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Abstract

Interference between overlapping gird patterns creates moiré patterns, de-
grading the visual quality of an image that captures a screen of a digital
display device by an ordinary digital camera. Removing such moiré patterns
is challenging due to their complex patterns of diverse sizes and color dis-
tortions. Existing approaches mainly focus on filtering out in the spatial
domain, failing to remove a large-scale moiré pattern. In this paper, we pro-
pose a novel model called FPANet that learns filters in both frequency and
spatial domains, improving the restoration quality by removing various sizes
of moiré patterns. To further enhance, our model takes multiple consecutive
frames, learning to extract frame-invariant content features and outputting
better quality temporally consistent images. We demonstrate the effective-
ness of our proposed method with a publicly available large-scale dataset,
observing that ours outperforms the state-of-the-art approaches, including
ESDNet, VDmoire, MBCNN, WDNet, UNet, and DMCNN, in terms of the
image and video quality metrics, such as PSNR, SSIM, LPIPS, FVD, and
FSIM.
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1. Introduction

Moiré patterns are commonly observed in images, which are taken by
ordinary digital cameras, capturing a screen of a digital display device. This
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Figure 1: Examples of video frames or images that have moiré patterns as visual artifacts.
Note that (a) and (b) are consecutive frames, which are extracted from the publicly avail-
able VDmoire dataset, while (c) is from the TIP2018 dataset. Target images are shown
in the first row, and images with moiré patterns are shown at the bottom. For better
visualization, we also provide magnified patches.

is mainly due to frequency aliasing – an interference between overlapping
grid patterns, such as camera sensor grid and display pixel grid or textures
on clothes. Such interference depends on the degree of overlap, resulting in
diverse and complex patterns, including stripes, curves, and ripples, which
are analytically infeasible (see Figure 1). They also significantly degrade the
visual quality of images, often causing severe color distortions of the original
content. This makes it challenging to remove such moiré patterns and restore
the original image.

Learning-based approaches have been introduced to train a model to filter
out visual artifacts and restore the original contents automatically. Recently,
ConvNet-based hierarchical architectures have been explored to remove var-
ious sizes of moiré patterns [1, 2, 3, 4]. However, their performance depends
on their receptive fields, often failing to remove large-scale artifacts.

To address these issues, recent works [5, 2, 3] suggest that co-learning in
the frequency domain is useful to deal with various sizes of moiré patterns.
However, a frequency spectrum of the moiré pattern is often intermingled
with those of the original contents. Moreover, the camera’s Bayer filter mo-
saic is imbalanced over the RGB channel, producing different intensities of
moiré patterns. To address this issue, we advocate for leveraging amplitude
and phase components separately. In our experiment (see Figure 2), color
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Figure 2: Visualization on effect of amplitude and phase component over moiré patterns.
The orange box generates synthetic image combining with moiré image amplitude and
clean image phase. The green box generates synthetic image combining with moiré image
phase and clean image amplitude.

distortion or degradation is often caused by the signal’s amplitude compo-
nent, while moiré patterns remain in the phase component. Thus, instead of
directly utilizing frequency components as done in conventional approaches,
encoding these components in a separate branch will accelerate the learning
procedure.

Thus, we propose a novel module called Frequency Selection Fusion (FSF),
which first transforms the spatial information into the frequency domain
spectrum using Fast Fourier Transform (FFT). Its amplitude and phase com-
ponents are extracted and encoded separately. We further apply a selective
fusion strategy to merge both components. Moreover, to maximize the rep-
resentation power in the spatial domain, we adopt multi-scale architecture
to improve restoring fine-grained details in the spatial domain.

This is only a part of the story. We further expand our work for video
demoireing tasks where we now take multiple consecutive frames, outputting
temporally consistently restored images. We argue that leveraging multiple
frames with similar contents but slightly different moiré patterns is helpful to
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Figure 3: Example for misalignment caused by moiré patterns. Aligned features between
reference frame (Frame 2) and target frame (Frame 3) with or without moiré patterns
are listed in first row. To measure the accuracy for alignment, we calculate optical flow
using PWC-Net [12], illustrating the relative motion by the color coding that indicates the
motion vectors (direction and magnitude) with color intensity.

filter out such distortions, while augmented views of original contents are used
to restore main content features. Thus, a key module for video demoiréing
models is aligning multiple consecutive frame inputs. Conventional aligning
approaches [6, 7] used recurrent architectures (e.g. use bidirectional or uni-
directional recurrent units followed by using an image warping technique),
but they are prone to accumulate misalignment errors in a long sequence
input, resulting in poor restoration performance. Enlarging receptive fields
by applying deformable convolution [8, 9, 10, 11] is an alternative way to align
features of multiple consecutive frames. However, aligning features without
removing moiré patterns often yields a large misalignment error, as shown
in Figure 3. Thus, to address this issue, we propose an improved alignment
module called Post Align Module (PAM). Unlike existing approaches that use
an alignment module in the early stage (and are separated from the main
network), we apply such an alignment module in the multiple intermediate
stages where more distortions are getting removed. This allows the alignment
module to be robust against moiré distortions.

To demonstrate the effectiveness of our methods, we conducted numerous
ablation studies and show competitive results in various evaluation metrics,
peak signal-to-ratio (PSNR), structural similarity (SSIM), Learned Percep-
tual Image Patch Similarity (LPIPS), Frechet Video Distance (FVD), and
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Feature-SIMilarity (FSIM). To quantitatively evaluate FPANet, we compare
the difference between ground truth clean images and estimated images. Fur-
thermore, we observed that our proposed methods are effective in removing
moiré patterns and reconstructing a fine-detailed image compared with pre-
vious state-of-the-art methods. Our main contributions are summarized as
follows:

• We propose a novel building module called Frequency Selection Fusion
(FSF), which consists of two modules: (i) Frequency Selection Module
(FSM) and (ii) Cross Scale Fusion Module (CSFM). Our FSM trans-
forms the input into the frequency domain spectrum and operates on
their amplitude and phase components to remove large-scale moiré pat-
terns without creating undesired color artifacts. CSFM extracts multi-
scale features to help restore fine-grained details in the spatial domain.
We demonstrate that these modules are effective in removing moiré
patterns without creating noticeable visual artifacts.

• To deal with multiple consecutive frames for video demoiréing tasks,
we introduce an improved temporal feature alignment module (PAM)
deployed in the multiple intermediate stages to remove various types
of moiré distortions.

• We compare our model with current state-of-the-art approaches on a
publicly available video demoiréing dataset called VDmoire, and ours
outperforms existing approaches in various image and video quality
metrics, such as PSNR, SSIM, LPIPS, FVD, and FSIM.

2. Related Work

2.1. Image Demoiréing

The interference between two similar signals creates moiré pattern. In
particular, when taking a picture of a display, the moiré pattern is caused by
the misalignment between the grid of the display and the camera filter. Moiré
patterns that are not present in the original image can seriously degrade the
image quality because of the shape that looks like a ripple, ribbon, or stripe
and the color change. To restore the original image without moiré pattern,
previous literature [1, 13, 14, 5, 15, 16, 2, 17, 11] delicately designed neural
networks. DMCNN [1] is the first convolution neural network that uses hi-
erarchical stages in order to remove various size moiré patterns and releases
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a benchmark dataset for image demoiré. MopNet [13] utilizes the proper-
ties of moiré patterns such as scale, color, and shape. FDNet [15] predicts
a clean image given image pairs, degraded by moiré pattern and defocused
moiré free image. However, these two methods require additional input ex-
cept for noisy image and clean image pairs. WDNet [5] and MBCNN [2]
utilize frequency prior with wavelet transform and implicit Discrete Cosine
Transform (DCT) [18]. However, these methods are still difficult to remove
moiré patterns clearly because they do not sufficiently leverage property of
moiré patterns in fourier domain. MRGAN [17] is an unsupervised method
using Generative Adversarial Network [19] for removing this type of pat-
tern. But, their model may not be able to restore the color of the original
image or remove the artifacts because they did not use moiré and clean im-
age pairs during training. FHDe2Net [14], ESDNet [4] are responsible for
high-resolution image demoiré. These two methods use multi-scale features
for handling large-scale images and release high-resolution datasets. Another
explored research problem, video demoiré [11], is the first work for restoring
video using relation-based consistency loss. Since the moiré patterns desatu-
rate not only the color of the entire image but also make the shape of objects
difficult to recognize, this method fails to completely recover the original
color and fine-grained details.

In this paper, we concentrate on the video demoiré that is less explored in
the former literature. Our proposed methods are the first works in demoiré
task to remove moiré texture and recover the original color in the frequency
domain using amplitude and phase. In addition, we design Post Align Mod-
ule (PAM) to leverage the neighboring frames as auxiliary information with-
out disruption.

2.2. Learning in the Frequency Domain

Recently, learning in the frequency domain has been widely studied in
various fields [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]. Some of
these methods [21, 22, 23] applied the spectral block correspondence to the
vanilla convolution block where they utilize each grid value, which is as-
sociated with the frequency components. This is advantageous to leverage
a much larger receptive field than the conventional convolution operations.
Also, FcaNet [27] proposed frequency channel attention using the discrete co-
sine transform (DCT) to compress each feature over pre-defined DCT bases.
Cai et al. [26] suggests the usefulness of amplitude and phase information for
generating photo-realistic images in the generative models. Given this, Focal
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Figure 4: An overview of our proposed FPANet. FPANet is based on an encoder-decoder
architecture design. Frequency Selection Fusion (FSF) block is the core part of FPANet
that is responsible for removing moiré patterns using frequency domain information. Also,
Post Align Module (PAM) is used for leveraging temporal information between nearby
frames.

Frequency Loss [32] is utilized as a regularizer for the generative models.
Also, FSDGN [25] uses amplitude information to guide restoring the original
image with haze. However, they separate spatial and frequency branches with
the unidirectional flow (i.e. frequency to spatial) that can not fully use both
information. LaMa [29] shows remarkable performance in the inpainting task
with Fast Fourier Convolution [22], which has the advantage of recovering
repetitive structures such as fences. We also follow this line of work where
we exploit amplitude and phase components separately via our proposed
Frequency Selection Module (FSM) for the video demoiréing task.

2.3. Multi-frame Encoding and Alignment

Techniques for encoding multiple consecutive frames can mainly be cat-
egorized into two ways: (i) window-based and (ii) recurrent-based methods.
Window-based approaches [10, 33, 34, 35, 9] often use deformable convo-
lution to have enlarged receptive field followed by encoding concatenated
multiple frames. For example, TDAN [9] predicts offsets of the convolution
kernel to align multi-frame features, EDVR [10] used Pyramid Cascade De-
formable (PCD), which is the hierarchical architecture to facilitate precise
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offset prediction, which is widely adopted in the field of video restoration
task [10, 33, 35, 11, 9].

Recurrent-based methods often utilize recurrent units for encoding a se-
quence of frames: e.g. BasicVSR [6] and BasicVSR++ [7] leverage bidirec-
tional flow to align multiple frames over time. However, dealing with long-
term dependency issues remains challenging with the recurrent architectures,
and their aligning performance is sub-optimal. Thus, in this paper, we pursue
to align features between neighboring frames without interference of moiré
patterns and computational burden. Thus, we present the Post Align Mod-
ule (PAM) that aligns nearby feature more accurately and it can be easily
plugged in conventional convolution block.

3. Method

In this paper, we propose a novel video demoiréing method called FPANet
(Frequency-based video demoiré using frame-level Post Alignment). Follow-
ing existing work, our model also adopts encoder-decoder architecture, which
encodes an input image with moiré to a high-level feature representation, re-
taining geometric structural information for restoring high-quality images.
Instead of taking a single image It at a certain timestep t, our model takes
the previous It−1 and the next frame It+1 as well. Thus, it takes three con-
secutive frames as input: I = {It−1, It, It+1}. Given this, our model is trained
to produce a restored image Pt.

As shown in Figure 4, our model consists of the following three main
components: (i) Frequency Selection Module (FSM), (ii) Cross Scale Fusion
Module (CSFM), and (iii) Post Align Module (PAM). FSM first converts the
incoming spatial-domain features into frequency-domain features, then its
amplitude and phase components are separately processed to remove moiré
patterns, retaining geometric structural information (Section 3.2). CSFM
processes the spatial information of a given image, effectively capturing multi-
scale features for restoring both global and fine-grained features (Section 3.3).
Lastly, PAM effectively aligns multiple consecutive frames with reducing vi-
sual artifacts (Section 3.4).

3.1. Preliminary

One key component behind our model is encoding an input image in the
frequency domain. Thus, we first explain how we convert a spatial domain
feature F (x, y) ∈ RH×W×3 into frequency components F(u, v). One common
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Figure 5: An overview of Frequency Selection Fusion Module, which consists of two main
building blocks: (i) Frequency Selection Module (FSM) and (ii) Cross Scale Fusion Mod-
ule (CSFM). FSM converts spatial information into frequency domain components, then
encodes such frequency information to remove various types of moiré patterns effectively.
CSFM processes a given spatial domain feature in a multi-scale processing manner.

way to convert an image into frequency components is via Discrete Fourier
Transform (DFT), which decomposes spatial information (i.e. images) into
frequency components using the following equation:

F(u, v) =
W−1∑
x=0

H−1∑
y=0

F (x, y) · e−i2π( x
W

u+ y
H
v) , (1)

whereH andW indicate the height and width of the image, respectively. This
frequency information F(u, v) can further be decomposed into amplitude
FA(u, v) and phase FP(u, v) components as follows:

FA(u, v) =

√
Re2(u, v) + Im2(u, v)

FP(u, v) = arctan(Im(u, v)/Re(u, v))
(2)

where Re(u, v) and Im(u, v) denote real and imaginary value of complex
Fourier coefficient, respectively (i.e. F(u, v) = Re(u, v) + Im(u, v)).
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3.2. Frequency Selection Module (FSM)

As shown in Figure 4, our model consists of multiple Frequency Spa-
tial Fusion (FSF) blocks in series, each of which contains two components:
(i) Frequency Selection Module (FSM) and (ii) Cross Scale Fusion Module
(CSFM). In this section, we explain the details of the FSM, and we will ex-
plain the CSFM in the next section. Note that Hi, Wi, and Ci represent the
height, width, and channel dimensions at i-th stage, respectively.

As shown in Figure 5 (left), the i-th FSM block takes as an input a (spatial
domain) feature Fi(x, y) ∈ RHi×Wi×Ci , outputting an encoded feature of the
same dimension with a skip connection, i.e. FSM(Fi(x, y))+Fi(x, y). The first
step in the FSM block transforms the spatial features into frequency features

Fi(u, v) ∈ RHi×(⌊Wi
2

⌋+1)×Ci using 2D Fast Fourier Transform (FFT) [36]. We
only take half of the matrix to improve computational efficiency because 2D
FFT produces a conjugate symmetric Hermitian matrix.

The resulting frequency features are then decomposed into amplitude

FA
i (u, v) ∈ RHi×(⌊Wi

2
⌋+1)×Ci and phase FP

i (u, v) ∈ RHi×(⌊Wi
2

⌋+1)×Ci compo-
nents using Eq. 2. Given these features, we apply a selective fusion strat-
egy to filter out moiré patterns effectively, which generally depends on both
amplitude and phase components. Inspired by prior works [37, 38, 39], we
(channel-wise) concatenate both features, followed by 1 × 1 and 3 × 3 con-
volution layers in series to encode combined information. Then, we generate
confidence maps (αi ∈ RCi and βi ∈ RCi) using a global average pooling
(GAP) layer, another 1 × 1 convolution layer, and a softmax layer. These
(channel-wise) confidence maps are then multiplied by FA

i (u, v) and FP
i (u, v)

accordingly. Lastly, we apply 2-D Inverse Fast Fourier Transform (IFFT) to
transform frequency features into spatial features as follows:

FSM(Fi(x, y)) = IFFT(Conv(αi ⊙FA
i (u, v)), Conv(βi ⊙FP

i (u, v)))) (3)

where ⊙ is channel-wise multiplication.

3.3. Cross Scale Fusion Module (CSFM)

As shown in Figure 5 (right), we further use Cross Scale Fusion Module
(CSFM) to encode multi-scale features. As suggested by recent works [1,
2, 3, 4], such a multi-scale encoding is advantageous to restore fine-grained
visual details. Following Yu et al. [4], we use the pyramid feature architecture
to encode multi-scale features (i.e. original, × 1/2 down-scaled, and × 1/4
down-scaled features). However, we use a Simple Feature Extraction Block
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Figure 6: Schematic for Post Align Module (PAM). It is plugged into the decoder of whole
architecture to fuse multiple features. The dotted line indicates the skip connection from
encoder and solid line represents the straightforward flow in the module.

(SFEB) instead of dilated residual dense block, which is due to improve
the computational efficiency. In Figure 5 (bottom right), we illustrate SFEB,
which consists of five layers including 1×1 and 3×3 convolution layers, Simple
Gate (SG), and Simplified Channel Attention (SCA) [40]. After extracting
multi-scale features from SFEB, we apply the Dynamic Fusion method [4]
in the same way to calibrate each scale feature into a unified feature map
maintaining important information.

3.4. Post Align Module (PAM)

Recent feature alignment methods [10] using Pyramid Cascade Deformable
(PCD) or its deformation need to utilize a separated module and align each
feature before reconstructing high-quality frames. However, moiré patterns
are different in both size and properties, compared with the other artifacts
such as blur, rain streak, and gaussian noise. Specifically, moiré patterns lead
to severe color degradation and confused texture, which is an undifferentiated
original texture.

Therefore, we propose the Post Align Module (PAM) for aligning features
between nearby frames without the interference of moiré patterns. As shown
in Figure 6, PAM is placed in the decoder per each stage. PAM uses fea-
tures that are the output of each stage encoders over the sequence of frames
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I = {It−1, It, It+1} as an input. We define each input as F s
{t−1,t,t+1}, where s

denotes each stage (e.g. s ∈ {1, 2, 3}). At the first stage of the PAM, we cal-
culate learnable offset O{t−1,t+1} using the output of the last stage of encoder
F{t−1,t,t+1}:

O{t−1,t+1} = Conv([F{t−1,t+1},Ft]), (4)

where Conv(·) represents the general convolution operation and [·, ·] indicates
the concatenation operation. Because the direction of the offset is identical
and only changes magnitude regardless of the scales, we utilize the previous
predicted learnable offset using bilinear interpolation. We formulate following
process as:

Os
{t−1,t+1} = Conv([Conv([F s

{t−1,t+1},F s
t ]),Up(Os−1

{t−1,t+1})]), (5)

where Up(·) indicates the bilinear upscaling operation.
Formally, given learnable offset O{t−1,t+1}, we apply deformable convolu-

tion in order to align features according to the motion of objects. The overall
PAM process is represented as:

As
{t−1,t+1} = Dconv(F s

t ,Os
{t−1,t+1}), (6)

where A represents the aligned feature and Dconv(·) denotes the de-
formable convolution [8]. Last, obtained aligned features A{t−1,t+1} and up-
sampled features x from the previous block are processed using a conventional
fusion method that consists of concatenation and convolution operation for
leveraging each information. Note that the PAM can be easily plugged into
the decoder and can obtain the aligned features over neighboring frames.

3.5. Loss Function

We train our model end-to-end using the following three loss functions:
(i) Multi-scale L1-based spatial domain loss, (ii) Multi-scale perceptual loss,
and (iii) L1-based frequency domain loss. Our Multi-scale L1-based pixel-wise
loss Ls quantifies the pixel-wise differences between the target image and the
restored image, which is defined as follows:

Ls =
∑
t

||Pt − Ît||1 (7)

where Ît is the ground-truth (target) image without moiré patterns, and Pt

is the restored image by our proposed method.
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Following [4], we also use multi-scale perceptual loss by utilizing Ima-
geNet pre-trained VGG19 [41] network. We extract high-level feature rep-
resentations from the intermediate layer and train a model to minimize the
feature-level difference between the target and the predicted images. We de-
fine multi-scale perceptual loss as follows:

Lp =
∑
t

||VGG19(Pt)− VGG19(Ît)||1 (8)

where VGG19(·) denotes the pre-trained network.
Lastly, we also use a L1-based frequency domain loss, which quantifies

differences between frequency components (i.e. amplitude and phase) of the
target and restored images. Our loss function is defined as follows:

Lf =
∑
t

||FA(Pt)−FA(Ît)||1 + ||FP(Pt)−FP(Ît)||1 (9)

where FA and FP represent amplitude and phase components. Concretely,
we use the following loss function L:

L = Ls + λpLp + λfLf (10)

where λp and λf are the hyper-parameters to control the strength of each
loss terms.

4. Experiments

4.1. Implementation and Evaluation Details

We train our model end-to-end with AdamW [42] optimizer with the ini-
tial learning rate set to 10−3. We use cyclic cosine annealing learning rate
schedule [43] that enables partial warm restart optimization, generally im-
proving the convergence rate in gradient-based optimization. Note that we
use a grid search to find a better hyperparameter set: we set λvgg and λfreq

to 0.1. Moreover, we set the number of FSF blocks at the encoding and de-
coding stage to [2, 2, 4] for each scale. The entire architecture also contains
12 FSF blocks between the encoder and decoder.

We use the following three evaluation metrics: (1) Peak Signal to Noise
Ratio (PSNR), (2) Structural Similarity index (SSIM) [44], and (3) Learned
Perceptual Image Patch Similarity (LPIPS) [45]. These metrics are widely
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Figure 7: Example of sampled frames in VDmoire [11] that is divided into two types of
dataset conforming to different characteristics. The frame captured by two different types
of device pairs (TCL and iPhone) is listed in each row. In addition, each column repre-
sents an example of two versions of the dataset (V1 and V2) before and after refinement
respectively except fot the second column that indicates the ground truth.

used in the image demoiréing task (as well as other image restoration tasks)
by quantifying the quality of generated outputs. PSNR quantifies pixel-level
similarity, while SSIM [44] uses structural information (from pixel intensities,
luminance, and contrasts), providing a more human-like perception metric.
Lastly, LPIPS [45] measures perceptual similarity by comparing high-level
visual representations from pre-trained networks (e.g., ImageNet [46] pre-
trained). To measure the performance of our model for the video demoiré
task, we conduct single-frame and multi-frame experiments with the following
settings. Specifically, at the multi-frame experiments, we randomly sample
three consecutive frames with batch size 8 and crop a 384×384 patch for
all experiments over VDmoire dataset [11]. In the single-frame experiments,
we randomly sample a single frame and leverage it repetitively instead of
consecutive frames.

4.2. Dataset

To evaluate the effectiveness of our proposed methods, we use the fol-
lowing publicly available dataset, i.e. VDmoire [11] dataset. This provides a
video demoiréing dataset, which provides 290 source videos and correspond-
ing videos with moiré patterns. To obtain such pairs, the 720p (1080×720)
source videos are displayed on the MacBook Pro display (or Huipu v270
display). At the same time, a hand-held camera (iPhoneXR or TCL20 pro

14



Table 1: Quantitative comparison with the state-of-the-art image (or video) demoiréing ap-
proaches: UNet [47], DMCNN [1], ESDNet [4], WDNet [5], MBCNN [3], and VDmoire [11].
We use the publicly available VDmoire dataset (contains TCL-V1 and iPhone-V2 splits)
for this experiment. Note that we use bold to highlight the best scores among different
models. ↑ represents a higher score is better, while ↓ indicates a lower score is better. Abbr.
Freq: use the frequency components, Multi: use the multiple consecutive frame inputs

Method Freq Multi
TCL-V1 iPhone-V2

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

DMCNN [1] - - 20.321 0.703 0.321 21.816 0.749 0.496
UNet [47] - - 20.348 0.720 0.225 21.678 0.790 0.338
WDNet [5] ✓ - 20.576 0.697 0.234 23.971 0.834 0.205
MBCNN [3] ✓ - 21.534 0.740 0.260 24.060 0.849 0.211
VDmoire [11] - ✓ 21.725 0.733 0.202 25.230 0.860 0.157
ESDNet [4] - - 22.026 0.734 0.199 25.064 0.853 0.165

Ours (single frame only) ✓ - 21.577 0.772 0.189 25.215 0.875 0.157
Ours ✓ ✓ 21.953 0.784 0.173 25.446 0.883 0.146

camera) captures the screen to create moiré patterns in the recorded frames.
Further, to reduce the effect of the misaligned frame correspondences, they
estimate the homography matrix using the RANSAC algorithm to align two
frames. Despite of these efforts, errors of spatial alignment between the cap-
tured frame and ground truth are still remained (see first row in Figure 7).
To handle this problem, they present a refined new dataset using optical
flow. But, this dataset also has the problem showing distortion caused by
inaccurate optical flow (see second row in Figure 7). For comparing ours
with the former state-of-the-art methods in diverse settings, we utilize two
different datasets (TCL-V1 and iPhone-V2). Note that we call TCL-V1 and
iPhone-V2 based on the cameras used (i.e. TCL20 pro camera and iPhone
XR camera).

4.3. Quantitative Evaluation

As we summarized in Table 1, we start by quantitatively comparing
the quality of generated outputs with state-of-the-art approaches, includ-
ing UNet [47], DMCNN [1], ESDNet [4], WDNet [5], MBCNN [3], and VD-
moire [11]. Note that VDmoire [11] and ours utilize multi-frame inputs, while
others are based only on single-frame image input. Also, we use the VDmoire
dataset [11] for this evaluation, and the same hyper-parameters commonly
used for image demoiréing, such as patch size, are used in this experiment
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Figure 8: Qualitative comparison on the TCL-V1. The red and green boxes zoom in on
frames to obviously compare the result.
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Figure 9: Qualitative comparison on the iPhone-V2. The red and green boxes zoom in on
frames to obviously compare the result.
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for a pair comparison, while we use the default values for the other hyper-
parameters.

We observe in Table 1 that our proposed method generally outperforms
the other approaches in all metrics (except PSNR on TCL-V1 data), showing
a significant gain over other state-of-the-art approaches. In specific, compared
with VDMoire, a state-of-the-art video demoiréing method, ours shows 0.38
dB PSNR gain on TCL-V1 data and 0.23 dB PSNR gain on iPhone-V2
data. Such a gain is also apparent in other perceptual evaluation metrics, i.e.
SSIM and LPIPS. This indicates that ours produces more realistic and high
perceptual quality.

4.3.1. Temporal Consistency Table 2: Quantitative comparison in
terms of FVD [48] and FSIM [49] metrics
to further analyze the quality of gener-
ated videos (or image frames). Note that
lower FVD and higher FSIM scores are
better.

Method FVD↓ FSIM↑

DMCNN [1] 992.86 0.857
UNet [47] 928.81 0.878
WDNet [5] 697.28 0.895
MBCNN [3] 694.28 0.857
VDmoire [11] 697.09 0.911
ESDNet [4] 633.93 0.906

Ours 633.87 0.967

Consistent with the recent work [11],
we observe that using multiple consecu-
tive frame inputs is helpful to improve
the overall quality of image demoiréing
(compare bottom two rows vs. oth-
ers). Note that even without utilizing
multi-frame image inputs, our proposed
method still outperforms the other ex-
isting approaches, which justifies the ef-
fectiveness of using amplitude and phase
components (in our Frequency Selection
Module (FSM) and Post Align Mod-
ule (PAM)) for removing moiré patterns.

Following existing works [50, 51], we
further use the following two metrics
to analyze the quality of video outputs:
FVD [48] and FSIM [49]. FVD adapts Frechet Inception Distance (FID)
to capture the temporal coherence of a video, while FSIM emphasizes low-
level features in IQA metric inspired by the human visual system (HVS). As
shown in Table 2, our model outperforms the other existing approaches in
terms of both metrics, demonstrating that our outputs are more similar to
the target distribution of the entire video sequences, maintaining per-pixel
and structural visual information.
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Figure 10: (left) Comparison of the luminance (Y channel in YCbCr color space) with
state-of-the-art approaches (right) and their box-plots of PSNR values.

4.4. Qualitative Analysis

Further, we qualitatively compare the quality of the restored images with
the state-of-the-art approaches: UNet [47], DMCNN [1], ESDNet [4], WD-
Net [5], MBCNN [3], and VDmoire [11].

4.4.1. Effect on Restoring Fine-grained Details

As shown in Figure 8 and 9, we provide (randomly sampled) restored
output images as well as a source image (see top left, which clearly has moiré
patterns) and a target image (see bottom right). At the bottom of the figure,
we provide two magnified image regions (see red and green boxes in the source
image) for an effective comparison. Our proposed FPANet shows better im-
age restoration quality, preserving fine-grained details (e.g., sharper edges).
Compared with conventional approaches, such as UNet [47], DMCNN [1],
WDNet [5], and MBCNN [3], which often fail to filter out large-scale moiré
patterns, our method effectively removes various sizes of moiré patterns with-
out showing visually obvious artifacts across the image. Importantly, WD-
Net [5] and MBCNN [3] also rely on the frequency domain components using
wavelet transform and implicit Discrete Cosine Transform, respectively. This
may confirm that our method clearly outperforms the other frequency-based
approaches, effectively dealing with various artifacts. We provide more di-
verse examples in Appendix A.

Further, following [52, 53, 54], we analyze the image’s luminance channel
(Y channel in YCbCr color space) to compare the restoration quality, com-
paring the ability to restore fine-grained features. We also measure PSNR to

19



Corr: 0.602 Corr: 0.703 Corr: 0.746 Corr: 1.000

2
4
6
8

10
12

(x1000)

2
4
6
8

10
12

2
4
6
8

10
12

2
4
6
8

10
12

50
Pixel Value

100 150 200 250 50
Pixel Value

100 150 200 250 50
Pixel Value

100 150 200 250 50
Pixel Value

Source VDmoire Ours Target

100 150 200 250

H
is

to
gr

am

Source VDmoire Ours

0.8

0.6

0.4

0.2

0.0

C
or

re
la

tio
n

(a) (b)

Figure 11: (a) We provide a sample of images (top) and their color histograms (bottom).
Red, blue, and green lines indicate histograms for each RGB component: the x-axis rep-
resents the pixel values in [0, 255], while the y-axis denotes the number of pixels. (b)
Box-plots for correlation between the color distributions of the input and the target im-
ages.

evaluate the performance on the Y channel. As shown in Figure 10, we visual-
ize a source/target image and restored image patches from existing methods
and ours. For better visualization, we only provide an enlarged image patch
(see full-size images in the supplemental material). Our proposed method
performs the best restoration without showing obvious visual artifacts across
the image, which is confirmed by box-plots of PSNR values (see right).

4.4.2. Robustness against Color Degradation

ESDNet [4] and VDmoire [11] also provide a compelling quality demoiréing,
but we observe VDmoire [11] often suffers from color shifts, probably due to
a lack of the model’s color restoration power. VDmoire [11] depends on the
pixel’s statistical information (i.e. mean and variance) across the multiple
consecutive frames for temporal consistency, which makes it difficult to re-
store accurate pixel value per frame, resulting in making toned-down images.
However, ours, which uses Frequency Spatial Fusion (FSF) module, shows
fewer artifacts in color degradation. We also observe that ESDNet [4] often
generates images with low visual acuity, failing to restore the original visual
contents. This is more apparent in examples shown in Figure 9 (see some
blurry characters, which is not the case for ours). These confirm that our
proposed method effectively deals with moiré restoration with fewer arti-
facts, such as color degradation, lack of sharpness, and remaining large-scale
moiré patterns. We provide more diverse examples in Appendix A.

Further, we also compare RGB color histograms with VDmoire to com-
pare the amount of color degradation as shown in Figure 11 (a). To quantify
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Table 3: We provide our ablation study to analyze the effect of individual building blocks:
(i) Amplitude and Phase, (ii) FSM, (iii) CSFM, and (iv) PAM. We measure PSNR and
SSIM for each combination of our four components. Note that ✓ represents that the
module is deployed.

Components Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 (Ours)

Amplitude & Phase (Section 3.2) - - ✓ ✓ ✓ ✓
FSM (Section 3.2) - - - ✓ ✓ ✓
CSFM (Section 3.3) - ✓ ✓ - ✓ ✓
PAM (Section 3.4) - ✓ ✓ ✓ - ✓

PSNR↑/SSIM↑ 20.51/0.75 21.00/0.76 21.42/0.77 21.73/0.77 21.13/0.77 21.95/0.78

the color degradation, we measure the average correlation (for each channel)
with those of the target (clear) image. A source image with moiré patterns
shows the smallest correlation value, 0.602, while our proposed method shows
the highest correlation value, 0.746, which is better than VDmoire. In Fig-
ure 11 (b), we provide box plots of such correlations for all test images, further
confirming that our proposed method is more robust to color degradation.

4.5. Ablation Study

4.5.1. Effect of Individual Modules

Our proposed model consists of four main components: (i) Amplitude
and Phase, (ii) FSM (Frequency Selection Module), (iii) CSFM (Cross Scale
Fusion Module), and (iv) PAM (Post Align Module). To analyze their con-
tributions, we conduct an ablation experiment with various combinations of
these building blocks. Note that we use the TCL-V1 dataset for this experi-
ment. We observe in Table 3 that each building component equally improves
the overall image demoiréing performance in terms of PSNR and SSIM. For
example, removing each building block decreases the overall performance
(compare Model 6 vs. Model 2, 3, 4, and 5). Note that our FSM module de-
pends on the Amplitude and Phase modules; thus, we remove both modules
in Model 2.

4.5.2. Effect of Loss Functions

Recall from Section 3.5; we train our model with the following three
loss terms: (i) Multi-scale spatial domain loss Ls, (ii) Multi-scale perceptual
loss Lp, and (iii) Frequency domain loss Lf . We also conduct an ablation
study with different combinations of the loss terms to see their individual
impacts. As shown in Table 4 (left), we observe all loss terms have noticeable
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Table 4: We provide our ablation study to demonstrate (left) the effect of each loss terms
(Ls, Lp, and Lf ) and (right) the effect of our Frequency Selection Fusion (FSF) mod-
ule by replacing it with existing frequency-based building blocks: (i) FFC [22] and (ii)
DeepRFT [21].

Loss function PSNR↑ SSIM↑ LPIPS↓

Ls 21.653 0.770 0.240
Ls + Lp 21.896 0.780 0.185
Ls + Lf 21.883 0.781 0.207

Ls + Lp + Lf (Ours) 21.953 0.784 0.173

Methods PSNR↑ SSIM↑ LPIPS↓

Ours w/ FFC [22] 20.959 0.766 0.193
Ours w/ DeepRFT [21] 20.340 0.749 0.216

Ours w/ FSF 21.572 0.772 0.189

effects on the overall performance, and using all loss terms provides the best
performance in all three metrics. Especially the multi-scale perceptual loss
function helps generate more realistic images.

4.5.3. Effect of Frequency Spatial Fusion (FSF) block

We propose a novel encoding module called the Frequency Spatial Fusion
module, which utilizes frequency domain components. To further demon-
strate the effectiveness of our FSF module, we replace it with existing frequency-
based encoding modules: FFC [22] and DeepRFT [21], which directly use the
frequency components instead of dealing with amplitude and phase compo-
nents separately. As shown in Table 4 (right), our proposed module outper-
forms the other approaches in all metrics. Note that we only use a single
frame for all models.

4.5.4. Effect of Temporal Feature Alignment by PAM

Table 5: We provide our ablation study to
demonstrate the effect of our Post Align
Module (PAM) module.

Methods PSNR↑ SSIM↑ LPIPS↓

Ours w/ PCD [10] 21.507 0.780 0.184
Ours w/ PAM 21.953 0.784 0.173

We further compare our tem-
poral feature alignment called Post
Align Module (PAM) with exist-
ing Pyramid Cascade Deformable
technique [10], which is utilized in
VDmoire [11] to extract implicitly
aligned features between consecutive
frames. As we summarized in Ta-
ble 5, our proposed method outper-
forms the alternative in all metrics, including PSNR, SSIM, and LPIPS: 0.45
dB, 0.004, and 0.009 gains in PSNR, SSIM, and LPIPS, respectively.
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5. Conclusion

We introduced a novel video demoiréing method called FPANet by propos-
ing the following three components: (i) Frequency Selection Module (FSM),
(ii) Cross Scale Fusion Module (CSFM), and (iii) Post Align Module (PAN).
FSM utilizes amplitude and phase components in the frequency domain to
address undesired color changes and large-scale moiré patterns, while CSFM
is used to capture multi-scale features to recover both global and fine-grained
features. Lastly, PAM is utilized to align features from multiple consecutive
frames with reduced visual artifacts. We demonstrated the effectiveness of us-
ing our proposed method with a public video demoiréing dataset called VD-
moire, and ours generally outperforms existing state-of-the-art approaches
in terms of various image and video quality metrics, such as PSNR, SSIM,
LPIPS, FVD, and FSIM.
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Figure A.12: Qualitative comparison on the TCL-V1. The red and green boxes zoom in
on frames to obviously compare the result.
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Figure A.13: Qualitative comparison on the TCL-V1. The red and green boxes zoom in
on frames to obviously compare the result.
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Figure A.14: Qualitative comparison on the TCL-V1. The red and green boxes zoom in
on frames to obviously compare the result.
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Figure A.15: Qualitative comparison on the TCL-V1. The red and green boxes zoom in
on frames to obviously compare the result.
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Figure A.16: Qualitative comparison on the iPhone-V2. The red and green boxes zoom in
on frames to obviously compare the result.
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