

Participants. 35 participants took part in the experiment (14M,
19F, 2 other, aged 25-65, normal or corrected-to-normal vision) and
received token compensation. The experiment was authorized by
an external institutional review board..

4.3 Experiment results

The results of the pairwise comparison experiments were scaled
under Thurstone model V assumptions [Perez-Ortiz and Mantiuk
2017], reducing the comparison rank matrices to linear scales of
perceived quality in JOD units (refer to Section 3.9). Con�dence
intervals were estimated using bootstrapping.

Fig. 13. Results of the psychophysical experiment, showing . = 65 cd/m2

conditions on linear quality scales. Subplots correspond to all possible con-

trast (2) and motion velocity (E) pairing. Colors indicate the sampling per-

centage (B). Error bars denote 95% confidence intervals. The y-axis corre-

spond to subjective quality with 1 JOD di�erence meaning 50% increase in

preference for the method with the higher score.

Figure 13 shows the scaled results for 65 cd/m2 for each velocity
and contrast pairing as a function of the temporal trade-o� factor
V . There is a visible di�erence between the shapes of the curves
between di�erent velocities. For stationary images (E = 0346/B), low
V values are consistently preferred (strong �ltering), as they reduce
temporal artifacts and, due to the lack of motion, still produce sharp
images. As the velocity increases (E = 2346/B), the trade-o� between
temporal �icker and spatial blur becomes more apparent with low
V values resulting in noticeable motion blur, high V values resulting
in objectionable �icker, and preference curves peaking in-between.
For high velocities (E = 5346/B), temporal artifacts appear to be less
objectionable, and the overall preference is shifted towards higher
V values. The contrast levels (rows) follow similar trends, with the
di�erences in quality increased by higher contrast. Luminance (not
shown in the �gure) did not have a signi�cant impact, most likely
due to small relative di�erence between the two tested luminance
levels. Full results including signi�cance tests are available in the
supplementary material.

5 EVALUATION

A substantial e�ort was put into testing di�erent variants of the
metric and validating the results against several datasets. In this
section, we validate the metric on 3 independent foveated video
datasets, consisting of a total of 420 video pairs, and on 4 combined
image datasets consisting of 4159 SDR and HDR images.
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5.1 Datasets

In addition to our new foveated rendering dataset, which we will
call FovDots, we used the following datasets:

UPIQ. Uni�ed Photometric Image Quality dataset3 [Mikhailiuk
et al. 2021] consists of over 3779 of SDR and 380 HDR image pairs.
The dataset was created by aligning and rescaling quality scores
from 2 SDR and 2 HDR datasets: TID2013 [Ponomarenko et al. 2015],
LIVE [Sheikh et al. 2006], [Korshunov et al. 2015] and [Narwaria et al.
2013]. We selected this dataset because it contains a large number
of test conditions, diversity of artifacts, variation in luminance and
dynamic range and most importantly, it has been scaled using the
same JOD units as our dataset. This dataset is limited to static images
and normal (not foveated) viewing.

LIVE-FBT-FCVR. LIVE-Facebook Technologies-Compressed Vir-
tual Reality Databases [Jin et al. 2020, 2019, 2021] consists of the sub-
jective DMOS (di�erential mean opinion score) of ten 360◦ videos,
distorted using 18 di�erent levels of foveated re-sampling, aggre-
gated over 36 participants. We selected this dataset, as it is one of
the few datasets exploring subjective quality of foveated rendering
artifacts in wide-�eld-of-view content.

DeepFovea. We used a portion of the dataset used in the validation
of DeepFovea [Kaplanyan et al. 2019]. The used portion of the dataset
consisted of 78 test videos, compressed with the h.265 video codec
in a foveated manner. The video was encoded using di�erent bit-
rates in three concentric regions, where the central region was
encoded at 50Mbps and the remaining bit budget was distributed
to the two other regions. 57 of the videos had their di�erential-
mean-opinion-scores measured on a large projection screen and
21 videos were tested using HTC Vive Pro HMD. The following
frame rates are provided in the dataset: 24, 25, 30 and 60Hz. We
used only the conditions for the foveated h.265 compression method
as the reference images and gaze points for other foveated methods
were not available to us. For both LIVE-FBT-FCVR and DeepFovea,
we modeled the displays used for presentation (HTC Vive Pro or
a projection screen) to provide all physically-based metrics with
absolute luminance units, correct dimensions and viewing distances.

5.2 Calibration protocol

Most quality metrics are usually trained and validated individually
on each dataset and their performance is reported as correlation coef-
�cients4. We attempted this approach and noted that FovVideoVDP
could achieve better correlation coe�cients in cross-validation than
any other tested metric on each dataset. We could also �t a common
set of parameters for all datasets and achieve the highest correlation
coe�cient among all the metrics we examined. However, when we
investigated absolute metric predictions, it was clear that the result
was over�tted. It had good performance in establishing quality dif-
ferences within each dataset but was failing at establishing quality
di�erences across di�erent datasets. This was because correlation
coe�cients can compensate for the large di�erences in the content
found across the dataset: whether the dataset contains foveated

3UPIQ dataset: https://doi.org/10.17863/CAM.62443.
4In addition to the correlation coe�cients, RMSE is also commonly reported after
individually �tting a non-linear mapping function to each dataset.

video or not, whether the e�ective resolution (in ppd) is high or low,
whether the frame-rate was high or low, etc. Therefore, to robustly
calibrate our metric and to provide fair validation, it was necessary
to calibrate and test against a consolidated dataset, in which quality
scores are represented on the same absolute quality scale.

Dataset merging experiment. Our goal was to rescale all datasets
so that quality value in one dataset re�ected the same quality level
in another dataset. Both UPIQ and our FovDots datasets represent
the quality scores in the same JOD units, so we did not need to
perform any alignment of quality scores for them. However, we
had to map DMOS values from DeepFovea and MOS values from
LIVE-FBT-FCVR to the JOD scale. This is because both MOS and
DMOS values use an arbitrary scale, which depends on multiple
factors including the training of the participants and the range of
distortions present in the dataset. We selected a set of 15 videos from
each dataset and asked a panel of 8 experts to rate each video using
the JOD scale. To anchor that scale, each expert was provided with
a web page with examples of images from the UPIQ dataset at the
quality levels of 4, 5, ..., 10 JODs. We asked the observers to match
the quality in terms of level of annoyance due to the distortions. We
also asked them to watch the videos at full-screen size and from a
certain viewing distance, which was calculated depending on the
size of their monitor. Because all videos contained foveated content,
the experts were asked to assess the video while looking at the
�xation point.
After collecting matching quality scores across the datasets, we

�tted a linear regression mapping from the native quality scale of
each dataset to JODs. Here, we relied on the observation that the
relation between DMOS/MOS and JODs is well approximated by a
linear function [Perez-Ortiz et al. 2020]. The details of the experi-
ment and mapping procedure are explained in the supplementary.

Calibration. In order to calibrate our method, we randomly se-
lected 20% of each dataset for training, leaving the remaining 80%
for testing. This proportion allowed the entire 60GB training set to
be memory-mapped for fast random access, and experiments with
di�erent proportions did not yield signi�cant improvements. We
ran a two-stage optimization process which began with a 2 hour
long global optimization pattern search procedure, followed by a
gradient-based non-linear constrained optimization using the inte-
rior point method, which was allowed to run to convergence. To
reduce the number of trained parameters, JOD regression was per-
formed separately after each function evaluation. The loss function
used was the RMSE between the metric’s prediction and the subjec-
tive JOD scores of the merged datasets. We constrained the range of
parameter values to lie within a plausible range of psychophysical
models to avoid over�tting. As the optimization was performed on
a Matlab implementation of the metric, we used numerical di�eren-
tiation. The optimization of each variant of the metric took between
3 and 8 hours on a cluster node with two Nvidia Tesla P100 GPUs.
The values of the optimized parameters are listed in Table 3.
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Table 3. The parameters of FovVideoVDP (best performing variant).

Model component Parameters

Contrast sensitivity (corr = 3.1623, f0 = 1.5, :cm = 0.4058

Masking : = 0.2854, ? = 2.4, @S = 3.237, @T = 3.0263

Pooling Vx = 0.9575, V1 = 1, V2 = 0.6848, V5 = 1,
FS = 1, FT = 0.25

JOD regression UJOD = 0.2495, VJOD = 0.3725

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

RMSE [JOD]

FovVideoVDP

VSI

MS-SSIM

HDR-VQM

STRRED

SSIM

PSNR

FSIM

LPIPS

FWQI

HDR-VDP-3 (3.0.6)

0.796

 0.97

0.994

 1.02

 1.02

 1.06

 1.08

 1.12

 1.17

 1.21

 1.28

Mean

FovDots

UPIQ

DeepFovea

LIVE-FBT-FCVR

Fig. 14. Comparison of quality metrics in terms of RMSE. The error bars

indicate the standard error of the mean.

5.3 Comparison with other metrics

We compare the performance of our metric with the subset of rele-
vant metrics from Table 1. The metrics that require physical speci�-
cations of the conditions (display size, viewing distance, luminance)
are provided with such data. The UPIQ dataset contains 380 HDR
images that were calibrated in absolute units of luminance. As tra-
ditional metrics cannot operate directly on HDR images, we used
the PU21 transform from [Mantiuk and Azimi 2021] to map those
images in approximately perceptually uniform units. To �nd video
quality for image metrics, we averaged quality predictions across
all frames. For each metric, we �t a non-linearity that maps from
metric predictions to the JOD scores of the consolidated datasets.
A di�erent non-linearity was selected for each metric. We �t two
di�erent non-linearities for HDR-VQM, one for images and another
for video, as this metric produces di�erent quality scales for each
type of content - note that this could give this metric an undue
advantage. The results are reported as RMSE of the prediction in
the units of JOD. Because the datasets are imbalanced in terms of
number of conditions (4,159 for UPIQ vs. 78 for DeepFovea), we
report the average of RMSEs computed per dataset so that each
dataset has equal in�uence on the �nal average score. We report
correlation coe�cients (PLCC and SROCC) in the supplementary
material, however, note that these are highly a�ected by the largest
dataset (UPIQ), which has no video content, and are less indicative
of performance.

The average and per-dataset RMSE of each metric are visualized
in Figure 14. FovVideoVDP has a clear lead over the other metrics
when the consolidated dataset is considered. The gain in perfor-
mance is mostly due to its ability to generalize predictions across

the datasets. For example, in the scatter plots in Figure 15, we can
see that HDR-VDP-3 does a good job predicting distortions within
the UPIQ dataset, but it overpredicts the magnitude of distortions in
foveated video datasets, as it does not model foveation or temporal
processing. The FWQI metric accounts for foveation and has better
accuracy across the datasets, but it has worse precision. Figure 14
shows that most metrics excel in predicting compression distortions
found in DeepFovea and LIVE-FBT-FCVR, but struggle with our
FovDots dataset containing artifacts due to sampling and �ltering.

5.4 Ablation and variants

The proposed variant of the metric, described in Section 3, is the
winning combination among multiple tested variants. Here, we
report the most important �ndings from testing other possibilities.
The results for testing variations of pooling, temporal channels and
contrast encoding can be found in the supplementary.

Masking model. A masking model is the key component of any
metric based on psychophysical models and its selection has a sig-
ni�cant impact on the accuracy of the predictions. First, we tested
our metric without any masking model, in which perceived dif-
ference was encoded as the di�erence of physical contrast values

(�1,2 (x) =

�

�

��test
1,2

(x) −�ref
1,2

(x)

�

�

�) or the di�erence of CSF-normalized

contrast values (�1,2 (x) =

�

�

�� ′ test
1,2

(x) −� ′ ref
1,2

(x)

�

�

�). We also tested

the original masking model based on a transducer function, pro-
posed by Foley [1994], and the threshold elevation function used in
VDP [Daly 1993]. The equations for those models are included in
the supplementary materials. Although we tested multiple variants
of these models, in total over 20 variations, these are not included in
our analysis as the di�erences in their performance were too small
to select one variant over another. For each variant, we re�tted all
relevant parameters using our calibration procedure to obtain the
best possible performance.
The results shown in Figure 16-top demonstrate that the two

variants without the masking model, contrast di�erence and CSF-
normalized contrast di�erence, perform much worse than those
with any masking model. It is interesting to note that the CSF alone
does not improve performance. This is most likely because the near-
threshold CSF model cannot predict supra-threshold performance
due to contrast constancy [Georgeson and Sullivan 1975]. The dif-
ferences between the masking models are subtle, however, we found
a small advantage of the model from Eq. (15).

Luminance adaptation. We tested a number of models of both
global and local adaptation. The luminance of local adaptation, !0 , is
used in ourmetric to compute contrast (Eq. (7)) and also to determine
the sensitivity (Eq. (11)). We tested the variants in which: (a) we
assumed a global level of adaptation and computed !0 as a geometric
mean of the luminance in the image; (b) we used the level of a
Gaussian pyramid as shown in Eq. (7), but using the level ; , ; + 1 or
; + 2; (c) we implemented the model of local adaptation proposed in
[Vangorp et al. 2015].

The results in Figure 16-bottom show that the global adaptation
model results signi�cantly degraded performance, especially for
the UPIQ dataset, which contains HDR images. However, there is
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Fig. 15. Subjective vs. predicted quality scores of the compared metrics. Note that STRRED cannot be used to predict the quality of images and is missing

predictions for UPIQ.
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Fig. 16. Ablation studies: Top: The variants of the metric that use di�erent

masking models. Bo�om: The variants of the metric that use di�erent local

adaptation models.

only a small performance di�erence between variants of the local
adaptation model, and no evidence suggesting that the more com-
plex model of Vangorp et al. [2015] can improve performance. We
decided to use the Gaussian pyramid at level ; + 1 as a predictor of
adapting luminance because it resulted in slightly improved perfor-
mance. It is readily available as a by-product of constructing the
Laplacian pyramid and therefore has a negligible computation cost.
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Fig. 17. Metric prediction for flickering square. The quality is arbitrarily

scaled for each metric for be�er comparison.

5.5 Synthetic test cases

The limitation of datasets with natural images is that they either
confound or do not contain the visual phenomena that a metric
models. Therefore, we created a set of 13 synthetic tests, which
inspected one aspect of a metric at a time. Here, we report only on
�icker and direct the reader to the supplementary for more results.

Flicker. We produced 240Hz video sequences with a square of
oscillating luminance with a varying temporal frequencies. The
luminance of the background was 10 cd/m2 and the contrast of
the oscillation was 0.5 (relative to the background). The reference
video sequence contained a uniform �eld (no oscillation). Figure 17
shows the prediction of the �icker visibility for FovVideoVDP and
two other metrics, which model the temporal aspects of vision.
Our metric correctly predicts that the �icker is fused at higher
temporal frequencies and therefore the quality increases with �icker
frequency until it saturates (the �icker is fused). The initial drop
in quality is also expected as the �icker is the most noticeable at
the frequencies of around 5Hz [Dzn 1952]. Neither of the two other
metrics could predict the e�ect of �icker on quality.
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display. The quality of a short persistence presentation is the same for all
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6 APPLICATIONS

In this section we give examples of proof-of-concept applications,
which demonstrate the utility of FovVideoVDP .

6.1 Video quality assessment

One of the most important applications of video quality metrics is
the assessment of lossy video compression methods. FovVideoVDP
can be used to asses the quality of SDR or HDR video, both with
and without foveated viewing. In Figure 18 we show that it can be
used to compare three video codecs at di�erent viewing distances.
We can observe that the inter-frame h264/MPEG-4 coding brings
the most gains over intra-frame coding (motion JPEG/JPEG 2000) at
low bit-rates but also at smaller viewing distances. Such an analysis,
which takes viewing distance into account, cannot be performed
with the video quality metrics that ignore the physical speci�cation
of a display.

6.2 �ality of motion

The unique feature of our metric is its ability to asses temporal
artifacts, for example those that are due to the limited refresh rate of
a display. To illustrate how the quality of motion di�ers on display
of di�erent refresh rates, we render a disk (L=80 cd/m2) moving
with di�erent velocities on a uniform background (L=10 cd/m2). We
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Fig. 20. A panning image stimulus is generated as shown on the top row, at

various speeds (2, 3, 4.7, and 6.6◦/B), luminance levels (2.5, 10, and 40cd/<2)

and framerates (24, 30, and 60Hz). Each video is compared to a sequence

with identical luminance and speed at 60Hz. The di�erence map and final

Qjod values (in white) are shown here for the 30Hz case, assuming central

fixation. Note the steady increase in the predicted di�erence with higher

speeds and luminance levels.

assume that the eye follows the object perfectly and render the
animation as seen by the eye (as projected on the retina). While the
gaze moves to follow the disk, an image on the display remains in
the same place, creating cyclic motion on the retina, and causing
hold-type motion blur. To render such a cyclic motion, we created
videos at reference refresh rate of 480Hz and simulated the motion
of the disk on the retina for the given display refresh rate. The metric
predictions, shown in Figure 19, indicate that the motion quality
drops with lower refresh rates and also the higher velocities of mo-
tion. This result is consistent with quality measurements performed
on this type of display (see Fig. 7 in [Denes et al. 2020]).
Hold-type motion blur is typically reduced using a short persis-

tence displays, such as those found in VR/AR HMDs. To simulate
such a display, we rendered every k-th frame of 480Hz video :-
times brighter and set the remaining frames to 0. : was equal to
A/480 where A was the simulated display refresh rate. Our metric’s
prediction for such a short-persistence display is shown as a dashed
line in Figure 19. It indicates that a short persistence is likely to
cause �icker at low refresh rates but it will improve motion quality
at higher refresh rates. This prediction holds in practice as short-
persistence displays require higher refresh rates to keep the �icker
invisible. Such motion quality predictions were previously possible
only with specialized models, such as the one proposed by Denes et
al. [Denes et al. 2020]. In contrast, our metric is general and makes
the predictions based on video content rather than assuming a �xed
stimulus (an edge).

Further, we tested our metric as a tool to predict visual distortions
due to non-smooth motion artifacts. Chapiro et al. [2019] recently
collected data on the perception of judder for scenes with varying
luminance levels, speeds and frame rates. While our model is not
restricted to predicting motion artifacts, it can be used to detect
their presence by comparing videos that vary in frame rate. Fig 20
shows our model operating on the data set used in [Chapiro et al.
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Fig. 21. This plot shows a comparison between our model’s prediction

(dashed lines) and the results gathered by Chapiro et al. [2019] (circles)

for the panning flower stimulus shown in Figure 20. Our method correctly

predicts the trends of increase in perceived judder with higher speeds and

luminances and decrease with higher frame rates.

2019] Experiment 3. Note that our method correctly predicts in-
creasing judder with higher speeds, and similarly a positive trend
with increasing luminances. The e�ect is reduced for higher frame-
rates, where judder is less visible. Figure 21 contrasts our methods’
predictions to this experimental data, scaled to �t our JOD output.

6.3 Foveated sampling

The cost of rendering or transmission of 360 VR animation can
be greatly reduced if we can take advantage of gaze-contingent
techniques [Kaplanyan et al. 2019]. Tursun et al. [2019] noted that
the sampling rate can be reduced not only for high eccentricities,
but also for low-contrast or low-luminance parts of the scene. We
follow a similar approach and predict the lowest sampling rate we
can use for 360 video. Such an approach could be used for more
e�cient transmission of 360 video.
To �nd a minimum sampling rate, a full resolution frame is sub-

sampled (using nearest neighbors) to a �xed set of sampling res-
olutions: 1x1, 2x2, 4x4 and 8x8. Then, the full resolution frame is
reconstructed from such a set of subsampled frames (using nearest-
neighbors) and compared with the original using FovVideoVDP .
The lowest sampling rate at a particular pixel location is determined
to be the one that produces an error of less than 0.25 JOD within
each 16x16 tile, according to the di�erence map. An example of a
360◦ scene reconstructed using a variable sampling rate is shown
together with the sampling map in Figure 22.

6.4 Subtle Gaze Direction

Subtle gaze direction [Bailey et al. 2009] applies just-noticeable tem-
poral modulations to peripheral pixels of an image to help direct
a user’s gaze without distorting the overall visual experience (Fig-
ure 23, top). It is important that the image manipulations are both
noticeable and not too distracting for the user. Thus, the ideal stim-
ulus depends on image content as well as viewing conditions. Since
FovVideoVDP accounts for spatiotemporal perception and foveation,
it can be used to select optimal parameters for the stimulus, avoiding
the need for a user study.
We demonstrate this in Figure 23 (bottom), where we simulate

subtle gaze direction at various locations of a 1280×1024 image,
viewed on a 20-inch monitor from a distance of 75 cm (matching the
experimental setup of Bailey et al. [2009].) Using the FovVideoVDP

Rendered view ports Fixation point

Sampling rate 1x1 8x82x2 4x4

Original OriginalReconstructed Reconstructed

Fig. 22. Two view ports of a 360◦ video, reconstructed from sparse samples.

The video can be sampled at a much lower resolution in the regions of low

contrast, low luminance and those far from the gaze location. Note that the

regions with uniform textures can be sparsely sampled even if they are close

to the gaze location, but the highly textured regions (such as the plants on

the building) must be densely sampled. Image courtesy Dabarti CGI Studio

and part of dataset accompanying Sitzmann et al. [2017]

output as our objective function, we then �nd the minimum magni-
tude of a temporally varying luminance modulation which would
result in a di�erence of at least 0.5 JOD. At a modulation frequency
of 10Hz, we get an average threshold intensity i of 0.0906, which is
close to the value reported (0.095) by Bailey et al. [2009]. Based on
the resulting maps, we can also conclude that the optimum stimulus
depends largely on the image content, requiring higher strength in
high-luminance areas and lower strength in lower-luminance areas.
The dependence on eccentricity is not evident, which is expected
due to the viewing conditions (narrow �eld-of-view) as well as the
high sensitivity to �icker for both foveal and peripheral viewing. Fi-
nally, FovVideoVDP predicts that we require a stronger stimulus for
10Hz modulation than for a 5Hz modulation. The latter represents
the peak frequency response for the transient channel in our model.

7 CONCLUSIONS

In this work we introduce a visual di�erence metric that is cal-
ibrated in physical units, models temporal aspects of vision and
accounts for foveated viewing. The main strength of the metric is
its ability to generalize across a diverse range of contents and types
of spatio-temporal artifacts. This metric was carefully calibrated
using 3 independent video quality datasets and a large image quality
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Stimulus magnitude predicted to cause 0.5 JOD difference

5 Hz

0.25

0.0010 Hz

Fig. 23. FovVideoVDP can help optimize parameters of a subtle-gaze di-

rection system. Top: Two examples of luminance modulation stimuli at

peripheral locations, displayed 75 cm from a 20 inch monitor with user gaze

at the center. Bo�omMaps showing optimized magnitude (blend factor) for

luminance modulation that would result in a di�erence of 0.5 JOD at various

locations across the image. Higher values imply the need for a stronger

stimulus. Our metric predicts that high-luminance areas require higher

stimulation to result in perceived di�erences, with the average predicted

intensity (0.0906 at 10Hz) consistent with the value of 0.095 reported by

Bailey et al. [2009]. Due to the small field-of-view, the e�ect of foveation

is negligible. Note that a 10Hz modulation requires a stronger stimulus

compared to a 5Hz one. Image by StockSnap from Pixabay.

dataset. This work demonstrates that a metric founded on the psy-
chophysical models of vision can explain image and video quality
well, often out-performing metrics that rely on hand-crafted fea-
tures, statistical indicators or machine learning. Finally, the metric
can be e�ciently implemented to run on a GPU, making it one of the
fastest metrics of such complexity. The need for such a new metric
is driven by the applications in graphics, in particular in AR/VR
rendering, that involve foveated viewing or require the assessment
of spatio-temporal artifacts, such as blur, �icker and temporal noise.
We hope the metric will �nd its use in optimization and testing of
foveated rendering, temporal antialiasing and denoising techniques.
In the future, we plan to use the metric as a di�erentiable loss func-
tion, which can be employed to directly optimize both traditional
and machine learning techniques. Our metric does not model certain
aspect of vision: color, glare, inter-channel masking, and eye motion.
We plan to address these extensions in future work.
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Algorithm 1. Pseudocode for FovVideoVDP . Some optimizations, e.g. batch computation of Laplacian pyramids, are omi�ed for clarity.

def compute_metric(T_vid, R_vid, display_model, opt):

# T_vid and R_vid are test and reference video tensors of shape

# N (number of frames), H (frame height), W (frame width), C (channels=1)

N = R_vid.shape[0]

# F contains temporal filter kernels, and Omega contains the peak frequencies of each filter

F, omega = get_temporal_filters(opt.fps, opt.filter_len) # Eqs. 3 and 4

for ff in range(N): # For each frame

R_gpyr = None

for cc in range(len(F)): # For each temporal channel

# apply current temporal filter at frame ff

T_c = apply_temporal_filter(T_vid, frame=ff, F[cc])

R_c = apply_temporal_filter(R_vid, frame=ff, F[cc])

# perform Laplacian decomposition

T_lpyr = decompose_laplacian(T_c)

R_lpyr = decompose_laplacian(R_c)

if cc == 0: # perform Gaussian decomposition for sustained channel of the reference

R_gpyr = decompose_gaussian(R_c)

for bb in range(R_lpyr[cc].band_count()-1): # For each band, except the base band

T_f = T_lpyr[cc].get_band(bb)

R_f = R_lpyr[cc].get_band(bb)

L_a = R_gpyr.get_band(bb+1) # Local adaptation

T_con = compute_local_contrast(T_f, L_a) # Eq. 7

R_con = compute_local_contrast(R_f, L_a) # Eq. 7

if opt.foveated:

ecc = display_model.get_eccentricity(R_con.shape) # compute per-pixel eccentricity

res_mag = display_model.get_resolution_magnification(ecc) # compute per-pixel resolution magnification

else:

ecc = zeros(R_con.shape)

res_mag = ones(R_con.shape)

rho = R_lpyr.get_frequencies()[bb] * res_mag # The peak frequency of the band times

# the angular resol. magnification (sec 3.1)

S = compute_contrast_sensitivity(omega[cc], rho, L_a, ecc)

D = apply_masking_model(T_con, R_con, S)

Q_per_ch[bb,cc,ff] = p_norm(D.flatten(), opt.beta, axis=0, normalize=True)

# Pooling, after all frames are done (Eq. 17)

Q_sc = p_norm(Q_per_ch, opt.beta_sch, axis=0, normalize=False) # pooling across Laplacian bands

Q_tc = p_norm(Q_sc, opt.beta_tch, axis=1, normalize=False) # pooling across temporal channels[]

Q = p_norm(Q_tc, opt.beta_t, axis=2, normalize=True) # normalized pooling across time

# JOD regression (Eq. 19)

Q_jod = 10.0 + opt.jod_a * pow(Q, opt.beta_jod)

return Q_jod
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