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ABSTRACT
The radiation dose associated with computerized tomography (CT)
is significant. Optimization-based iterative reconstruction approaches,
e.g., compressive sensing provide ways to reduce the radiation ex-
posure, without sacrificing image quality. However, the computa-
tional requirement such algorithms is much higher than that of the
conventional Filtered Back Projection (FBP) reconstruction algo-
rithm. This paper describes an FPGA implementation of one im-
portant iterative kernel called EM, which is the major computation
kernel of a recent EM+TV reconstruction algorithm. We show that
a hybrid approach (CPU+GPU+FPGA) can deliver a better perfor-
mance and energy efficiency than GPU-only solutions, providing
13X boost of throughput than a dual-core CPU implementation.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Types and Design Styles—Algo-
rithms implemented in hardware

General Terms
Algorithms, Design, Performance

1. INTRODUCTION
The industry trend of CT imaging is moving towards low-dose

CT. Although it is possible to reduce the dose directly and apply
image-space denoising on the noisy FBP image, a more desired
approach is to reduce the number of sampling used and apply com-
pressive sensing-based iterative reconstructions. For a review of the
CT image reconstruction and optimization-based iterative schemes,
please refer to the recent survey [3].

This paper presents our effort to accelerate one iterative recon-
struction algorithm called EM+TV [4], which extends classic Ex-
pectation Maximization (EM) [2] algorithm by introducing Total
Variation(TV) regularization terms. We implemented the EM ker-
nel completely on virtex 6 FPGAs. Our implementation is done at
C-level by using AutoESL high-level-synthesis tool [1] from Xil-
inx.
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2. ALGORITHM OVERVIEW
Typically, image reconstruction requires the number of samples

(measurements or observations) that is above the Nyquist limits.
By exploiting the sparsity of the objects, the number of samples can
be reduced significantly. Compressive sensing technique exploits
this fact to perform the reconstruction of signals or images. In our
case, suppose the image is x, we make use of the sparsity of |∇x|
in the algorithm.

EM+TV reconstruction [4] tries to solve the non-linear optimiza-
tion problem:

min
x

∫
Ω
|∇x|+ α

M∑
i=1

((Ax)i − bi log(Ax)i)

xj ≥ 0, j = 1, · · · , N (1)

The first term is the TV term and the second one is the EM term.
We ignore the mathematic details that can be referred in [4], but
show the pseudo-code for the core computing functions instead.

2.1 Ray Tracing
EM algorithm is often implemented with a ray-driven forward-

projection and a voxel-driven back-projection. To facilitate hard-
ware sharing, we use ray-driven approach in both forward and back-
ward projections. The code of the forward and backward projection
is shown in Figure 1. The code first finds out the direction for the
next voxel in the ray, then it performs multiply-and-accumulate op-
eration to accumulate the sinogram or update the image. The trac-
ing stops if the voxel hits the boundary of the object.

2.2 Intersection Computation
The tracer_precal() function is responsible for computing the

intersection point of the ray with the object and find out the param-
eter required for the tracing. Given a source coordinate (sx, sy, sz)
and destination (dx, dy, dz), the procedure finds out the intersec-
tion point with the object which is a cube 0 ≤ x < Nx, 0 ≤ y <
Ny, 0 ≤ z < Nz . A number of divisions are used in the procedure.

3. IMPLEMENTATION & OPTIMIZATION

3.1 Parallel Backward Projection
The forward projection can be parallelized easily. A large num-

ber of parallel unit can operate on the forward ray tracers simultane-
ously for different source and detector pairs. For backward projec-
tion, there are dependencies among views. Moreover, even within
one view, there are conflicts when two parallel units update one
pixel. To resolve the data conflicts within one view, atomic func-
tions that guarantee the mutual exclusion of an address in mem-
ory, can be used to handle such potential data conflicts. How-
ever, our target FPGA platform do not provide atomic operations



/ / EMupdate : ray−t r a c i n g a l g o r i t h m
f o r a l l t h e v iews
f o r a l l t h e d e t e c t o r s
{

tracer_precal(); / / f i n d i n i t i a l r a y p a r a m e t e r s
/ / λx ,λy ,λz ,λ0 , vx ,vy ,vz ,
/ / Lenx ,Leny ,Lenz , signx , signy , signz

i f ( mode==0) t em p s i n o =0; / / f o r w a r d p r o j e c t i o n
e l s e v a l u e = s inogram ( . . ) ; / / backward p r o j e c t i o n
f o r (i = 0; i < Nx + Ny + Nz ; i + +) / / ( t r a c e r _ loop )

{
i f (λx <= λy && λx <= λz ) λ = λx;
e l s e i f (λy <= λz ) λ = λy;
e l s e λ = λz ;

/ / M u l t i p l y a c c u m u l a t e (MAC) c o m p u t a t i o n
i f ( mode==0) / / f o r w a r d p r o j e c t i o n
tempsino+ = imageData(vx, vy, vz) ∗ (λ − λ0);

e l s e / / backward p r o j e c t i o n
imageData(vx, vy, vz)+ = value ∗ (λ − λ0);

λ0 = λ;
/ / F ind t h e n e x t p o i n t on t h e r a y

i f (λx <= λy && λx <= λz ) {λx+ = Lenx; vx+ = signx;}
e l s e i f (λy <= λz ) {λy+ = Leny; vy+ = signy;}
e l s e {λz+ = Lenz ; vz+ = signz ;}

/ / E x i t c o n d i t i o n s
i f (vx < 0||vx > Nx − 1) b r e a k ;
i f (vy < 0||vy > Ny − 1) b r e a k ;
i f (vz < 0||vz > Nz − 1) b r e a k ;
}

i f ( mode==0) s inogram ( . . ) = t em p s i n o ;
}

Figure 1: Ray Tracing Core Engine

on the memory system.1 The only way to obtain a correct design
is to enforce memory requests to complete sequentially. This has
substantial overhead because the memory system is designed to be
weakly ordered and supports parallel data access. We instead ex-
ploit algorithm-level changes to avoid the use of atomic operations.
First, we ensure the computation for different views(sources) are
done in a sequential fashion. For a same view, the detectors that
are far enough are set to one group. Mathematically there will be
no conflicts within the group and all tracers in one group can be
processed in parallel. As illustrated in Figure 2, we can choose the
tracer lines of the same pattern in one group.

3.2 Fixed Point Conversion
To reduce the area of our design, we convert floating point com-

putation into fixed point. We use standard range analysis technique
to obtain the range of all the values in our datapath. Because the
algorithm is iterative, static precision analysis would generate quite
pessimistic results. We use dynamic analysis instead to determine
the number of fractional bits.

We try different number of fractional bits and compare with the
floating point reference code. As illustrated in Figure 3, the bitwidth
of the fractional part will influence the reconstruction quality greatly.
When 18 bits (10−5) are used, the fixed point version can achieve
the same reconstruction quality of the floating point version. We
enlarge the bidwidth by additional 2 bits to bring in more safe mar-
gins, and use 20 bits for the fractional part. Note that it is still
possible to store all those array data using 32-bit data when we use
20-bit fractional part.

3.3 Streaming Architecture
Function tracer_precal and the tracer loop computation can be

executed in a task-level pipeline. We synthesize the tracer_precal

1It is possible to realize the atomic operation within the BRAM.
The off-chip memory does not support atomic updates.

Figure 2: Ray Based Parallel Mapping

Figure 3: Fractional bit width and Reconstruction Quality

and the tracer loop individually to obtain their corresponding la-
tency reports. Because the loop bound of the tracer loop is not
known, we use an average loop bound from the simulation of the
test data to compute the average-case latency of the tracer loop. The
throughput of the memory interfaces is also considered. Roughly
the latency of the tracer_precal is around 1/4 of the latency of
the tracer loop for a 1283 test data. Because of this, we realize
two tracer_precal modules and eight tracer loop module in a sin-
gle FPGA. Each FPGA has 16 virtual memory channels, and each
tracer loop module talks to two of them (one for read and one for
write). The multi-FPGA system has 4 user FPGAs (Application
Engine or AE), we distribute the work-load using SIMD fashion.

The diagram of our implementation in one FPGA is shown in
Figure 4. To realize such a diagram in C level, we invoke the func-
tion tracer_precal twice and invoke the function of the tracer loop
eight times. These different invocations take different FIFO chan-
nels and memory interfaces as parameters. The compiler can figure
out that these function calls are independent and shall generate a
parallel hardware.

The transform that converts the code in Figure 1 to a C code that
calls two tracer_precal and eight tracer_loop seems counter-
intuitive for software engineers. At higher-level, our manual step in
this subsection can be viewed as a combination of loop unroll trans-
form and loop distribution transform, where the distributed loops
then take different unrolling factors. In practice, these decisions
still need to be coded at a lower level.

The round robin distribution logic is also coded in the tracer_precal
function. At the receiver side tracer_loop, the control is just a
simple counter to maintain the number of rays processed. Each
tracer_loop would process a pre-determined number of rays. Note
it is possible that the ray do not intersect with the object. In this
case, the tracer_precal would send a special flag to denote that
no processing is needed, but the counter should still be updated to
obtain a correct exit condition.

The intersection computation we implemented is fairly generic.
Currently, the control that sets the list of sources and detectors are
also coded in the function, along with the lookup tables ROM for
sin cos functions. Note it is very easy to change these controls to
reflect another scanner machine setup.
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Figure 4: Overall Streaming Architecture Inside One FPGA AE

3.4 Prefetching
Generic HLS tools usually do not model board-specific IO sys-

tems. In our implementation, we model each memory access port
with a request FIFO and a response FIFO. As shown in Figure 5,
we need to invoke two parallel functions inside the hierarchy of
tracer_loop. One function is the “helper thread”
tracer_loop_addrGen which is responsible for sending memory
requests for reads, and the other function is the “compute thread”
tracer_loop_compute which obtains data from response FIFO
and write out the computed result into another request FIFO. This
way, the helper threads can keep sending as many requests as pos-
sible (until the FIFO is full). Effectively, the helper thread is per-
forming the prefetching of the required data, and the response FIFO
serves as the prefetch buffer. Figure 5 depicts the architecture in-
side the Tracer_loop function.

3.5 Reducing the Data Accesses via Sparsity
The final output image of the compressive sensing algorithm is

sparse. Also we know that the image voxel value is non-negative.
Based on these two facts, we develop a simple heuristic to reduce
the amount of data access. In the beginning of the iteration, we
perform a single forward projection. If any accumulated sinogram
value falls below a threshold, we conclude that any image value on
that ray shall be close to zero. Based on this, we build a mask of
the image called image_denote. When we do the backward pro-
jection, we only update the voxels that are not masked. Note that
this mask only need 1-bit data, so we merge this 1-bit data into the
imageData array. Through this way, we reduce the number of
data access in the backward projection. Figure 6 shows the modi-
fied pseudo code.

3.6 Simultaneous Reconstruction of Two
Images

After fixed point conversion, the external data accesses are all in
32-bit. The memory interface of our multi-FPGA platform supports
64-bit memory interface. Because of the data access in the tracing
is somewhat random, it is hard to use the 64-bit interface to enlarge
the application bandwidth. However, it is straightforward to use
that to reconstruct two images simultaneously, by properly pack
two 32-bit data from two images into a 64-bit data. These two
images need to have exact machine setup where the tracer_precal
part does not need to be changed.

We do not increase the number of MACs to support the 64-bit
data. We measured that the external memory FIFO interfaces would
return one data in about three cycles in the average case. 2 We
simply enlarge the initiation interval (II) of the tracer loop from 1
to 2 to facilitate the sharing of MAC units.
2The peak rate is one data in every cycle. We did not reach such
a high rate because our application logic is connected to a crossbar
logic which performs arbitration and packet routing.
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Figure 5: Streaming Architecture Inside One Tracer_loop Kernel

i f ( mode==0) / / f o r w a r d p r o j e c t i o n
tempsino+ = imageData(vx, vy, vz) ∗ (λ − λ0);

e l s e / / backward p r o j e c t i o n
i f ( image_denote(vx, vy, vz)==1)

imageData(vx, vy, vz)+ = value ∗ (λ − λ0);

Figure 6: Masking for Backward Projection

4. EXPERIMENTAL RESULTS
Our whole design is described in C and synthesized into verilog

RTL using AutoESL HLS tool version 2011.1. The target hard-
ware platform is Convey HC-1ex with 4 Virtex-6 LX760 user FP-
GAs. We designed the RTL interfaces for AutoESL tool to hook
up with Convey’s Personality Development Kit (PDK). Those in-
terfaces are reused by a number of designs we implemented. PDK
is the RTL-based synthesis and simulation environment for the HC-
1ex platform. We synthesize the RTL generated by the AutoESL
HLS tool along with the PDK infrastructure RTLs using Xilinx ISE
12.4.

Our test setup assumes a Cone-Beam CT system. Currently, we
tested a phaeton data of size 1283 which is supplied by authors of
[4]. We have 36 views (sources) and the size of detector (destina-
tions) is 301*257. According to [4], the EM+TV algorithm using
36 samples, can obtain a similar image quality that is obtained us-
ing FDK/FBP algorithm that requires 360 samples, resulting the
radiation reduction by 10X.

4.1 Kernel Performance and Energy
Consumption

Table 1 presents the performance and the energy consumption
of the forward projection kernel and the backward projection ker-
nel. The number is collected by averaging 1000 invocations. The
performance on a dual-core CPU and many-core GPU is also re-
ported. The CPU used is Intel Xeon 5138 with 2.13GHZ clock fre-
quency and 35W TDP. The GPU1 column denotes Nvidia C1060
with 240 cores and 200W TDP. The GPU2 column denotes Nvidia
GTX480 with 480 cores and 250W TDP. We parallelize the CPU
code using OpenMP and implement the GPU kernel using Nvidia
CUDA Toolkit 3.2. The throughput of the FPGA design is better
than the latency because we can reconstruct two images simultane-
ously. The power of the FPGA application engine is measured by
Xilinx xPower tool. We have 4 user FPGAs in the system. The ac-
tual system power of the Convey system is larger as the coprocessor
memory, coprocessor PCB etc., also consume a lot of power.

From the Table 1 we can see that, when the latency of forward
and backward is added together, our multi-FPGA engine is about
50% faster than the CUDA implementation on Tesla C1060, but
about 2X slower than Fermi GTX480. When we consider the fact
we can do two reconstructions simultaneously, that means our FPGA-
engine is 3X faster than Tesla C1060 and in par with Fermi GTX480.
The energy number is listed in the table as well. We can see that



Table 1: Performance and Energy Numbers for Computing Kernels for 1283 data
Power Forward Projection Backward Projection Forward+Backward

Latency/Throughput(s) Energy(J) Latency/Throughput(s) Energy(J) Latency/Throughput(s) Energy(J)
CPU 35W 1.81 63.4 1.67 58.4 3.48 121.8

FPGA 94W 0.305/0.153 28.7/14.4 0.308/0.154 29.0/14.5 0.613/0.307 57.7/28.9
GPU_1 200W 0.342 68.4 0.668 133.6 1.01 202
GPU_2 250W 0.085 21.3 0.276 69 0.361 90.3

Table 2: Area Results
BRAM DSP LUT FF Slice

Consumed 79 68 113,355 104,099 36511
Total Available 720 864 474,240 948,480 118,560

Utilization 11% 7% 23% 10% 30%

Table 3: Application Performance and Energy Consumption
Throughput(s) Energy(J)

CPU 1189 41.6E3
GPU_1 361 72.2E3
GPU_2 114 28.5E3
Hybrid 92.0 12.7E3

the FPGA platform delivers a good performance with a much lower
energy.

Note that it turns out that the execution time for backward pro-
jection is noticeably slower on GPU platforms. This is because the
amount of data access is up-to 2X larger (we need to first read the
voxel value and then write it back). Also we need to use more in-
vocations (and synchronization) to avoid the conflicts and ensure
the correctness. That also reduces the available parallelism. For
the FPGA design, we use the same architecture for both forward
and backward. Each PE is connected to two memory channels, one
for read and one for write. Thus their execution times are simi-
lar. However, in the forward projection, the memory channel is
somewhat under-utilized, because the number of writes is much
smaller than reads. Potentially the forward projection can be made
2X faster if we separate the design for forward and backward.

Another interesting observation is that the Fermi GPU GTX480
is between 3 to 4X faster than Tesla C1060. The number of cores is
2X of C1060 and the peak off-chip bandwidth is about 1.6X (from
100GB/s to 160GB/s). So it is likely that there is an additional 2X
performance benefit attributed from its cache systems. Our current
FPGA design does not have a cache, but it is indeed worthwhile
to investigate that possibility given the performance benefit we see
from GPU.

The area results for the complete design are listed in Table 2.
Note our core computing RTL consumes fewer logic slices, be-
cause the PDK infrastructure also consumes about 10% to 15%
area. Most of the BRAM utilization is due to the PDK infrastruc-
ture.

4.2 Application Performance and Energy
Consumption

We then test the application performance of the EM+TV algo-
rithm on a hybrid configuration where the EM part is done by the
FPGA-subsystem and the TV part is done by the GPU. In the ap-
plication, the outer iteration iterates 100 times (the application calls
100 times of EMupdate and TVupdate), and the inner EMupdate

step iterates 3 times ( each EMupdate calls forward and backward
projection routine 3 times).

Our hybrid configuration connects Fermi GTX480 onto the Con-
vey HC1-ex platform. After one EM iteration completes, the image
data is copied into the GPU memory space and the TV CUDA ker-
nel starts. The data transfer would not add substantial overhead
in this case. We measured that a pipelined data transfer (FPGA
coprocessor-side memory to PCI-e) can reach close to 1GB/s. Each
EM iteration only needs to copy 1283 or 8MB image data to GPU.
And similarly we need to do the transfer backwards when one TV
invocation finishes. That only adds about 0.016s for each EM+TV
iteration, or about 2s for the whole EM+TV application. Because
the TV kernel is highly regular stencil computation, GPU is a good
choice for that application kernel. The execution time of the TV
is much shorter than EM. In the energy calculation for the hybrid
configuration, we assume that GPU can be powered off when it is
not actively running CUDA applications. In practice, a 10% to 15%
idle power may remain.

Later, we also tested a phantom with size 2563 and 512 ∗ 512 ∗
256, and obtained a similar speedup. The algorithm is roughly
linear with number of voxels if the number of iterations are un-
changed.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we present one FPGA-based implementation for

ray-tracing EM kernels using AutoESL HLS tools. We further
show that a hybrid approach provides good performance and po-
tential energy savings. Currently, we are investigating different
algorithmic or architectural approaches that can improve the data
locality/reuse for the application.
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