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Forkhead box transcription factor, FOXM1 is implicated in several cellular processes such

as proliferation, cell cycle progression, cell differentiation, DNA damage repair, tissue

homeostasis, angiogenesis, apoptosis, and redox signaling. In addition to being a boon

for the normal functioning of a cell, FOXM1 turns out to be a bane by manifesting in several

disease scenarios including cancer. It has been given an oncogenic status based on

several evidences indicating its role in tumor development and progression. FOXM1 is

highly expressed in several cancers and has also been implicated in poor prognosis. A

comprehensive understanding of various aspects of this molecule has revealed its role in

angiogenesis, invasion, migration, self- renewal and drug resistance. In this review, we

attempt to understand various mechanisms underlying FOXM1 gene and protein

regulation in cancer including the different signaling pathways, post-transcriptional and

post-translational modifications. Identifying crucial molecules associated with these

processes can aid in the development of potential pharmacological approaches to curb

FOXM1 mediated tumorigenesis.
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INTRODUCTION

A Conspectus on Forkhead Transcription Factors
The evolutionarily conserved, winged helix group of transcription factors are derivatives of bacterial

helix-turn-helix motif. In eukaryotes, it was initially identified in the homeotic gene- forkhead,
whose discovery led to the generation of a plethora of significant findings. Mutation of this gene

caused defects in cephalic development of drosophila leading to a forkhead appearance and hence

the name forkhead (1). Albeit winged helix transcription factors are conserved throughout

evolution, during the course of its progression these groups of transcription factors have

Abbreviations: ANO2, Anoctamin 2; CTNNBL1, Catenin Beta Like 1; DCP1B, Decapping mRNA 1B; DOT1L, DOT1 Like

Histone Lysine Methyltransferase; ECT2, Epithelial Cell Transforming 2; EPS8, Epidermal Growth Factor Receptor Pathway

Substrate 8; FBX, F-Box and WD repeat Domain; FOXM1, Forkhead transcription factor M1; KLF, Kruppel Like Factor;

METTL3, Methyltransferase Like 3; MTSS1, Metastasis Suppressor 1; OTUB1, OTU Deubiquitinase, Ubiquitin Aldehyde

Binding 1; PBD, PLK1 Binding Domain; PDA, Pancreatic Adenocarcinoma; PQC, Protein Quality Control; RASSF1A, Ras

Association Domain Family Member 1; RNF, Ring Finger Protein; RTK, Receptor Tyrosine Kinase; SETD3, SET Domain

Containing 3, Actin Histidine Methyltransferase; SLC2A14, Solute Carrier Family 2 Member 14; SRp20, Serine and Arginine

rich Splicing factor; STUbLs, SUMO-targeted Ubiquitin Ligases; TAD, Transcriptional Activation domain; TCGA, The Cancer

Genome Atlas Program; UCA1, Urothelial Cancer Associated 1; UCHL3, Ubiquitin C-Terminal Hydrolase L3; USP, Ubiquitin

Specific Peptidase.

Frontiers in Oncology | www.frontiersin.org February 2021 | Volume 10 | Article 6268361

Edited by:

Sridhar Muthusami,

Karpagam Academy of Higher

Education, India

Reviewed by:

Jorg Kobarg,

Campinas State University, Brazil

Alvaro Galli,

Italian National Research Council, Italy

*Correspondence:

Asha S. Nair

sasha@rgcb.res.in

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Molecular and Cellular Oncology,

a section of the journal

Frontiers in Oncology

Received: 06 November 2020

Accepted: 30 December 2020

Published: 15 February 2021

Citation:

Kalathil D, John S and Nair AS (2021)

FOXM1 and Cancer: Faulty Cellular

Signaling Derails Homeostasis.

Front. Oncol. 10:626836.

doi: 10.3389/fonc.2020.626836

REVIEW
published: 15 February 2021

doi: 10.3389/fonc.2020.626836

https://www.frontiersin.org/articles/10.3389/fonc.2020.626836/full
https://www.frontiersin.org/articles/10.3389/fonc.2020.626836/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:sasha@rgcb.res.in
https://doi.org/10.3389/fonc.2020.626836
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2020.626836
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2020.626836&domain=pdf&date_stamp=2021-02-15


emerged with different binding specificities. Marsden et al.

pointed out that the difference in binding specificities is the

consequence of structural variations in the amino acid residues

which lie in the immediate vicinity of the DNA binding motif (2).
All forkhead transcription factors possess a characteristic 100

amino acid DNA binding domain which consists of three a-
helices, three b-sheets and two large loops or wings that flank the
third b-sheet (3).

Formerly, FOX proteins were designated as HFH, FREAC, and

FKH. Subsequently, based on the phylogenetic analysis, these
proteins have been divided into different subclasses (designated

by a letter) and sub-subclass (denoted by an Arabic numeral). A

unified nomenclature was introduced in 2000 which grouped the

FOX proteins into different subclasses (FOXA-FOXS) based on

sequence conservation. Human forkhead transcription factors are

represented by uppercase letters whereas only the first letter is

capitalized for mouse (4). FOXA, FOXC, FOXM, FOXP, FOXD,
FOXE, FOXF, and FOXL have been shown to have a wide array of

functions ranging from development to tumorigenesis (3, 5, 6).

Forkhead Transcription Factor M1 (FOXM1)
FOXM1, previously named as HNF-3, HFH-11, MPP2, TGT3,

INS1, PIG29, FKHL16, MPHOSPH2, LOC2305, or Trident is a
member of the Forkhead Box (Fox) family of transcription

factors (7). Human FOXM1 gene consists of 10 exons which

span approximately 25 kb on the 12p13.33 chromosomal band

(7). FOXM1 has four major splice variants namely FOXM1A, B,

C and D which arise by differential splicing of exon Va and VIIa

(Figure 1A). Among these, FOXM1B contain neither of the

alternative exons whereas FOXM1C has retained the exon Va
and FOXM1D has retained VIIa (8). FOXM1B, FOXM1C, and

FOXM1D act as transcriptional activators, but FOXM1A which

has retained both the exons has been reported to be the inactive

variant, suggesting some dominant negative effect as it has

retained the DNA binding capability (9). FOXM1 protein

consists of N terminal repressor domain, forkhead box domain
and C terminal transcriptional activation domain (Figure 1B).

FOXM1 maintains cell homeostasis by controlling diverse

biological processes such as proliferation, cell cycle progression,

A

B

C D

FIGURE 1 | Structure of Forkhead transcription factor M1 (FOXM1) and its mutational overview. (A) Schematic representation of the human FOXM1 showing 10

exons (I–VIII), of which Va and VIIa (red) are alternatively spliced. (B) Domain structure of FOXM1C protein. TRD mediated repression of FOXM1 can be either

Rb-dependent or independent. NRD-N, N-terminal repressor domain; FH/DBD, Forkhead box DNA Binding Domain; TRD/NRD-C, Trans-Repressor Domain/C-

terminal Repressor Domain; TAD, Trans-Activation Domain. Numerical indicate amino acid positions. (C, D) COSMIC data (https://cancer.sanger.ac.uk/cosmic)

showing summary of the types of mutation and frequency of substitution mutations for the base pair changes on the coding strand. Sample size used in the analysis

from the database is 443 and 310 respectively.
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differentiation, DNA damage repair (DDR), tissue homeostasis,

angiogenesis, apoptosis, redox signaling and drug resistance (10).

FOXM1 is involved in several pathophysiological conditions

such as chronic obstructive pulmonary disease (COPD), asthma,

acute lung injury (ALI), pulmonary fibrosis, pulmonary arterial

hypertension (PAH) and cancer (11). This review mainly
addresses the mechanisms by which FOXM1 is deregulated in

cancer. A large amount of literature exists regarding FOXM1’s

role in homeostasis and tumorigenesis, which the current review

summarizes by primarily focusing on the altered upstream and

downstream regulatory mechanisms in cancer. It is necessary to

understand the various oncogenic pathways leading to the
modulation of FOXM1 in response to environmental cues or

oncogenic insults. This review sheds light on how integral and

inherent FOXM1 is in the pathogenesis of cancer. As the review

progresses the readers would obtain a clear view on multiple

facets of FOXM1 in cancer and its impact on the homeostasis

with special emphasis on the regulatory aspect of FOXM1 in
cellular transformation.

Genetic Alteration of FOXM1
FOXM1 is regarded as an oncogene due to its contribution in

tumor initiation and progression whose expression has been

shown to be elevated in various cancers (12) (13). Crucial

mutations and gene copy amplification of FOXM1 have been

observed at its loci 12p13.33 (https://cancer.sanger.ac.uk/cosmic)
(14). Copy number alteration was observed in 29% of malignant

peripheral nerve sheath tumors (MPNSTs) and also in breast

cancers (15, 16). Barger et al. showed that mRNA and protein

level alterations correlated with the copy number changes using

the TCGA databases. Frequent amplification of FOXM1 was

seen in various cancers among which testicular germ cell tumor

had the maximum. Their analysis also revealed a correlation
between aneuploidy and FOXM1 expression in TCGA pan-

cancer aneuploidy clusters. Another study from the same

group demonstrated that FOXM1 was found to be amplified in

high-grade serous ovarian cancer (HGSOC) (17, 18).

COSMIC database has revealed several mutations and gene

amplifications of FOXM1 across various cancers (Figure 1C).
Synonymous mutation and missense substitution are observed to

be the highest mutational events. Among the missense

substitutions, C>T and G>A (Figure 1D) are found to be the

most frequently occurring. These mutations have a wide range of

FATHMM score (that predicts functional consequences of

coding and non-coding variants). High FATHMM score (≥
0.7) may predict a deleterious effect of these mutations. Most

of these mutations may possibly alter the activity of FOXM1, but

detailed studies need to be carried out to understand their effect

at protein level, thereby the alterations in cellular physiology.

The synonymous mutations do not have any deleterious effect on

FOXM1 protein as this would not change the amino acid

information. Nonsense mutations are observed in approximately
3% of the cases and these have a high pathogenic FATHMM score

(>0.8). (https://cancer.sanger.ac.uk/cosmic) (14). Other genetic

modifications of FOXM1 include gene fusion events like

FOXM1/SLC2A14 (t (12;12)(p13;p13)), FOXM1/ANO2,

FOXM1/DCP1B (19). Although SLC2A14 (hexose transporter),

ANO2 (calcium activated chloride channel), DCP1B (core

component of the mRNA decapping complex) have been shown

to be associated with various cancers, their functional role as gene

fusion products need to be studied in detail (20, 21). Apart from

these genetic alterations, FOXM1 has been shown to be altered by

various transcriptional and translational deregulations.

REGULATION OF FOXM1

In order to maintain a homeostatic environment, FOXM1
expression and activity needs to be tightly regulated and

coordinated by diverse signaling pathways. This involves the

regulation by transcription factors (activation), repressors

(repression) and the epigenetic modifications (activation or

repression). Following transcription, cellular cues drive the

processing of pre-mRNA molecules by machineries involved in
post-transcriptional modification. Various studies have revealed

that several miRNAs target FOXM1 and regulate its expression

(22, 23). The diverse functions of FOXM1 have been further

manifested through various post-translational modifications.

Activation and repression of FOXM1 protein is mediated

primarily by the phosphorylation status of respective amino

acid residues. Apart from this, acetylation, SUMOylation and
ubiquitinylation also contribute toward its activity and stability.

Deregulated Cellular Signaling of FOXM1
in Tumorigenesis
FOXM1 is one of the major transcription factors altered in cancer
by virtue of altered signal transduction pathways. Activation of

FOXM1 via the altered KRAS signaling has been evident in the

development of hepatocellular carcinomas and initiation of lung

tumorigenesis in RAS driven tumors (24). Moreover existence of

an inverse correlation between RASSF1A, a tumor suppressor of

the RAS signaling pathway, and FOXM1 has been observed in the

progression of colon cancer. Interestingly, a cross talk between
FOXM1 transcription factor and RASSF1A (Figure 2) was also

revealed from this study (25). RASSF1A, which is mainly altered

via hypermethylation, protein degradation and point mutation has

been widely observed in various cancers such as liver, breast, colon

and bladder cancer (26–28). Another study has shown that

FOXM1 is regulated by hepatocyte growth factor (HGF) via
RAS/MEK/ERK, PI3K-AKT, and STAT molecules by the

activation of mesenchymal epithelial transition (MET)-tyrosine

kinase receptor. Interestingly, FOXM1 was observed to have direct

binding site on MET promoter, thereby accelerating HGF/MET

signaling. Presence of this positive FOXM1 and MET feedback

loop accelerate pancreatic ductal adenocarcinoma (PDA)

development (29). Whether FOXM1/MET overexpression have
any association with metastasis of PDA need to be validated,

however, its role in lymph node metastases of gastric cancer has

already been established (30). Another signaling of FOXM1 via

TGF-a/EGFR-STAT3-TESC was observed in cholangiocarcinoma

progression (31).

One of the biomarkers for breast cancer detection is HER2,
which has been shown to be altered in about 25% of the breast

cancers. HER2 transmit the signals via RAS-MAPK or PI3K-
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AKT pathway, whose overexpression in breast cancer patients

activates the expression of FOXM1 (32). It has been shown that

FOXM1 nuclear positivity is well correlated with HER2

expression in breast cancer patients. This study also established

an existence of a link between ER positive expression and

FOXM1 in HER2 positive cases (33). Subsequent studies
revealed FOXM1 overexpression was associated with aggressive

phenotypes and poor overall and disease free survival in ER

positive breast cancer patients (34). Moreover, FOXM1

expression in breast cancer cells has been shown to be

controlled by a nuclear receptor, ERa which directly bind to

the ERE like element on FOXM1 promoter. ERa, which is
situated on nuclear membrane, could be activated by direct

binding of estrogen or through a ligand independent

mechanism. The latter mechanism involves key residues in the

AF-1 domain of ER being activated by phosphorylation in

response to signal transmission through RTKs, thereby

promoting cell growth and survival (35). Further, HER2 and

FOXM1 expression has also been observed to have correlation in
colorectal cancer (36).

P38MAPK Pathway has been shown to be associated with

drug resistance via FOXM1 expression. Epirubicin treated,

MCF-7 breast cancer cells have shown induction of FOXM1

expression through P38MAPK–E2F1 axis. However, epirubicin

resistant cells have shown constitutively high level of E2F1 and

FOXM1 expression leading to the loss of drug sensitivity. It
may be due to the fact that phosphorylation of E2F1 at serene

364 residue by P38-MK2 (mitogen-activated protein kinase

(MAPK)-activated protein kinase 2; MAPKAPK2) axis led

to the stabilization of E2F1 thereby regulating the target

gene expression (37). Additionally, it was also shown that

P38 could enhance FOXM1 expression independent of
E2F1 by repressing JNK1. In contrast to these observations

by De Olano et al., an earlier study by Millour J et al. has

shown down regulation of FOXM1 expression at the onset of

epirubicin treatment in MCF-7 cells by the modulation of E2F

activity on the FOXM1 promoter by P53 (38). Additionally

FOXM1 was shown to be associated with sorafenib drug

resistance in liver cancer cells via AKT-CJUN-AP1- FOXM1
signaling (39).

FIGURE 2 | Signaling pathways associated with regulation of Forkhead transcription factor M1 (FOXM1). Pictorial representation of various upstream signaling

factors that are involved in FOXM1 regulation. Ligands are indicated as colored objects above the bilipid membrane layer whereas receptors are labeled below the

membrane. Cellular activators (green arrows), inhibitors (red arrows) and feedback loop (black arrows) indicate the mechanism of regulation of FOXM1.

Kalathil et al. FOXM1 in Cancer: Faulty Regulation

Frontiers in Oncology | www.frontiersin.org February 2021 | Volume 10 | Article 6268364

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


FOXM1 expression in glioblastoma stem like cells has been

shown to be elevated via FGFR signaling, wherein the expression

of FGFR has been found to be elevated via a6-integrin and

ZEB1/YAP1 transcription factor complex (40). A shorter overall

survival was observed in glioblastoma multiforme (GBM)

patients with the expression of a6-integrin, ZEB1/YAP1,
FGFR1 and FOXM1 (41). Integrin avb3 receptor activation by

osteopontin (OPN) has been found to upregulate FOXM1

expression in pancreatic cancer cells. OPN promotes the

epithelial mesenchymal transition (EMT) and cancer stem cells

(CSC) like properties of pancreatic cancer cells (PCCs) by

activating the integrin avb3/Akt/Erk/FOXM1 cascade in a
paracrine manner. The malignant phenotypes of PCCs could

be induced by the OPN secreted from activated pancreatic

stellate cells (PSC) in response to a hypoxic condition. Elevated

OPN and FOXM1 expression reflects a poor clinical outcome in

PCCs (42). Another study conducted in HEC1A cells also

depicted the induction of FOXM1 expression by OPN (43).
A study by Chen et al. has shown that >60% of human breast

cancer samples compared to adjacent normal breast tissues have

high expression of epidermal growth factor receptor pathway

substrate 8 (EPS8), enabling migration and motility (44). PI3K-

AKT mediates, EPS8, dependent up regulation of FOXM1 which

in turn leads to the activation of many of the cell cycle regulators,

which includes CDC20, CDC25B, CDC25C phosphatases,
Cyclin A, and Cyclin B among others. Additionally, FOXM1

regulates molecules associated with mitotic progression such as

aurora-A kinase, polo-like kinase-1, centromere protein-A, E

and F; stimulators of angiogenesis and motility including

vascular endothelial growth factor (VEGF) and CXCL12.

Chromatin immunoprecipitation assays in EPS8 overexpression
background revealed an elevation in levels of acetylated histone

H3 associated with the FOXM1 promoter (45). Recently EPS8 was

shown as a novel interacting partner of FOXM1 which further

established its role in enhanced cancer cell proliferation, migration

and invasion (46). FOXM1 could also be activated via CXCL12

mediated PI3K/AKT-dependent mechanism in glioblastoma (47).

Sonic Hedgehog (Shh) Signaling activates FOXM1 expression
through its effector molecule GLI1, a zinc finger transcription

factor (48). Expression of FOXM1 correlates directly with the

expression of patched-1 (PTCH1), smoothened (SMO) and GLI1

in various cancers (49, 50).Wang et al. have proved GLI1-FOXM1

interaction by depicting the direct binding of GLI1 to the FOXM1

promoter (51). Alteration in Hh signaling, thereby the expression
of FOXM1 has been evident from reports on various cancers. It

has also been observed that in some of the cancer cases even

though GLI1 is altered at the initial stages, FOXM1 and GLI1

correlation is seen only when lymph node metastasis occurs. Hh

and FOXM1 overexpression have been observed in cervical cancer

tissue, wherein Shh, PTCH1 and GLI1 correlated with the

pathological grade of the tumors and GLI1 and SMO correlated
with the clinical stage of the tumors (50). Colorectal cancer cell

proliferation was also enhanced in the background of Hh signaling

and FOXM1 expression (51).

Salvador/Warts/Hippo (SWH) Pathway or in short Hippo

signaling pathway regulates cell proliferation and apoptosis thus

controlling the organ size in animals. Mechanical stress, G-

protein-coupled receptor signaling, and oxidative stress are

some of the upstream signaling for hippo pathway. This

pathway also has been shown to be altered in cancer (52). The

major protein kinase involved in the pathway is Hippo (Hpo)

whose phosphorylation of downstream YAP is inactive during
growth stimulation. Unphosphorylated YAP translocate to

nucleus and interacts with TEAD to control gene transcription

(53). In malignant mesothelioma, YAP/TEAD directly binds to

the FOXM1 promoter enhancing its gene expression (54).

Moreover, FOXM1 upregulation has been observed in various

soft tissue sarcoma subtypes which led to an increased cell
proliferation (55). ROCK/YAP/FOXM1 axis has been observed

in airway smooth muscle cell proliferation, migration, and

contraction which is induced by S1P binding to S1PR2/3 (56).

YAP/TEAD-FOXM1 signaling axis has also been associated with

the expression of chromosomal instability signature genes CIN25

and CIN70 expression in hepatocellular carcinoma (HCC) (57).
Studies in breast cancer cells MDAMB 231 have also shown

FOXM1 to modulate proliferation, clonal expansion, migration

and stemness in YAP1 dependent manner (58). Through an

integrated transcriptomic, proteomic, and drug screening

approach, YAP-FOXM1 axis was identified as the driver of

EMT-associated EGFR-TKI (Tyrosine Kinase Inhibitor)

resistance by increased abundance of spindle assembly
checkpoint (SAC) proteins, including polo-like kinase 1 (PLK1),

aurora kinases, survivin, and kinesin spindle protein (KSP).

FOXM1 is also regulated by another stress signaling pathway,

TNFa/ROS/HIF-1 in hepatocellular carcinoma. The existence of

a positive correlation between HIF1a and FOXM1 in HCC

patients reflects poor prognosis, aggressive tumors, and high
recurrence rate (59). An increased incidence rate of cancer in

colon, breast, prostate and ovarian has been inversely correlated

with the vitamin D deficiency (60). An inverse correlation

between vitamin D receptor expression and FOXM1 in

pancreatic ductal carcinoma patients was observed by Li Z

et al. Pharmacological activation of Vitamin D receptor (VDR)

by vitamin D and its analog has led to the suppression of FOXM1
signaling as evidenced from the expression of its downstream

targets such as cyclin D1, CMYC, SKP2, CD44 and c-MET (61).

Overall representation of the upstream signaling of FOXM1 has

been given in Figure 2.

Post-Transcriptional Alterations of FOXM1
in Cancer
The fate of mRNAs is decided by various intricate mechanisms

which include capping, splicing, polyadenylation and rate of

nuclear export. All these processes are controlled by various

protein complexes and enzymes to maintain homeostasis.

Deregulation in Splicing Machinery
Pre-mRNA molecules undergo splicing to generate various

isoforms of a particular gene. Approximately 70% of the

human genes undergo splicing events and generate diversity in

the protein profile. SRp20 (SFR S3), a splicing factor that

regulates FOXM1, PLK1, and Cdc25 B transcripts, has been
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observed to be overexpressed in ovarian, cervical, AML, lung,

breast, stomach, skin, bladder, colon, liver, thyroid, and kidney

cancers (62, 63). Precise regulation by splicing is quintessential to

maintain cellular homeostasis by FOXM1 as evidenced from the

G2/M phase arrest due to SRp20 downregulation. Accumulation

FOXM1A and downregulation of both FOXM1B and FOXM1C
have been observed upon knockdown of SRp20 (63). In addition,

USP39, a component of the spliceosome, also regulates FOXM1

pre-mRNA processing. High expression of USP39 has been

observed in human HCC and FOXM1 is found to be one of

the molecules overexpressed (64). Inhibition of USP39 by siRNA

has downregulated FOXM1 and in turn led to tumor volume
reduction in xenograft model of HCC (65). Another protein

involved in FOXM1 splicing is a nuclear protein, CTNNBL1

which has been found to be associated with the Prp19 complex of

the spliceosome. This protein is involved in regulating the

splicing events of FOXM1 in ovary and its elevated expression

was reported in ovarian cancer. FOXM1B and C protein levels
were high in CTNNBL1 overexpressed cells, whereas a decreased

expression has been observed in knockdown ovarian cancer cells

(66). These splicing mechanisms have been illustrated in

Figure 3A.

Deregulation in Epi-Transcriptomics
Incorporation of N6-Methyladenosine (m6A) into the pre-

mRNA molecules by m6A methyltransferases-METTL3 is one

of the most important epi-transcriptomic modifications present

in eukaryotes that play important role in various physiological

processes and disease states. This modification could be removed

either by FTO (fat-mass and obesity-associated protein) or

ALKBH5 (a-ketoglutarate-dependent dioxygenase alkB

homolog 5) (67). ALKBH5 expression has been reported to be
high in breast cancer, GBM, ovarian cancer, pancreatic cancer

and gastric cancer (68). A study by Zhang et al. had demonstrated

FOXM1 as a target of ALKBH5 and also identified a long non-

coding RNA antisense to FOXM1. Interaction of long noncoding

RNA with FOXM1 promotes the recruitment of ALKBH5 to the

FOXM1 nascent transcripts. This in turn leads to the binding of
HUR, an RNA binding protein thereby resulting in protein

translation (Figure 3B). Blockade of these molecules by shRNA

interrupted the proliferation of GSCs and GBM (69). So it would

be speculated that the deregulation on these molecules in cancer

may affect the expression of FOXM1 transcription factor.

Deregulation of FOXM1 by miRNA and lncRNA
Approximately 60% of genes encoded in the human genome
are regulated by miRNAs (70). It has been shown that many

physiological processes such as development, apoptosis, EMT,

proliferation and stem cell maintenance are tightly regulated by

miRNAs (71). Studies related to FOXM1 and miRNA so far has

generated ample knowledge regarding potential miRNAs which

inhibit FOXM1 post-transcriptionally.

A

B

C

FIGURE 3 | Post-transcriptional regulation of Forkhead transcription factor M1 (FOXM1). FOXM1 regulation by (A) Splicing-elevation of splicing factors lead to

upregulation of FOXM1 isoforms (B) Epitranscriptomics-upregulation of ALKBH5 leads to increased FOXM1 translation and (C) lnRNA/miRNA-FOXM1 gene

expression is regulated by miRNA which in turn are regulated by lnRNA (details of specificity are described in Table 1).
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The miRNA which target and regulate FOXM1 expression

has widely been altered in various cancers. These miRNAs either

function as tumor suppressors or oncogenes. FOXM1 is not only

altered through the direct binding of miRNA to the 3’UTR but

also by indirect effect of miRNAs on upstream regulatory

molecules of FOXM1. Upregulation of FOXM1 by inhibiting
its miRNA reflected in phenotypes such as proliferation, invasion

and migration (Table 1). CagA, a virulence factor ofHelicobactor

pylori promotes the expression of FOXM1 by downregulating

miRNA 370 in gastric cancer (73). Another mechanism of

FOXM1 miRNA downregulation is by the hypermethylation of

its own promoter (78).
Recent studies on FOXM1 miRNAs have revealed several

prospective targets for cancer treatment. It has been shown that

miRNA inhibitors have the ability to re-sensitize drug resistance

cells to chemotherapy. This could have positive implications as

FOXM1 is a major molecule in drug resistance mechanism. The

drug resistance phenotype in cancer cells has been observed to be
reversed by the overexpression of miRNA 134 (75), whereas

miRNA 320 enhanced radiosensitivity by directly targeting

FOXM1. Majority of the reported miRNAs has a potential to

be considered as a prognostic and diagnostic marker. Table 1

shows an overview of the reported miRNAs of FOXM1. Despite

several miRNA studies revealing its association with cancer, only

few have reported the regulatory mechanisms of miRNA. A
study indicated miR 135a has been found to be transcribed by

FOXM1 transcription factor and metastasis suppressor1 (MTSS1)

(114). It also transcriptionally enhanced the expression of miR-

1306–3p, a plausible biomarker for clinical prognosis of HCC.

Long noncoding RNA (lncRNA) are transcripts with lengths

exceeding 200 nucleotides. They are critical in tumorigenesis,
chromatin remodeling, and post-transcriptional regulation. Last

few years have shown growing evidence of lncRNA-miRNA-

mRNA axis in regulation of several proteins. miRNA 507 and

lncRNA UCA1 cooperatively regulate FOXM1 expression in

melanoma cells. UCA1 has a direct binding site on miRNA

507 and has led to the existence of a negative correlation between

lncRNA and miRNA 507 (100). FRLnc1, a long non coding RNA
has been shown to be upregulated in 49% (20/41) of gastric

cancer cases by positively regulating the expression of FOXM1

leading to enhanced cell migration. Apart from these, many

lncRNA like H19, LINC00339, LINC01410, Metastasis-associated

lung adenocarcinoma transcript 1 (MALAT1), SBF2-AS1,

FBXL19-AS1, MEG3, TRPM2-AS, MFI2-AS1, NNT-AS1,
CCAL, modulate the expression of FOXM1 via miR-342-3p and

miR-194, miR-145, miR-3619, miR-320a, miR-361-5p, miR-876-

5p, miR-612, miR-194-5p, miR-134, miR-22, and miR-149

respectively in various cancers. Few studies also demonstrated a

positive feedback loop between FOXM1 and LncRNA like

LINC01410, CCAT2, PVT1 and TUG1 (112, 115, 116) (Table 1

and Figure 3C).

Post-Translational Modification of FOXM1
in Cancer
Post-translational modification (PTM) of FOXM1 includes
methylation, phosphorylation, acetylation, SUMOylation and

ubiquitination. Appropriate activation, inactivation and

degradation of this protein are vital for the execution of

various cellular processes and maintenance of homeostasis. As

FOXM1 plays a major role in many cellular processes, any

deregulation in its activity by way of faulty PTMs may facilitate

the process of tumorigenesis. Overall view of the FOXM1 PTMs
and the factors associated are depicted in Figure 4.

Methylation
Methylation is a PTM in which methyl groups are added to the

lysine and arginine residues of proteins. Methyltransferase-

SETD3 modify FOXMI under normoxic conditions and

hamper its transcriptional activity (117). A proteomic study
had revealed K278 and K282 as the plausible sites of

methylation on FOXM1 (118). On the other hand, increased

transcriptional activity of FOXM1 was mediated through the

dimethylation of H3K27 by DOT1L in pancreatic and colon

cancer. The tumor promoting effect in these cancers was

mediated via WNT5A, a downstream target of FOXM1 (119).

Phosphorylation
Phosphorylation is a process in which phosphate group is

covalently attached to the respective amino acid of a protein
substrate by an enzymatic reaction catalyzed by various protein

kinases. Major protein kinases involved in this process are serine

threonine protein kinase, tyrosine protein kinase, protein kinase

A, B, and C. FOXM1 phosphorylations are mostly carried out by

ERK, Cyclin dependent kinases (CDK), Polo like Kinase, and

protein kinase A, B, and C (Figure 5). Transcriptional activity of
FOXM1 mostly depends on the activation by Ras-mitogen-

activated protein kinase (MAPK) signaling pathway, which

activates FOXM1 through Cyclin-CDKs (120). Phosphorylation

of FOXM1 at various residues happens to be in a cell cycle

dependent manner (121). It has been shown that FOXM1B

phosphorylation starts at the G1 phase (4 h post serum

addition) and progresses through the S phase (12 h) and G2
phase (18 to 22 h) of the cell cycle which directly correlated with

the transcriptional activity of this protein (122). Another study

also has reported FOXM1 activity to be low in cells synchronized

at the G1/S transition and increased only as the cells entered the

G2 phase after release from the G1/S block (10 to 12 h after

release), whereas expression of FOXM1 was relatively constant.
Induction of FOXM1 activity in G2was not due to enhanced DNA

binding, but due to differences in its phosphorylation status as

FOXM1 was already bound to its target promoters in G1/S phase

of the cell cycle (123).

CyclinD1/D3 and CDK4/6 complexes play a role in

phosphorylating FOXM1 at initial stages of cell cycle and they
have also been found to be associated with neoplastic growth.

These phosphorylation events aid to suppress the senescence

program hence they may accelerate tumorigenesis (124). When

cells enter S and G2 phase, Cyclin E/A and CDK2 complex

phosphorylates FOXM1C at Thr600, Thr611 and Ser638 and

regulate the transcriptional activity (125). Three potential CDK

1/2 sites were observed in the FOXM1B protein which includes
amino acid residues at 585, 596 and 657. Among these T596
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TABLE 1 | List of miRNAs that regulate Forkhead transcription factor M1 (FOXM1).

Sl. No. miRNA Loci D/U Associated Cancer Highlights

1. miR370 14q32 ↓ Osteosarcoma (72),

Gastritis and Gastric

cancer (73),

Acute myeloid leukemia

(22)

Regulates cell proliferation, invasion and migration (72).

Downregulation in 77% (37/48) of patient samples (AML) (73).

Epigenetic silencing of miR370 in leukemic cells (22).

2. miR134 14q32.31 ↓ Esophageal Squamous cell

carcinoma (ESCC) (74),

Lung adenocarcinoma (75),

Non-small-cell lung

carcinoma (NSCLC) (76)

Hepatocellular carcinoma

(HCC)

Could inhibit the migration and invasion of ESCC cells (74).

Regulates proliferation and metastasis via LncRNA MFI2-AS1/miR134/FOXM1.

LncRNA MFI2 overexpression associated with poor prognosis and advanced stage among

patients (77).

3. miR193b 16p13.12 ↓ Prostate cancer Hypermethylation of the promoter has been observed in cancer.

Inhibits migration and invasion in prostate cancer cell lines (78).

4. miR494 14q32.1 ↓ Pancreatic cancer PDAC metastasis and reduced survival times of patients correlated with reduced expression of

miR 494.

Could efficiently inhibit cell migration and invasion in pancreatic cells (79).

5. miR24-1 9q22.32 ↓ Bladder cancer Induction of miR24-1 resulted in inhibition of cell proliferation, cell cycle arrest and increased

apoptosis (80).

6. miR204 r9q21.12 ↓ Esophageal cancer (EC) Inverse correlation with EMT phenotype of EC cells (81).

Functions as tumor suppressor or oncogenes (82).

7. miR671-5p 7q36.1. ↓ Breast cancer cells Expression is inversely proportional to the invasive and metastatic properties of the cancer cell

(83).

Gradual reduction of mRNA in progression of normal epithelial to atypical ductal hyperplasia

(ADH), to ductal carcinoma in situ (DCIS), and then invasive ductal carcinoma (IDC) (84).

8. miR216b 2p16.1 ↓ Hepatocellular carcinoma

Cervical cancer (85)

Administration to HepG2 cells has produced a prominent cell cycle arrest phenotype and

apoptosis (86).

9. miR802 21q22.12 ↓ Breast tissues Proliferation of MCF7 breast cancer cells (87).

10. miR23a 19q13.10 ↑ Breast cancer Function as tumor suppressor or Oncogenes.

Potential putative biomarker of breast cancer (88).

11. miR630 15q24.1 ↓↑ Hepatocellular and bladder

cancer (89–91)

(Overexpression)

Gastric cancer

(downregulation)

Function as oncogene or tumor suppressor gene

12. miR215-3p 1q41 ↓ Colorectal cancer Functions as oncogene as well as tumor suppressor gene.

Inversely proportional to lymph node metastasis in colon cancer (92).

13. miR4521 17p ↓ Medulloblastoma Accelerates proliferation and invasion of several medulloblastoma cell lines (93).

14. miR8073 13q34 ↓ Colon, breast, and

pancreatic cancer

Increased tumor growth (94).

15. miR876-5p 9p21.1 ↓ Glioblastoma (GBM)

Breast cancer

Accelerated cell proliferation, reduced apoptosis and increased migration and invasion

capabilities of GBM cells (95).

Regulates cell proliferation and cell apoptosis via FBXL19-AS1/miR876-5p/FOXM1 axis (96).

16. miR34a 1p36.22 ↓ Esophageal Squamous cell

carcinoma (ESCC),

Liver cancer (LC)

Hepatocellular carcinoma

(HCC)

Accelerates cell proliferation and cell migration (97).

DNMT1 causes miR34a promoter methylation and suppression, leading to FOXM1 upregulation

and promotes LC stemness (98).

Regulates cell differentiation, and metastasis via CCAT2/miR-34a/FOXM1.

FOXM1 activates CCAT2 transcription (99).

17. miR507 Xq27.3 ↓ Melanoma cells Regulates FOXM1 expression via lnRNA UCA 1/miR 507/FOXM1 axis (100).

18. miR342-3p 14q32.2 ↓ Cervical Cancer

GBC tissues

Gallbladder cancer

Control cell proliferation, migration and invasion in cervical cells by regulating the expression of

FOXM1 (101).

lnRNA H19 and miR-342-3p expression are inversely proportional (102).

CeRNA H19 expression regulates cell proliferation and invasion via H19/miR342-3P/FOXM1

axis (102).

19. miR320a 8p21.3

8p21.3

↓ Renal Cell Carcinoma

(RCC)

Human umbilical vein

endothelial cells (HUVECs)

RCC cell proliferation, invasion and migration (103).

Regulates HUVEC proliferation via MALAT1/miR-320a/FOXM1 (104).

20. miR149 2q37.3 ↓ Gastric cancer Regulates proliferation and metastasis via CCAL/miR-149/FOXM1axis (105).

21. miR22 17p13.3 ↓ Lung Squamous cell

carcinoma

Regulates proliferation, invasion, migration and metastasis via LnRNA NNT-AS1/miR 22 (106).

22. miR612 11q13.1 ↓ Gastric Cancer Regulates proliferation, migration, invasion and radioresistance via TRPM2-AS/miR 612/FOXM1

axis (107).

(Continued)
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residue has been recognized as a critical CDK1 phosphorylation

site within the activation domain of FOXM1B. CDK-dependent
phosphorylation stimulates the FOXM1B transcriptional

activity, which has correlated with binding to the CREB-

binding protein (CBP), the transcriptional co-activator.

Mutation of T596 abolishes binding to CBP and inhibits
transcriptional activity of FOXM1B (122). Mutation of the

other two sites showed only a marginal decrease in the

TABLE 1 | Continued

Sl. No. miRNA Loci D/U Associated Cancer Highlights

23. miR361-5p Xq21.2 ↓ Cervical Cancer

Osteosarcoma cells

Regulates cell proliferation via lncRNA SBF2-AS1/miR361-5p/FOXM1. Elevated expression of

lncRNA SBF2-AS1 was associated with advanced FIGO stage and lymph node metastasis of

CC patients (108).

Regulates proliferation and migration via MEG3/miR-361-5p/FOXM1 axis (109).

24. miR194-5p 1q41 ↓ Gastric cancer,

Colorectal adenocarcinoma

Regulates proliferation invasion, and migration via lncRNA H19/miR-194-5p/FOXM1 axis (110).

25. miR145 5q32 ↓ Non-small-cell lung

carcinoma (NSCLC)

Regulates proliferation, invasion and apoptosis via LINC00339/miR145/FOXM1 axis (111).

26. miR3619-

5p

22q13.31 ↓ Thyroid cancer Regulates proliferation and apoptosis through LINC01410/miR-3619-5p/FOXM1 (112)

27. miR1270 19p12 ↓ Rheumatoid arthritis (RA) Regulates proliferation and apoptosis via LINC00152/miR-1270/FOXM1 (113).

Downregulation (D) or Upregulation (U) (indicated by arrows) of miRNAs alters FOXM1 expression in various cancers. List also shows the outcomes of altered miRNA expression and

lncRNAs (in bold) that regulate miRNAs.

FIGURE 4 | Post-translational modifications of Forkhead transcription factor M1 (FOXM1). Schematic representation shows various factors involved in FOXM1 post-

translational modifications (PTMs). Activation (Methylation, Acetylation), inhibition (Polyubiquitination), contextual (Phosphorylation, SUMOlyation) and crosstalk are

depicted by representative arrows. Cancers associated with the altered expression of these factors have also been indicated.
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transcriptional activity of FOXM1B. Cyclin-binding motif (LXL
motif) located at residues 639 to 641 has been responsible for the

binding of CDK- Cyclin and both CDK1 and CDK2 were shown

to be associated with FOXM1B. Mutation of the Cyclin-binding

motif (Leu-641-Ala) has resulted in the elimination of both

CDK1 and CDK2 binding. Phosphorylation of S251 in the

forkhead box domain of FOXM1B stands as a critical event for

activation of its transcriptional activity at the G2/M phase by
CDK1. Chen et al. also proved that S251 residue may be required

for the nuclear localization of FOXM1 and its DNA binding.

Disruption of these sites inhibits phosphorylation of FOXM1

and reduced transcriptional activity (126).

Entry of FOXM1 in to G2/M triggers polo-like kinase 1

(PLK1) mediated phosphorylation. PLK1 Binding domain
(PBD) recognizes S-pS/pT-P/X22,24 consensus sequence. By

transferring phosphate group from ATP to substrates, PLK1

control various G2/M associated cellular processes, namely

centrosome maturation, checkpoint recovery, spindle assembly,

cytokinesis, and apoptosis. Also, PLK1 phosphorylation sites in

FOXM1B serves as a regulator for its repressor function in G1
phase and activator function in S and G2/M phase (127). FOXM1

has two potential PBD-binding sites (T596 and S678) at its C

terminal region and phosphorylate S715 and S724 present within

the TAD region of FOXM1 (128). It has been shown that PLK1 and

FOXM1 expression were positively correlated in renal cell

carcinoma cell lines. This study has also shown that the down

regulation of PLK1 by siRNA resulted in reduced expression of
FOXM1 (129). PLK1 mediated phosphorylation further promotes

phosphorylation by MELK leading to increased expression of

mitotic genes in glioma stem cells (130). It has been shown that

shorter overall survival of gall bladder cancer patients (GC) were
significantly associated with FOXM1, PLK1, and NEK7 (131).

Moreover, esophageal adenocarcinoma cell lines and tissues

showed increased expression of FOXM1 and PLK1 than the

normal counterpart and barrettes metaplasia. In addition they

have also observed increased expression of FOXM1A and

FOXM1B in most of the samples but heterogeneity was observed

in FOXM1C’s expression (132). The histological grading of renal
cell carcinoma has been correlated with the expression of FOXM1

and HIPK2 wherein HIPK2 phosphorylates FOXM1 at S724 (133).

Two ERK phosphorylation sites have been identified in FOXM1C

at residues 331 and 704 respectively and its phosphorylation via

MAPK signaling accelerate nuclear translocation of FOXM1C and

bring its G2/M regulatory effect (120).
The role of FOXM1 in DNA damage response has been evident

from various studies. At the onset of DNA damage,

phosphorylation of FOXM1 by CHK2 kinase ensures a proper

DNA damage response through the stabilization of FOXM1. In

FOXM1B, S361 residue marks the phosphorylation site for CHK2

and has been established to be conserved between mouse and
humans (134). Apart from the role of Cyclin–CDK, CHK2 and

PLK1, activation of FOXM1C was found to have occurred by the

action of protein kinase CK2, cAMP dependent protein Kinase A,

c-SRC and RAF-1. PKA phosphorylate substrates by recognizing

R/K-R/K-X-S/T consensus sequence. FOXM1C has two such

sequences around T160 and S190 at the N terminal region.

Likewise, protein kinase CK2 recognizes the motif S/T-X-X-E/D.
Phosphorylation of FOXM1C by CK2 at residues T27 and S28

results in its activation by removing the inhibitory phosphorylation.

c-SRC and RAF1 are two other kinases also found to be involved in

FIGURE 5 | Phosphorylation of Forkhead transcription factor M1 (FOXM1) is regulated by several kinases. Graphical representation of various kinases that regulate

the different phosphorylation sites of FOXM1B (black) and C (green).
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the activation of FOXM1C through N terminal region (135). Figure

5 summarizes various phosphorylation sites on FOXM1B and C

that has been discussed.

Acetylation
Acetylation of histones or transcription factors represents a

transcriptionally active state in most cases. This process
involves the transfer of acetyl group from donors to the a-
amino group of the first amino acid residue of a protein or to the

ϵ-amino group of a lysine residue by lysine acetyl transferases.

Apart from the role in the transcriptional activation, acetylation

has also been associated with subcellular localization and stability

of the protein. Acetylation of FOXM1 by p300/CBP at lysines
K63, K422, K440, K603 and K614 has been noted to be essential

for its transactivation of the target genes. This modification of

FOXM1 increases during the S phase and remains elevated

throughout the G2 and M phases (136). Apart from its increased

transcriptional activity, acetylation of FOXM1 resulted in

stabilization of the protein. Acetylation of FOXM1 follows a peak

curve; levels increased initially in the S phase (4 h), elevated in the
early G2 phase (8-10 h), reached maximum levels at the late G2/M

phases (12-14 h), and then drops down when entering G1 phase

(16-22 h). Observation of Lv et al. indicated that although the

interaction between FOXM1 and p300 was initiated at the S phase,

it reached the peak at G2/M phase. Notably, optimal binding of

FOXM1 and CDK1 depends upon the acetylation of FOXM1which
further contributes toward its activation by phosphorylation.

FOXM1 Thr 596 CDK phosphorylation site can recruit p300/

CBP to the FOXM1B transcriptional activation domain. This

interaction leads to acetylation of FOXM1 and thereby it’s

increased transcriptional activity. Moreover, FOXM1-dependent

transcription is negatively affected by deacetylases like SIRT1.

Tumor growth potential was significantly reduced in acetylation
deficient mutants compared to wildtype FOXM1 (136).

SUMOylation
SUMOylation is a highly dynamic and reversible post translational

modification that modulates FOXM1 activity in a context

dependent manner. It involves covalent attachment of small

ubiquitin-related modifier (SUMO) to specific lysine residues and
thus regulating various aspects such as its subcellular localization,

cell cycle progression, transcription, and DNA repair events (137).

yKXE consensus motifs for SUMOylation are present throughout

FOXM1 at amino acid positions 201, 218, 341, 445, 463, and 480.

SUMOylation of yKXE motifs on the transactivation domain of

FOXM1C promoted cytoplasmic accumulation and degradation by

APCCdh ubiquitin ligase in breast cancer cells. It was also reported
that epirubicin resistant cells are refractory to the SUMOylation,

hence its transcriptional activation rather than destabilization (138).

SUMO1 mediated inactivation of FOXM1 was shown to be

reverted by PLK1 activity (139).

A study by Jaiswal et al. reported that SUMO conjugating

enzymes, UBC9 and PIAS1 accelerates destabilization and nucleo-
cytoplasmic shuttling of FOXM1. They also reported that HPV16

E7 oncoprotein can prevent SUMOylation of FOXM1B by

impairing its interaction with UBC9 leading to its increased

transcriptional activity in HPV positive cervical cancer cell lines

(140). In contrast to the above mentioned studies, Wang et al.

showed an increased activity of FOXM1 by SUMO1 mediated

SUMOylation in breast cancer cells (141). In addition, Schimmel

et al. demonstrated transcriptional activation of FOXM1 by

SUMO2 in wild type compared to the SUMOylation deficient

FOXM1 mutant. Their results indicated that SUMOylation blocks
the dimerization of FOXM1, thereby relieving FOXM1 auto

repression (142).

Ubiquitination
Orderly synthesis and degradation of proteins are necessary for the

proper functioning of the cell. Degradation of the proteins is initiated

by the addition of ubiquitin molecules (polyubiquitination) to the
lysine residue by ubiquitin activating and conjugating enzymes

(E1 and E2), and their recognition by E3 ubiquitin ligases

(143). Studies on APCCdh1, an E3 ubiquitin ligase, showed its

involvement in degrading FOXM1 in late M and early G1 phase of

cell cycle. This degradation is brought about by D box and KEN

box APCCdh1 recognition motifs present at the N terminal region

of FOXM1 (144). Role of other ubiquitin ligases like FBXO31’s
in ubiquitinating and degrading FOXM1 have also been

demonstrated in G2/M transition (145). Additionally, the role of

deubiquitinase enzymes like USP5, UCHL3 and USP21 have been

demonstrated to stabilize FOXM1 in pancreatic cancer, and basal

like breast cancer (BLBC) respectively (146–148). Deubiquitination

of FOXM1 by UCHL3 was also shown to promote pancreatic
cancer progression and gemcitabine resistance (146). Also, a recent

study showed that OTUB1 mediated deubiquitination of FOXM1

promotes renal cell carcinoma via upregulation of ECT 2 (149).

Protein quality control (PQC) mostly relies on an efficient

spatiotemporal regulation of proteins by crosstalk between

various cellular machineries. Kongsema et al. showed that

SUMOylation was a prerequisite to recruit RNF168, an E3
ubiquitin ligase, to degrade FOXM1 in response to genotoxic

stress in MCF-7 breast cancer cells. Further, their study also

revealed that RNF168 works in cooperation with RNF8 as it only

has a conventional ubiquitin-interacting motif and not a SUMO

interacting motif (150). Chen et al. also showed that FOXM1

degradation was induced by FBXW7 dependent ubiquitination
upon S474 phosphorylation by the GSK3-axin complex. However

this process was inhibited by the Wnt signaling activation and

subsequent interaction with USP5 thereby leading to the

stabilization of FOXM1 in glioblastoma multiforme (151).

REGULATION BY FOXM1

FOXM1 transcriptionally regulates the expression of a plethora

of genes involved in various cellular processes such as cell cycle,
DDR, senescence, apoptosis, migration, invasion, oxidative

stress, and drug resistance. This protein has been found to be

altered in various cancers by contributing to all the hallmarks of

cancer. Thus it can be considered to be a potential target for

precision cancer treatment modalities.

FOXM1 maintains sustained proliferation by modulating the
expression of crucial cell cycle proteins. FOXM1 was shown to

mediate G1 and S phase transitions by activation of CyclinD1
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(152), Cyclin E2 (124), Cyclin A2 (153), ATF2 (154), KIS (155),

CDC25A (156) and reduction of CDK inhibitors p16, p27Kip1,

p21Cip1 (insensitivity to anti-growth signals) through its

degradation by SKP2 and CSK1 (SCF ubiquitin ligase

complexes) (Figure 6) (157). It also regulates DNA replication

initiation by MCM2, MCM3, MCM10, CDT1 (124), CDC6 (158)
and progression by POLE2, RFC4 (159), TOP2A (160), whose

deregulation could lead to loss of fidelity. G2/M transition was

mediated by Cyclin A, Cyclin B1 (161), CDK1 (162, 163), PLK1

(128), Ki67, PRC1 (164) and CDC25A/B (165) (sustained

proliferative signaling). Additional to developing insensitivity

to growth signal inhibitors (Cip, Kip proteins), FOXM1 could
also keep proliferative signals like TGFa (166), JNK1 (154), IGF1

(167), and NEDD4-1 (168), continuously switched on (self-

sufficiency in growth signals).

FOXM1 has been shown to be involved in generation of

genomic instability by altered DNA damage response (CHK1)

and repair (BRCA2, EXO1, RAD51, BRIP1, XRCC1/2) (169, 170).
Apart from this, its role in execution of mitosis by genes such as

BUBR1, NEK2 (171), Aurora A/B (172, 173), KIF4A (174), CENP-

A/B/E/F, CEP55, BORA and CDCA2/8 (175) ensures high fidelity

of cell division process (genome instability and mutation).

Supplemental to uncontrolled proliferation and development

of a full blown cancer is resisting cell death. Affirming to its role

in cancer development and progression, FOXM1 inhibits
apoptosis by BCL2 (176), XIAP, survivin (177) and enhance

autophagy by LC3 and Beclin1 (178). Moreover, FOXM1 was

shown to avoid senescence by activation of BMI1 and ROS

scavengers’ catalase, MnSOD1, and PRDX3 (179) (evading

apoptosis). It has been found that FOXM1 depletion sensitizes

the cells to premature senescence thus slowing down cancer
progression. Overcoming replicative senescence by activation of

hTERT mediated telomeric activity further established FOXM1

as an oncogene (limitless replicative potential).

Another hallmark of cancer is the reprogramming of energy

metabolism by aerobic glycolysis. FOXM1 promotes this by

direct activation of LDHA (180), IDH1 (181), GLUT1 and
HK2 (182). FOXM1 is also implicated in regulating the

FIGURE 6 | Regulation by Forkhead transcription factor M1 (FOXM1) in cancer. Schematic representation of downstream targets of FOXM1 that contribute to

Hallmarks of Cancer.
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expression of pentatricopeptide repeat domain 1 (PTCD1), a

mitochondrial leucine-specific tRNA binding protein which

inhibits oxidative phosphorylation (183) (deregulating cellular

energetics). In order to maintain a constant nutrient supply for

this energy metabolism altered cells, FOXM1 stimulated

neovascularization by promoting expression of FGF9, VEGF/
VEGFR triggered by HIF/ROS signaling (184) (sustained

angiogenesis). Epithelial-mesenchymal transition events lead to

the escape of cells from primary site to enable cancer

progression. FOXM1 has been shown to facilitate this escape

by activating invasion and migration (MMP2, MMP9 (185),

uPA, UPAR (186), LOX, LOXL2 (187), ROCK1 (8), SNAIL
(188), eEF2K (189), E-Cadherin (190)) (tissue invasion

and metastasis).

Recent developments have revealed the role of stemness in

sustaining cancer contrary to its physiological functions. They

present with enhanced capacities for self-renewal, proliferation,

differentiation, metastasis, homing and drug resistance. FOXM1
has been demonstrated to promote these functions of stemness

through regulation of OCT4, NANOG and SOX2 (191). Drug

resistance phenotypes in cancer cells have been gained by the

action of FOXM1 regulating the expression of ABCB1 (192),

ABCC4 (193), ABCC5 (194), NBS1 (195) and BRIP1 (169).

Figure 6 summarizes the downstream factors of FOXM1 in

mediating Hallmarks of cancer.
In addition to the regulation of cancer by these various

transcriptional mechanisms, FOXM1 has been shown to exert

its role in cancer development by several critical protein-protein

interactions. FOXM1 interaction with MELK, PIN1 and pSTAT3

induced neurosphere development, BRAFV600E stimulated

melanoma progression and radioresistance in glioblastoma
respectively (130, 196, 197). FOXM1-SMAD interaction occurs

downstream of the TGFb signaling pathway and promotes

tumor progression (198). Nucleophosmin (NPN) was shown

to sustain FOXM1 nuclear localization in cancer cells, whose

mutation in AML interestingly led to FOXM1 inactivation

by cytoplasmic shuttling (199). Binding with b-catenin and

NFkB in CML led to development of self-renewal capacity
and enhanced survival (200). Although FOXM1 is a master

transcriptional factor, it was shown to be a cofactor of b-catenin
in regulating Wnt signaling mediated tumorigensis in glioma.

FOXM1 was also found to be stabilized by its interaction

with PHGDH, which results in proliferation, invasion and

tumorigenesis (201). Additionally, FOXM1 was also shown to
interact with lncRNA, PVT1 and promote tumor growth and

metastasis in gastric cancer (116). Heat shock protein 70 (HSP70)

was shown to be a direct biological inhibitor of FOXM1 by

affecting its transactivation capabilities (202). Table 2 lists

various interacting molecules of FOXM1.

PHARMACOLOGICAL INHIBITORS
OF FOXM1

In general, activity of a protein is regulated by effectors ranging

from ions to large macromolecules. FOXM1 expression and

activity are tightly controlled by several inbuilt cellular

mechanisms which include autoinhibition of N-terminal

repressor domain, miRNAs and regulation by proteins like

p19ARF, p53, RB, KLF4 and FOXO3. FOXM1 is overexpressed

in most cancers and is also known to have implications in all

hallmarks of cancer, primarily based on its ability to
transcriptionally activate several downstream effectors. This

necessitated the development of novel chemical interventions

which have been significantly progressing over the last decade.

Indirect targeting of FOXM1 have been established using

inhibitors of upstream factors like PIN1 (DRI peptides), SP1

(Thiazolidinediones) and GLI1 (Diarylheptanoids) (196, 212,
213). Traditional medicinal derivatives like Honokiol and

Casticin have also shown to supress FOXM1 and thereby its

target genes (214, 215). Druggability of transcription factors has

to account for any undesired effects due to the wide array of

processes regulated by it. Therefore, specific inhibitors like DRI

and 9R-201 peptides, FOXM1 Aptamer and TFI-10 that bind to
FOXM1 are more effective in reducing tumor growth and

activating apoptotic pathways (196, 216, 217). Additionally,

several proteasome inhibitors like MG132, Brotezomib (218,

219) and thiazol antibiotics have been shown to significantly

reduce FOXM1 expression. Siomycin a and Thiostrepton have

been widely used across various cancer cell lines due to its

specificity to inhibit FOXM1 by interacting with the DNA
binding domain and preventing any auto feedback via NFRM

loop (220). Despite development of these inhibitors, their clinical

outcomes have been limited due to several kinetic and clinical

factors. High throughput screening and phage library

preparation have led to the designing of specific inhibitors like

9R-201, FOXM1 Apt, FDI-6 and RCM1 (221, 222) that primarily
bind to the FOXM1 DBD via an electron deficient sulfur atom

(p-sulfur) to His-287 in the protein. Although several inhibitors

have been developed for targeting FOXM1 at multiple levels,

specific delivery to cancer cells is the need of the hour to avoid

disbalance of cellular homeostasis. Novel strategies to target

FOXM1 dependent cancers could include combinatorial

therapies with inclusion of chemosensitizers. A summary of
the inhibitors of FOXM1 have been listed in Table 3.

CONCLUSION AND FUTURE PERSPECTIVE

In this review, we have addressed various regulatory pathways

and mechanisms by which FOXM1 is altered and its implications

in modulating different hallmarks of cancer. Based on its role in

controlling various aspects of cellular processes as discussed
throughout this review, FOXM1 is reinforced as an oncogene.

We have elaborately discussed several signaling pathways that

are deregulated in cancer. RAS signaling pathway increase

FOXM1 expression and also its nuclear translocation. FOXM1

further keep this signaling switched on through the inhibition of

RASSF1A tumor suppressor protein. OPN activated a6-integrin
leads to a triggering of FOXM1-FGFR/MET loop that may
culminate in metastasis. Additionally, activation of hedgehog

signals via Gli1 correlate with FOXM1 expression and predict
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metastatic outcomes. We also emphasized the importance of

Vitamin D in FOXM1 regulation, as dietary variations are an

emerging area in cancer research.

Altered expression of FOXM1 transcription factor has been
seen in majority of the cancers. The deregulation of FOXM1

observed during tumorigenesis may be traced back to its own

miRNAs. miRNAs are categorized either as oncogenic or tumor

suppressive based on their expression pattern in malignancy.

They impart their effect through direct association with FOXM1

or indirectly through its regulatory factors. Identification of
FOXM1 miRNAs as tumor biomarkers has necessitated the

need for further studies on miRNAs regulation.

Hampered post-translational modifications like SUMOylation

by infectious viral particles or resistance to chemotherapeutic

drugs tactically modulate FOXM1 function leading to a growth

advantage. However a word of caution here is that predicting the

eventual direction of FOXM1 function in cancer progression
would be dependent on elucidating the SUMOylation fate

determining factors. Sustained FOXM1 activity in cancer may

be promoted by deregulated expression of various kinases such as

pERK as seen in high grade ovarian cancer (245). Existence of a

positive feedback loop between FOXM1 and kinases such as PLK1

and CDK1 further support a sustained FOXM1 activation in

various malignancies.

Despite enormous amount of literature describing the

various processes that associate FOXMI with cancer, its
potential as a target molecule for cancer treatment has been

limited by the fact that it is a transcription factor. FOXM1

inhibition by siRNA or chemical inhibitors has shown

to reduce the tumor size and also sensitized the tumor cells

to chemotherapeutic agents. We envisage that developing

targeted therapy by identifying interacting partners, pathways
activated and various crosstalk mechanisms is the way

forward in the quest for discovering inhibitors to halt the

march of cancer. Furthermore, FOXM1 acts as a barrier for

most of the existing chemotherapeutic regimes as evidenced

from the drug resistance to Herceptin and taxol, mediated

by degradation of p27 and via stathmin respectively (246,

247). FOXM1 expression and its modulation by various
mechanisms in response to different cues have necessitated a

thorough understanding of signaling molecules, various post

transcriptional and translational mechanisms. This will pave the

way for devising precise therapeutic target points of FOXM1

dependent cancer initiation, progression, genomic instability

TABLE 2 | List of various interacting partners of Forkhead transcription factor M1 (FOXM1).

Sl. No. Interactors Function Physiological context

1. APCcdh1, cdc27

subunit

Degradation of FOXM1 Cell proliferation (144)

2. b-catenin The interaction with FOXM1 leads to its nuclear translocation. Proliferation, invasion and migration, control Wnt

target gene expression (200)

3. CDC25A Interaction leads to activation FOXM1 transcriptional activity. Regulate cell cycle (156)

4. EPS8 Partnering factor in regulating G2/M progression. Proliferation and migration/invasion (46)

5. FBXO31 Destabilize FOXMI by promoting degradation Genomic instability (145)

6. FBXW7 Stabilize FOXM1 by deubiquitination. Cell proliferation, invasion, apoptosis (151) (203),

7. GSK3A Phosphorylate FOXM1. Wnt signaling hampers this process. Cell proliferation, invasion, apoptosis (151) (203),

8. HIPK2 Phosphorylation of FOXM1 Cell proliferation (133)

9. HSP 70 Interact with FOXM1 during proteotoxic stress and inhibit FOXM1’s DNA binding

ability.

Provide resistance to cell death and

chemotherapeutics (202)

10. MELK Phosphorylate FOXM1 and increase its transcriptional activity Cell cycle progression (130)

11. MTDH Stabilization of FOXM1 and also increase its transcriptional activity Cell proliferation, angiogenesis and invasion (204)

12. NPM Helps FOXM1 to localize in the nucleus in cancer cells Cell proliferation (199), drug resistance (205).

13. OTUB1 Suppress FOXM1 degradation by deubiquitination. Cell proliferation (206, 207)

14. P19ARF Inhibit FOXM1 transcriptional activity Cell proliferation (208)

15. PHGDH Stabilization of FOXM1 Proliferation, invasion (201)

16. PIN1 Increase FOXM1 activity. Proliferation, metastasis and drug resistance (196)

17. PLK1 Increase transactivation capability of FOXM1 by phosphorylation. Cell cycle progression (128)

18. Phosphorylate FOXM1 and increase its transcriptional activity and aids mitotic

progression.

Cell proliferation (128)

19. PP2A/B55a Dephosphorylate FOXM1 and negatively regulates FoxM1 activity Cell proliferation

20. RB1 Interaction with RB1 represses FOXM1. RB1 and DNMT3b interaction makes FOXM1

to function as repressor for some genes

Differentiation of luminal epithelial progenitors (209)

(210)

21. RNF168

RNF8

Ubiquitination and degradation of SUMOylated FOXM1. Cell proliferation (150)

22. SIRT1 Destabilize FOXM1 by activating APC cdh1 mediated degradation Cell proliferation (136)

23. SMAD 3 Its interaction with FOXM1 sustain SMAD3/SMAD4 complex activation Metastasis (198)

24. SP1 FOXM1 and SP1 interaction induce EGF dependent COX2 expression. Cell proliferation (211)

25. STAT3 FOXM1 interacts with FOXM1 following radiation treatment Confers radio resistance (197)

26. SUMO 1 Destabilization/Activation Proliferation, invasion, metastasis (138) (141),

27. USP21 Stabilize FOXM1 expression by deubiquitination. Proliferation, Drug sensitivity (148).

28. USP5 Stabilization of FOXM1 Proliferation, invasion, migration (147)

Role of FOXM1 interacting proteins and their physiological effects in context of cancer.
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TABLE 3 | List of inhibitors of Forkhead transcription factor M1 (FOXM1).

Sl. No. Inhibitor General Action Indirect/Direct (I/D)

mechanism

Cancer Cell Lines

1. Bortezomib Proteosome inhibitor I – Osteosarcoma U2OS (218)

Pancreatic cancer Mia PaCa-2 (219)

Multiple myeloma U266 and RPMI8226 (218)

Leukemia HL-60 (218)

2. Casticin Anti-malarial sensitizer I FOXO3a-FOXM1

(Inhibit FOXO3a)

Breast cancer MDA-MB231, MCF-7 (223)

Ovarian cancer SKOV3, A2780 (215)

Liver cancer HEPG2, PLC/PRF/5 (224)

3. Daunorubicin Topoisomerase inhibitor I p53-p21-FOXM1 Lung cancer H1299 (225)

Breast cancer MCF-7 (225)

Liver cancer HepG2 (225)

4. Diarylheptanoids Anti-oxidants I Shh-Gli-FOXM1

(Inhibit Gli1)

Pancreatic cancer PANC-1 (213)

5. DFOG Genistein derivative I – Ovarian cancer CoC1, SKOV3 (226)

Gastric cancer AGS, SGC-7901 (227)

6. DIM Radioprotector I – Breast cancer MDA-MB231, MDA-MB468,

SKBR3, MCF-7 (228)

Colorectal cancer DLD-1 and HCT116 (229)

Gastric cancer SNU638 (230)

7. FDI-6 FOXM1 specific drug D Blocks FOXM1 DBD Breast cancer MCF-7, MDA-MB231 (231)

Laryngeal Cancer Hep-2 (221)

8. FOXM1 Apt FOXM1-specific single stranded DNA

aptamer generated by SELEX

D Target FOXM1 DBD Breast cancer MDA-MB436 (217)

9. Fulvestrant

(ICI182780)

Estrogen receptor antagonist I ERb1/ERa-FOXM1 axis

(Inhibits ERa)

Breast cancer MCF-7, ZR-75-1 (35)

10. Genistein Angiogenesis inhibitor I – Pancreatic cancer BxPC-3, HPAC, MIAPaCa-2,

PANC28 (232)

Lung cancer IMR-90, H460, A549, H446

(233)

11. Honokiol Anti-inflammatory, anti-oxidant D Interact with FOXM1 Osteosarcoma U2OS C3 (214)

Prostate cancer DU145 (214)

Breast cancer MDA-MB231 (214)

12. MG132 Proteosome inhibitor I – Pancreatic cancer Mia PaCa-2 (219)

Breast cancer MDA-MB231 (219)

Colorectal cancer HCT-116 (219)

13. Mithramycn A DNA binding neuroprotective antibiotic I Sp1-FOXM1 (Inhibit Sp1) Liver cancer HEPG2, PLC/PRF/5 (212)

14. Monensin Polyether antibiotic D Interact with FOXM1 DBD Prostate cancer ENZR-CRPC (234)

15. Natura-a STAT3 inhibitor I – Prostate cancer LNCaP, LNCaP-AI, PC-3, and

DU145 (235)

16. Nutlin-3 MDM2-p53 interaction inhibitor I MDM2-p53-FOXM1

(MDM2 inhibitor)

Osteosarcoma U2OS (225), OVCAR10

Lung cancer NCI-H23

Ovarian cancer A2780

Colorectal cancer HCT-116 (225)

17. Panepoxydone Fungal NFkB pathway inhibitor I – Breast cancer MCF7, MDA-MB231 (236)

18. Peptide 9R-P201 High affinity peptides against FOXM1C from

the phage random library

D Target FOXM1 DBD Liver cancer HepG2 (216)

19. RCM-1 FOXM1 drug identified by high throughput

screen

I Increase ubiquitination Osteosarcoma U2OS C3

Melanoma B16-F10 (mouse) (222)

Prostate cancer MyC-CaP (mouse) (222)

Breast cancer 4T1 (mouse) (222)

Lung cancer A549 (222)

20. S331/704 DRI

peptide

ATP competitive-BRAF Kinase I Pin1-FOXM1 binding Melanoma Colo829, Malme-3M (196)

21. Siomycin A Thiazole antibiotic D Interact with FOXM1 DBD

and by NFRM loop

Liver cancer Huh7, Hep3B, SK-Hep (220)

Lung cancer A549 (220)

Colorectal cancer SW480, SW620 (220)

Melanoma DM443, DM366, DM833,

DM646 (237)

Leukemia CEM, HL60, U937 (220)

22. Thiazolidinediones Anti-hyperglycemic I Sp1-FOXM1 (Inhibit Sp1) Liver cancer HepG2, PLC/PRF/5 (212)

(Continued)
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TABLE 3 | Continued

Sl. No. Inhibitor General Action Indirect/Direct (I/D)

mechanism

Cancer Cell Lines

23. Thiostrepton Thiazole antibiotic D Interact with FOXM1 DBD

and by NFRM loop

Breast cancer MCF-7, MDA-MB436, MDA-

MB231

Ovarian cancer SKOB3, OVCAR3 (238)

Colorectal cancer HCT-15, HT-29 (239)

Melanoma DM443, DM366, DM833,

DM646 (237)

Leukemia MV4-11, THP1, CEM, HL60,

U937

Laryngeal

Squamous Ca

Hep-2

Thyroid cancer BCPAP, TCP-1

24. TFI-10 Modified Thiazolidinediones D Interact with FOXM1 DBD Breast cancer MDA-MB231 (240)

25. TMPP IER5 activator I IER5-FOXM1 axis Leukemia U937, YRK2 (241)

26. U0126 MEK1/2 inhibitor I MEK-ERK-FOXM1 axis Ovarian cancer

Breast cancer

OVCA433, A2780cp (242)

MCF-7, ZR-75-30 (243)

27. Ursolic acid Anti-inflammatory, Anti-apoptotic I – Breast cancer MCF-7 (244)

28. Vemurafenib

(PLX4032)

BRAF inhibitor I BRAF-ERK-FOXM1-AuroraB Melanoma A375, 501mel (173)

Chemical inhibitors of FOXM1 and their mechanism of action, tested in respective cell lines.

TMPP, 2,3,4-tribromo-3-methyl-1-phenylphospholane 1-oxide; DIM, 3,3’-diindolylmethane; DFOG, 7-difluoromethoxyl-5,4’-di-n-octyl-genistein.

FIGURE 7 | Graphical abstract of Forkhead transcription factor M1 (FOXM1) regulation. Pictorial represents upstream regulators of FOXM1 and its various fates.

Point of action of FOXM1 chemical inhibitors is also indicated.
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and cancer cell drug resistance processes. Graphical abstract of

the review has been represented in Figure 7.
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