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Abstract 

Motivation: The absorption, distribution, metabolism, excretion, and toxicity (ADMET) of drugs plays a key role in 
determining which among the potential candidates are to be prioritized. In silico approaches based on machine 
learning methods are becoming increasing popular, but are nonetheless limited by the availability of data. With a 
view to making both data and models available to the scientific community, we have developed FPADMET which is a 
repository of molecular fingerprint-based predictive models for ADMET properties.

Summary: In this article, we have examined the efficacy of fingerprint-based machine learning models for a large 
number of ADMET-related properties. The predictive ability of a set of 20 different binary fingerprints (based on sub-
structure keys, atom pairs, local path environments, as well as custom fingerprints such as all-shortest paths) for over 
50 ADMET and ADMET-related endpoints have been evaluated as part of the study. We find that for a majority of the 
properties, fingerprint-based random forest models yield comparable or better performance compared with tradi-
tional 2D/3D molecular descriptors.

Availability: The models are made available as part of open access software that can be downloaded from https:// 
gitlab. com/ vishs oft/ fpadm et.
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Introduction
Properties such as absorption, distribution, metabo-

lism, excretion and toxicity (ADMET), are an important 

component of pharmaceutical drug design. It is often 

reported that the failure to meet requisite ADMET cri-

teria are a common cause for the high attrition rates of 

drug candidates [1]. Early ADMET profiling is indeed 

desirable so as to mitigate the risk of attrition. Various 

medium and high-throughput in  vitro ADMET screens 

have therefore been developed, that have contributed to 

the available experimental data. �ese are nonetheless 

quite expensive especially when thousands of compounds 

are involved. Furthermore, reducing animal testing has 

now become a priority.

With the aim of facilitating rapid and inexpensive 

means of ADMET profiling, various in silico tools 

have been developed [2]. Using databases of experi-

mentally measured ADMET properties [3], various 

quantitative structure-activity/property relationship 

(QSAR/QSPR) models have been generated that can 

predict a range of ADMET properties for novel chem-

ical entities. Other efforts have made use of ADMET 

predictions to evaluate drug-likeness of a compound 

[4, 5]. While some of the models are available as part 

of commercial software packages based on propri-

etary datasets, there has been a significant push for 

open source software and web services [6–12].

Among the popular services, ADMETLab [12] 

offers 53 prediction models that are calculated using 

a multi-task graph attention network and operates on 

graph-structured data. The method is able to gener-

ate customized fingerprints from the general features 
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for a specific task. Another web tool, SwissADME [9] 

evaluates pharmacokinetics, drug-likeness of small 

molecules. The predictions are based on a combina-

tion of fragmental methods (for solubility), as well as 

machine-learning based binary classification meth-

ods for other ADMET properties (cytochrome-P450 

inhibitor, P-glycoprotein substrate). In ADMETSar 

[11], models for applications in both drug discovery 

and environmental risk assessment are built using 

MACCS and Morgan fingerprints. The toxicity mod-

els used in ProTox [13] are developed based on chemi-

cal similarities between compounds with known toxic 

effects and the presence of toxic fragments. Other 

models for hepatotoxicity, cytotoxicity, mutagenic-

ity, and carcinogenicity rely on fingerprints (MACCS/

Morgan). Extended connectivity fingerprints form the 

basis for the prediction of 15 ADMET properties in 

the vNN server [10] where models are trained using 

variable nearest neighbourhood method. pkCSM [6], 

on the other hand, uses graph-based signatures to 

develop predictive models of central ADMET prop-

erties. Other software such as MDCKPred [14], 

CarcinoPred-EL [15], CapsCarcino [16] focus on a 

single property such as the prediction of permeabil-

ity coefficient and carcinogenic compounds. Overall, 

the molecular representations underlying these mod-

els include various molecular and physicochemical 

descriptors such as fingerprints, graph signatures, 

and other 2D/3D indices [17, 18]. Among these, fin-

gerprint representations which are seen as an alterna-

tive to descriptors for QSPR studies, have been quite 

popular given their ease of computation and predic-

tive value.

A number of fingerprints ranging from substruc-

ture/path to feature-class/circular have been pro-

posed many of which are used in similarity searching 

[19, 20]. For ADMET studies however, the fingerprints 

studied so far have largely been restricted to a select 

few. In this study, we have evaluated the predictive 

efficacy of 20 different fingerprints ranging from sub-

structure and extended/functional connectivity fin-

gerprints to various path based encodings (depth-first 

search, shortest path, local path environments) [21]. 

The fingerprint-based regression/classification mod-

els were calculated for over 50 ADMET and ADMET-

related endpoints (using data collated from various 

literature sources) and is to our knowledge one of 

the most comprehensive compilations analysed. For 

a majority of the endpoints, the prediction results 

were found to be comparable with more sophisticated 

descriptor formulations. Although the pharmaco-

phore fingerprints yielded consistently poor results, 

others such as the PUBCHEM, MACCS and ECFP/

FCFP encodings were found to yield the best results 

for most properties. The models and related software 

have been bundled into a downloadable package and 

is released under the GNU license.

Approach
Molecular representation

In this study, we have examined 20 different finger-

prints (see Table  1) that are routinely used as simi-

larity search tools in drug discovery. The ECFP- and 

FCFP-class fingerprints are circular topological fin-

gerprints, where the former focuses on the atom 

properties (e.g. atomic number, charge, hydrogen 

count), whereas in the functional connectivity FPs, 

the emphasis is on properties that relate to ligand 

binding (e.g. hydrogen donor/acceptor, polarity, aro-

maticity). MACCS and PUBCHEM fingerprints are 

substructure fingerprints that cover a wide range of 

features such as element counts and ring systems, 

atom pairing, or atom environment etc. Other fin-

gerprints include path based fingerprints such as the 

depth-first search fingerprints (DFS), all-shortest path 

encoding (ASP), radial fingerprints (Molprint2D), 

topological atom pairs (AP2D) and triplets (AT2D), 

pharmacophore pair and triplet encodings as well as 

local path environments [21]. Fingerprint calcula-

tions were performed using in-house code written in 

Java and makes use of the Chemistry Development Kit 

library [22]. The software merges existing fingerprints 

in the library with those calculated by the software 

jCompoundMapper [21].

Table 1 Fingerprints used in this study to model different 
ADMET related properties

Descriptions and implementation details of the di�erent �ngerprints are 

provided in the article by Hinselmann et al [21] and the references therein

Fingerprint Size

MACCS 166

PUBCHEM 881

Klekota-Roth (KR) 4860

MOLPRINT (RAD2D) 4096

Atom pair (AP), atom triplet (AT) 4096

Local path environments (LSTAR) 4096

All-shortest path (ASP) 4096

Depth first search (DFS) 4096

Extended conectivity (ECFP: 0, 2, 4, 6) 1024

Functional class (FCFP: 0, 2, 4, 6) 1024

Pharmacophore: 2PPHAR/3PPHAR (2/3 point) 4096

ESTATE 79
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Table 2 Summary of the ADMET endpoints studied

Endpoint Model #Compounds Group Data source

Blood brain barrier BC 7236 Distribution [3, 31]

Oral bioavailability BC 1822 Absorption [3, 32]

Anticommensal effect BC 1181 Toxicity [33, 34]

CYP450 (1A2) inhibition BC 17119 Metabolism [35]

CYP450 (2C19) inhibition BC 17119 Metabolism [35]

CYP450 (2C9) inhibition BC 17119 Metabolism [35]

CYP450 (2D6) inhibition BC 17119 Metabolism [35]

CYP450 (3A4) inhibition BC 17119 Metabolism [35]

CYP450 (2C8) inhibition BC 533 Metabolism [36]

HIA BC 1516 Absorption [3, 37]

BCRP inhibition BC 2799 Metabolism [38]

Metabolic intrinsic clearance MC 5278 Excretion [39]

Human liver microsomal stability BC 3654 [40]

PGP inhibitor BC 2930 Distribution [3, 41]

PGP substrate BC 2198 Distribution [3, 41]

DMSO solubility BC 59047 [42]

Phosphate buffer solubility BC 57584 [43]

Skin sensitization (LLNA) BC 1033 Toxicity [44]

Skin sensitization (KeratinSens) BC 190 Toxicity [44]

Skin sensitization (HRIPT) BC 138 Toxicity [44]

Skin sensitization (h-CLAT) BC 160 Toxicity [44]

Skin sensitization (DPRA) BC 194 Toxicity [44]

Rat acute oral toxicity ( LD50) MC 11363 Toxicity [3, 45]

AMES mutagenecity BC 7950 Toxicity [46]

Cytotoxicity (HepG2) BC 6081 Toxicity [10]

Cytotoxicity (CRL-7250 cell line) BC 5241 Toxicity [47]

Cytotoxicity (HACAT cell line) BC 5241 Toxicity [47]

Cytotoxicity (HEK cell line) BC 5241 Toxicity [47]

Cytotoxicity (NIK cell line) BC 5241 Toxicity [47]

DILI BC 2478 Toxicity [48]

Hemolytic toxicity (saponins) BC 452 Toxicity [49]

hERG cardiotoxicity BC 7889 Toxicity [50]

hERG liability BC 9204 [51]

Mitochondrial toxicity BC 6467 Toxicity [52]

Urinary tract toxicity BC 213 Toxicity [53, 54]

Phototoxicity BC 516 Toxicity [55]

Phototoxicity BC 1419 Toxicity [55]

Toxic myopathy BC 232 Toxicity [56]

Myelotoxicity BC 907 Toxicity [57]

Phospholipidosis BC 1719 Toxicity [58]

Choleostasis BC 1926 Toxicity [59]

Rhabdomyolysis BC 1504 Toxicity [60]

Respiratory toxicity BC 1241 Toxicity [61]

Ototoxicity BC 2612 Toxicity [62]

MATE1 inhibition BC 853 Metabolism [63]

Hepatic steatosis BC 512 Toxicity [64]

Carcinogenecity BC 1003 Toxicity [15]

OATP1B1 inhibition BC 1339 Metabolism [65]

OATP2B1 inhibition BC 230 Metabolism [65]



Page 4 of 12Venkatraman  J Cheminform           (2021) 13:75 

Data curation

Data for different endpoints were collected from 

previously published articles and databases with 

a primary source being the Online Chemical Data-

base (OCHEM) [3]. The molecules were subse-

quently cleaned and duplicates (where present) 

were removed. Tables  2 and 3 lists the various end-

points and associated data sources considered in 

this study. Brief descriptions of the endpoints and 

the results from previous modelling efforts are pro-

vided in Additional file 1. Since, early identification 

of severe toxicity is a key requirement for the safety 

evaluation of drug candidates, we have evaluated a 

number of toxicity models covering a range of end-

points such as cardiac, hepatotoxicity, endocrine, 

urinary tract, carcinogenicity and cytotoxicity. 

While a majority of the models are binary classifica-

tion models, for some endpoints such the metabolic 

intrinsic clearance, acute oral toxicity in rats, plasma 

protein binding and elimination half-life, multiclass 

models are proposed.

For other endpoints, regression models have been 

evaluated (see Table  3). These include the CACO-2 

permeability which is commonly used to predict the 

Table 2 (continued)

Endpoint Model #Compounds Group Data source

OATP1B3 inhibition BC 1249 Metabolism [65]

BSEP inhibition BC 1634 Metabolism [66]

OCT2 inhibition BC 907 Metabolism [67]

PPB MC 8103 Distribution [3, 68]

Elimination half-life Human MC 2127 Excretion [69]

Elimination half-life Mouse MC 808 Excretion [69]

Elimination half-life Rat MC 1308 Excretion [69]

Here BC and MC refer to binary and multiclass classi�cation respectively

OATP organic anion transporting polypeptide, CYP-450 cytochrome-P450, BCRP breast cancer resistance protein, BSEP bile salt export pump, DILI drug-induced liver 

injury, OCT organic cation transporter 2, MATE1 multidrug toxin extrusion transporter, hERG human Ether-á-go-go-related gene, HIA human intestinal absorption, PPB 

plasma protein binding, PGP p-glycoprotein, LLNA local lymph node assay, DPRA direct peptide reactivity assay, h-CLAT human cell line activation, HRIPT human repeat 

insult patch test, HEK 293 human embryonic kidney 293 cell, MATE1 multidrug and toxin extrusion transporter 1

Table 3 Summary of the ADMET and other endpoints for which fingerprint-based regression models were evaluated

MDCK Madin-Darby canine kidney

Endpoint #Compounds Group Data source

Aqueous solubility ( logS) 9982 [70]

Intrinsic clearance ( CLint) 244 Excretion [71]

Skin penetration ( log kp) 211 Toxicity [72]

Human serum albumin 198 [73, 74]

Human placenta barrier (clearance index) 88 Distribution [75]

Cancer potency in mouse ( TD50) 402 Toxicity [76]

Cancer potency in rat ( TD50) 511 Toxicity [76]

Steady state volume distribution ( VDss) 1951 Distribution [3, 77]

Distribution coefficient ( log D) 7321 [3, 78]

Fraction unbound in human plasma 2319 Distribution [79]

Fraction unbound in the brain 253 Distribution [80]

Human liver microsomal clearance 5348 Excretion [30]

Rat liver microsomal clearance 2166 Excretion [30]

Mouse liver microsomal clearance 790 Excretion [30]

CACO-2 permeability 2578 Absorption [30]

pKa 11041 [81, 82]

MDCK cell line permeability 701 Absorption [3]

Human renal clearance ( CLr) 636 Excretion [83]

Hemolytic toxicity ( logHD50) 875 Toxicity [84]
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absorption of orally administered drugs and other 

xenobiotics, the fraction of unbound drug in plasma, 

the liver microsomal clearance (typically used to pre-

dict hepatic clearance in humans), in  vitro human 

skin permeability and the cancer potency. Models for 

other ADMET-related properties have also been stud-

ied. For instance, properties such as the dissociation 

constant ( pKa ) affect solubility ( log S), permeability, 

distribution coefficient ( log D) and oral absorption. 

These in turn along with other properties such as the 

human serum albumin (HSA) binding impact pharma-

cokinetic behaviour and drug bioavailability.

Modelling

In order to build the models, the Random Forest algo-

rithm [23] was chosen which is an ensemble learning 

method for both classification and regression. The 

algorithm makes use of bagging and feature random-

ness to build multiple decision trees (each trained on 

a random subset of data) and merges them together. 

The models were trained using the ranger [24] library 

in the statistical computing environment R [25]. The 

number of trees used to compute the final average 

predicted value was set to 500. For each endpoint, the 

data was split randomly into separate training (80%) 

and test (20%) sets. A fivefold cross-validation was 

used to identify the best performing model. In order 

to rule out any selection bias, we repeated random 

splitting 3 times and the results were averaged to 

gain an understanding of the variability. Furthermore, 

y-randomization tests were conducted to assess the 

robustness of the final model. To address the problem 

with unequal distribution of samples between classes, 

data augmentation of the minority class was carried 

out using the synthetic minority oversampling tech-

nique (SMOTE) [26].

Table 4 Performance metrics for the best performing 
fingerprint-based classification models

Endpoint FP Calibration Validation

BACC AUC BACC AUC 

Blood brain barrier PUBCHEM 0.82 0.90 0.81 0.92

Oral bioavailability PUBCHEM 0.71 0.77 0.71 0.78

Anticommensal effect PUBCHEM 0.76 0.82 0.74 0.81

CYP450 (1A2) PUBCHEM 0.85 0.93 0.85 0.93

CYP450 (2C19) ECFP4 0.81 0.88 0.81 0.89

CYP450 (2C9) PUBCHEM 0.78 0.88 0.79 0.89

CYP450 (2D6) FCFP4 0.73 0.86 0.73 0.87

CYP450 (3A4) FCFP6 0.80 0.89 0.80 0.90

CYP450 (2C8) PUBCHEM 0.79 0.89 0.77 0.90

HIA MACCS 0.84 0.89 0.83 0.89

BCRP inhibition FCFP4 0.89 0.95 0.90 0.96

Metabolic intrinsic clearance FCFP4 0.74 0.82 0.74 0.84

Human liver microsomal 
stability

AT2D 0.77 0.83 0.77 0.84

PGP inhibitor PUBCHEM 0.84 0.91 0.85 0.92

PGP substrate ASP 0.80 0.87 0.80 0.88

DMSO solubility ECFP2 0.72 0.78 0.73 0.80

Phosphate buffer solubility PUBCHEM 0.79 0.87 0.79 0.87

Skin sensitization (LLNA) PUBCHEM 0.69 0.76 0.67 0.74

Skin sensitization (KeratinSens) LSTAR 0.64 0.65 0.57 0.60

Skin sensitization (HRIPT) ECFP0 0.70 0.74 0.67 0.72

Skin sensitization (hCLAT) MACCS 0.65 0.70 0.61 0.68

Skin sensitization (DPRA) FCFP4 0.68 0.72 0.68 0.72

Rat acute oral toxicity ( LD50) PUBCHEM 0.69 0.78 0.68 0.81

AMES mutagenecity PUBCHEM 0.79 0.86 0.79 0.87

Cytotoxicity (HepG2) AT2D 0.78 0.85 0.78 0.85

Cytotoxicity (CRL-7250 cell line) AT2D 0.79 0.87 0.78 0.86

Cytotoxicity (HACAT cell line) AT2D 0.77 0.85 0.77 0.85

Cytotoxicity (HEK cell line) PUBCHEM 0.77 0.87 0.76 0.86

Cytotoxicity (NIK cell line) PUBCHEM 0.78 0.87 0.78 0.87

DILI PUBCHEM 0.78 0.86 0.79 0.88

Hemolytic toxicity (saponins) FCFP6 0.84 0.88 0.85 0.90

hERG cardiotoxicity FCFP6 0.79 0.86 0.80 0.88

hERG liability PUBCHEM 0.76 0.87 0.76 0.88

Mitochondrial toxicity PUBCHEM 0.79 0.90 0.77 0.90

Urinary tract toxicity FCFP4 0.71 0.77 0.70 0.73

Phototoxicity in vitro KR 0.70 0.76 0.69 0.80

Phototoxicity human PUBCHEM 0.69 0.75 0.67 0.75

Toxic myopathy DFS 0.68 0.74 0.63 0.74

Myelotoxicity FCFP4 0.72 0.79 0.71 0.80

phospholipidosis FCFP2 0.78 0.86 0.77 0.88

Cholestasis RAD2D 0.67 0.73 0.67 0.74

Rhabdomyolysis MACCS 0.71 0.80 0.70 0.83

Respiratory toxicity MACCS 0.82 0.88 0.82 0.89

Ototoxicity PUBCHEM 0.69 0.74 0.67 0.72

MATE1 DFS 0.64 0.67 0.65 0.65

Hepatic steatosis MACCS 0.63 0.67 0.59 0.68

Carcinogenecity PUBCHEM 0.67 0.71 0.68 0.75

The values reported are the balanced accuracies (BACC) and area under the ROC 

curve (AUC) (average of 3 independent runs) for the calibration/validation sets

Table 4 (continued)

Endpoint FP Calibration Validation

BACC AUC BACC AUC 

OATP1B1 inhibition ECFP6 0.72 0.80 0.73 0.82

OATP2B1 inhibition ECFP6 0.67 0.68 0.65 0.70

OATP1B3 inhibition PUBCHEM 0.74 0.83 0.77 0.87

BSEP inhibition ECFP4 0.85 0.93 0.88 0.95

OCT2 inhibition PUBCHEM 0.73 0.81 0.73 0.79

PPB PUBCHEM 0.82 0.92 0.84 0.92

Elimination half-life Human ASP 0.75 0.86 0.76 0.88

Elimination half-life Mouse ECFP2 0.74 0.86 0.72 0.84

Elimination half-life Rat KR 0.74 0.86 0.74 0.83
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For regression models, the performance was 

assessed using the squared regression coefficient ( R2 ) 

for the correlation between experimental and pre-

dicted values. the root mean squared error (RMSE) 

and the mean absolute error (MAE). For classification 

models, metrics that are sensitive to the class imbal-

ance have been used. These include the balanced 

accuracy (BACC) given by:

where ki is the number of correct predictions in class i, m 

is the number of classes and ni is the number of examples 

in class i. In addition, other metrics such as the overall 

accuracy, the sensitivity (the true positive rate—TPR) and 

specificity (the true negative rate—TNR) and the area 

under the curve (AUC) are also reported (see Additional 

file 1).

Every model has a finite applicability domain 

(AD) within which its predictions can be trusted. 

For regression models, we quantify the prediction 

intervals (95%) using the quantile regression forests 

approach [27]. Here, a shorter prediction interval 

indicates the higher stability of prediction. In the case 

of classification, two values: confidence and credibil-

ity are associated with the predicted label based on 

(1)BACC =

1

m

m∑

i

ki

ni

the conformal prediction framework [28, 29]. While 

the confidence provides a measure of how likely a 

prediction is compared to all other possible classifi-

cations, the credibility measure (equal to the highest 

p-value of any one of the possible classifications being 

the true label) provides an indication of how good the 

training set is for classifying the given example.

Results and discussion
For the various endpoints, the relevant performance 

metrics associated with the best fingerprint-based 

models are summarized in Tables  4 (for classification 

models) and 5 (for regression models). �e complete 

performance summary for the training and valida-

tions sets is listed in Additional file  1: Tables S1 and 

S2. For all cases, permutation tests confirmed (p-val-

ues < 0.001) that the probability that the model was 

obtained by chance is quite low. Overall, high clas-

sification accuracies ( BACC > 0.80 ) are obtained for 

the blood brain barrier permeability, plasma protein 

binding, CYP450 inhibition (3A4/2C19/1A2/2C9/2C8 

isoforms), human intestinal absorption, breast cancer 

resistance protein inhibition, p-glycoprotein inhibitor/

substrate and hemolytic/respiratory toxicity. For some 

of the other endpoints such as the mitochondrial/uri-

nary tract toxicity, human liver microsomal stability, 

Table 5 Performance metrics for the best performing fingerprint-based regression models

The values reported are the squared correlation ( R2 ), RMSE and MAE (average of 3 independent runs) for the calibration/validation sets

Endpoint FP Calibration Validation

R2 RMSE MAE R2 RMSE MAE

log S PUBCHEM 0.77 1.15 0.81 0.78 1.12 0.78

Intrinsic clearance ( CLint) RAD2D 0.48 0.83 0.65 0.29 1.02 0.82

Skin penetration ( log kp) PUBCHEM 0.73 0.60 0.48 0.75 0.56 0.43

Human serum albumin AP2D 0.71 0.33 0.23 0.69 0.39 0.26

Human placenta barrier KR 0.41 0.24 0.20 0.24 0.32 0.22

Cancer potency in mouse ( TD50) AT2D 0.33 0.98 0.75 0.27 0.96 0.72

Cancer potency in rat ( TD50) AT2D 0.41 1.08 0.83 0.35 1.14 0.87

Steady state volume distribution ( VDss) ASP 0.58 0.44 0.29 0.45 0.51 0.32

Distribution coefficient ( log D) PUBCHEM 0.76 0.73 0.53 0.77 0.71 0.50

Fraction unbound in human plasma PUBCHEM 0.60 0.46 0.35 0.63 0.44 0.34

Fraction unbound in the brain PUBCHEM 0.48 0.58 0.46 0.56 0.56 0.45

Human liver microsomal clearance KR 0.51 1.08 0.80 0.56 1.05 0.79

Mouse liver microsomal clearance AT2D 0.52 1.21 0.92 0.53 1.16 0.88

Rat liver microsomal clearance KR 0.64 1.08 0.83 0.67 1.01 0.76

CACO-2 permeability FCFP4 0.44 0.68 0.46 0.42 0.69 0.46

pKa ECFP2 0.71 1.85 1.15 0.74 1.78 1.11

MDCK cell line permeability ECFP4 0.62 0.61 0.44 0.68 0.56 0.39

Human renal clearance MACCS 0.25 0.54 0.43 0.27 0.53 0.42

Hemolytic toxicity ( log HD50) ASP 0.68 0.47 0.35 0.68 0.44 0.34
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metabolic intrinsic clearance, AMES mutagenecity, 

cytotoxicity (multiple cell lines), hERG cardiotoxicity/

liability, drug induced liver injury, myelotoxicity, phos-

pholipidosis, rhabdomyolysis, OATP1B1/OATP1B3 

inhibition, BSEP and OCT2 inhibition, moderate 

( BACC = 0.71 to − 0.78 ) performances were observed. 

Properties such as skin sensitization, acute oral toxic-

ity, phototoxicity in humans, ototoxicity, choleostasis, 

hepatic steatosis, and carcinogenecity yielded some-

what average results. In the case of regression models, 

performances were largely on the poorer side with the 

exception of pKa , log S, log D, human serum albumin 

and skin penetration, R2
cv > 0.70.

To identify which of the fingerprints perform well 

on the different datasets, we plotted heatmaps (see 

Figs.  1 and 2) of the balanced accuracies (for clas-

sification models) and squared correlations (in the 

case of regression) obtained for the different end-

points. While the pharmacaphore fingerprints 

(2PPHAR/3PPHAR) perform poorly on all datasets, 

fingerprints based on substructure keys (PUBCHEM, 

MACCS, KR) show moderate to high accuracies for 

a majority of the modelled endpoints. Although the 

performances for regression models are somewhat 

less encouraging, here too the R2
cv for PUBCHEM, 

ECFP4, and ASP fingerprints yield better models than 

the other fingerprints tested.

We further compared the performances achieved 

by the fingerprint models with those obtained for 

the 2D/3D descriptor based approaches. The bar-

plots in Fig.  3 compare the accuracies achieved by 

the fingerprint models with values reported by the 

models published earlier. While results for most 

properties are comparable, for some endpoints such 

as myelotoxicity, ototoxicity, myopathy accuracies 

obtained using 2D/3D descriptors are only mar-

ginally better. Indeed better results are obtained 

for rhabdomyolysis, phospholipidosis, phototox-

icity with other descriptor based models. For pho-

totoxicity in particular, quantum chemistry-based 

3D descriptors are used which can add to the time 

taken. It must however be pointed out that some of 

the better performing models take advantage of deep 

learning. Attempts to improve results for selected 

properties were carried out using support vector 

machines. However, the models were not always 

found to improve on the random forest approach.

For the regression models calculated for selected 

properties: pKa , log S, log D, skin penetration, human 

serum albumin, MDCK permeability HD50 , we 

assessed the prediction reliability based on the pre-

diction intervals. Plots of the prediction intervals 

with respect to the observed response values for the 

test sets (see Additional file  1: Figure S1) showed 

that most of the samples lie within the 95% predic-

tion interval which indicates that the constructed 

prediction intervals are reliable. For classification 

models, we focused on excluding compounds whose 

labels are predicted with low confidence and cred-

ibility. Thus, different thresholds for p-values (0.5, 

0.6, 0.7, 0.8, 0.9) were applied and the correspond-

ing fraction of molecules that would be withheld 

from further testing was recorded. A plot of the 

overall error rates and the percentage reduction in 

compounds excluded from further processing (see 

Additional file  1: Figure S2) shows that for many of 

the endpoints modelled, the predictive performance 

is not significantly impacted even at cutoffs of 0.50. 

Such a strategy that allows for compound selection 

based on static thresholds for the confidence/cred-

ibility offer a way to reduce the number of com-

pounds that typically undergo experimental testing.

Fig. 1 Heatmap showing the cross-validated balanced 
accuracies (average of 3 independent runs) achieved by different 
fingerprint-based models for the endpoints studied
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Software usage
FP-ADMET is available as open access software (GNU 

GPL v3.0) and can be downloaded from https:// gitlab. 

com/ vishs oft/ fpadm et. Use of FP-ADMET proceeds 

in two steps (i) fingerprint calculation followed by 

(ii) predicting the ADMET endpoint of interest. The 

software is command line driven and is governed by a 

shell script (runadmet.sh) that can be run as:

bash runadmet.sh -f molecule.smi -p 

## -a 

The input to the script is a file (molecule.smi) con-

taining SMILES strings. The ## is a number between 

1 (predict Anticommensal Effect) and 56 (predict skin 

penetration) and corresponds to the prediction task. 

The results are written to a text file where each line 

contains molecule name and the predicted response. 

The “-a” option allows for the calculation of prediction 

intervals (in the case of regression) and confidence 

(for classification). For classification, conformal pre-

diction is used to calculate a confidence (how certain 

the model is that the prediction is a singleton) and a 

credibility. For example, predicting AMES mutagene-

city (task number 4) for a series of molecules produces 

the following results (see Table 6). The label “inactive” 

for compound G00001 suggests that the compound is 

predicted to be non-mutagenic. A confidence value 

of 0.95 suggests that the classifier is quite certain that 

the prediction is likely to be a single label. A relatively 

low value of credibility (0.57) suggests that the com-

pounds like G00001 are not sufficiently represented in 

the training set and that the user needs to treat the 

prediction with caution. In the case of regression, a 

95% prediction interval (predictions at the 0.025 and 

97.5 percentiles for pKa ) is calculated and provides a 

range for the predictions on an individual observation. 

Fig. 2 Heatmap showing the cross-validated correlation coefficients (average of 3 independent runs) achieved by different fingerprint-based 
models for the endpoints studied

Table 6 Example showing the property ( pKa and anticommensal effect) predictions and associated uncertainties for 3 molecules

Q = 0.025 and Q = 0.975 are the predictions calculated at percentiles 0.025 and 0.975 and allow for 95% prediction intervals

Name Anticommensal e�ect Con�dence Credibility ˆpKa Q = 0.025 Q = 0.975

G00001 Inactive 0.95 0.57 9.62 4.89 11.49

G00002 Active 0.95 0.51 4.41 − 1.60 13.06

G00003 Inactive 0.95 0.57 3.37 1.66 6.10

https://gitlab.com/vishsoft/fpadmet
https://gitlab.com/vishsoft/fpadmet
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Narrow prediction intervals indicate a lower uncer-

tainty associated with the prediction.

Conclusion
In this article, we have evaluated the performance 

of various molecular fingerprints for predicting a 

number of ADMET and ADMET-related endpoints. 

A total of 1500 models were analysed spanning 75 

responses and 20 fingerprints. The results show that 

the machine learning performance using the differ-

ent fingerprint encodings rival those of traditional 

descriptor-based methods. Future work will focus on 

combining different data sets in a multitask modeling 

approach which has been shown to yield statistically 

superior results compared with single-task models 

[12, 30]. In order to facilitate ADMET evaluation, the 

best performing models have been compiled into an 

open access software package called FPADMET that 

can be downloaded from https:// gitlab. com/ vishs oft/ 

fpadm et.
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