
24th IEEE International Conference on Application‐specific Systems, Architectures and Processors, June 2013.

FPGA and ASIC Square Root Designs for High
Performance and Power Efficiency

Shashank Suresh, Spiridon F. Beldianu and Sotirios G. Ziavras
Department of Electrical and Computer Engineering

New Jersey Institute of Technology, Newark, NJ 07102
ziavras@njit.edu

Abstract - Floating-point square root is a fundamental
operation in signal processing and various HPC applications.
Since this is an expensive operation in resource and energy
consumption, its efficient implementation should be of priority
in future multicores that will face dark silicon issues. This
paper presents a low-cost, low-power consumption design to
calculate the square root using the IEEE754 single-precision
floating-point format. Two versions of the design are
investigated with and without clock gating (CG), respectively.
Evaluation involves FPGA and ASIC technologies at 40 and 65
nm. Substantial performance growth and reduced power
consumption are gained as compared to a popular iterative
solution. The ASIC design demonstrates much lower power
consumption, which at 40 nm is lower than that at 65 nm by
about a threefold. At 40 nm, CG for the ASIC realization is
justified primarily for low activity rates.

Keywords—FPGA, ASIC, floating-point square root, energy
consumption, multicore processors.

I. INTRODUCTION

FPGAs are commonly used to prototype processing or
communication modules which are then sometimes
converted into ASIC implementations [1, 2, 14]. Apart from
the basic arithmetic operations, such as addition, subtraction
and multiplication, the square root is a key operation often
required for the realization of signal and image processing
algorithms. These operations are often implemented on
high-performance embedded platforms that have resource
and power constraints. The square root operation is also
present in several high-performance computing
applications, such as Cholesky decomposition [9], LU
factorization [12, 13], solution of quadratic equations, and
other modern applications [10]. Hardware support for this
operation is also expected to be common in future
heterogeneous multicore processors since different cores
will have different capabilities and various types of
hardware accelerators will be present for intensive
arithmetic operations [16]. Since the square root is an
expensive operation in terms of resource and energy
consumption [7], its efficient implementation should be of
high priority in future multicore designs that will also face
major dark silicon issues [17].

SSE vector support may not be needed for every core in
multicore processors [16], and thus the sharing of vector-
processing hardware among multiple cores is highly
justified [18]. Some shared vector accelerators in future

multicores will implement directly the square root [15].
Square root computation requires more specialized
hardware than multiplication or division due to its
complexity [7]; it usually involves iterative approximation
techniques that are computationally intense [3, 7].

We introduce an enhanced square root calculation which
is based on a basic non-restoring iterative approach [5]. This
basic approach was chosen for improvement due to its
simplicity that can render it beneficial for efficient
realizations of heterogeneous multicores using FPGA and
ASIC technologies. A major objective of our work is to
compare square root realizations that are fine tuned for these
two technologies. We do not pursue complex square root
designs, such as fused multiply/divide/square root [10] that
provides the same latency for division and square root since
we do not want to penalize the former. We also ignore
approaches using integer hardware [7]. Although the basic
design is pipelined, it uses a non-pipelined iterative stage
that converges closer to the result after every iteration that
consumes one clock cycle. This iterative process applies
small increments to a variable, which is initialized
appropriately, and then squares the variable in order to
compare it with the initial input. Based on the sign of the
difference, a small value is added or subtracted accordingly.

After introducing the design for 40 nm and 65 nm target
FPGAs, we then optimize it to target 40 nm and 65 nm
ASIC processes for higher performance and lower energy
consumption. Finally, we enhance our ASIC design using
CG that reduces the power consumption by deactivating the
clock signal for inactive modules at any time. The results
highlight the effectiveness of our design and performance-
power gaps between FPGAs and ASICs.

II. SQUARE ROOT ARCHITECTURE
The design of the floating-point square root module is

divided into the pre-normalization, computational and post-
normalization stages. Pre-normalization splits the 32-bit
single-precision input into exponent and
mantissa/significand components. The leading zeros in the
mantissa are counted by logic that uses basic gates and
muxes, and operates on the 24 bits in the fractional part of
the input. The mantissa is shifted left until there are no
leading zeros and the exponent is adjusted accordingly. The
shifting of the mantissa is done with a 24-bit barrel shifter;
intermediate results during an iteration are stored in 52 bits.

24th IEEE International Conference on Application‐specific Systems, Architectures and Processors, June 2013.

The computational core employs an iterative non-
restoring algorithm [5, 8] that converges closer to the result
after every iteration. Two registers are used. The 26-bit reg1
register will hold the mantissa of the square root while reg2
will contain the square of the value stored in the former
register. reg1 is initialized by setting its MSB to 1 and
clearing all other bits. This is the best initial approximation
for a random input as it represents half of the maximum
value. reg2 has 52 bits, that is twice as many bits as in reg1,
and it is initialized with the square of the former constant. A
loop is started with a counter equal to the number of bits in
reg1. A comparison is made between reg2 and the input
mantissa fract. Based on the sign of the result, the shifted
constant is either added to or subtracted from reg1. A
similar operation is performed on reg2 which at the end of
the iteration becomes the square of reg1. This process is
applied per iteration, converging each time closer to the
desired result. When the loop is exited after 26 iterations,
reg1 will hold the square root of the input mantissa. The
final phase rounds up the fraction and adjusts the exponent.
Fig. 1 shows pseudocode to compute the mantissa. The
result from the core is appended to the exponent and the
sign bit in the post-normalization phase, thus obtaining the
square root of the input. Lines 5, 6, 8 and 9 require only
additions/subtractions since multiplication by two is
implemented simply with a left shift of the operand.

Our redesign process had its first focus to maximize the
operating frequency, and reduce the static and dynamic
power. Low-cost pipeline stages were added between large
blocks in order to synchronize the clock signals with the
data flows in various design parts. In synthesizing the
original design for FPGAs, it was observed that the pre-
normalization stage had the highest cost in terms of resource
utilization, counted in number of look-up tables (LUTs).

1 reg1=225

2 reg2=250
3 for (count=26;count >0;count --){
4 if (reg2 > fract) {
5 reg1=reg1-2(count-1)
6 reg2=reg2+22(count-1) reg1*2count
7 } else

 {
8 reg1=reg1+2(count-1)
9 reg2= reg2+22(count-1)+reg1*2count
10 }
11 }

Fig. 1. Pseudocode for the computational core.

The targeted Xilinx FPGAs are the 65 nm Virtex-5
(XC5VLX85T) and the 40 nm Virtex-6 (XC6VLX75T).
Pre-normalization of the basic design consumed 824 and
622 LUTs on the Virtex-5 and Virtex-6, respectively. Each
LUTi type, for i=1-6, accepts i inputs to implement
functions with 2i possible outputs. More complicated
functionality is realized by combining the outputs of LUTs
using multiplexers. Due to its complexity, the pre-
normalization stage affected the design by limiting the
maximum operating frequency and increasing the static
power. Bottlenecks in pre-normalization were alleviated by
optimizing the design. The next objective was to have low

static and dynamic power consumption for the modules
involved in iterations. The design was clock gated [6] to
achieve low dynamic power consumption. This was more
effective on the Xilinx Virtex-6, since, unlike Virtex-5,
Virtex-6 offers fine-grain CG [4]. A similar CG approach
was followed in the ASIC implementation.

The Virtex-5 and Virtex-6 FPGAs were chosen to have
comparable resources. The design was then converted for 65
nm and 40 nm ASIC technologies using Synopsys Design
compiler, VCS and PrimeTime [11]. Both designs were also
simulated separately, with and without CG, for analyzing
the dynamic power. The simulations were performed under
various activity rates for functional units.

TABLE I. FPGA MAX. FREQUENCIES OF BASIC DESIGN.
Virtex-5 Virtex-6

Max. MHz 75.04 176.65

TABLE II. FPGA MAX. FREQUENCIES OF ENHANCED DESIGN.
Virtex-5 Virtex-6

Variant w/o CG CG w/o CG CG
Max. MHz 199.76 196.12 205.68 203.25

TABLE III. FPGA RESOURCES IN BASIC DESIGN.

 Virtex-5 Virtex-6
 Used Avail. Utilized Used Avail. Utilized

Registers 452 51840 0.87% 526 93120 0.56%
Slice LUTs 1550 51840 2.98% 804 46560 1.72%

Slices 597 12960 4.6% 270 11640 2.3%

TABLE IV. FPGA RESOURCES IN ENHANCED DESIGN W/O CG.

 Virtex-5 Virtex-6
 Used Avail. Utilized Used Avail. Utilized

Registers 475 51840 0.91% 557 93120 0.59%
LUTs 1055 51840 2.03% 971 46560 2.08%
Slices 331 12960 2.55% 297 11640 2.3%

TABLE V. FPGA RESOURCES IN ENHANCED DESIGN WITH CG.

 Virtex-5 Virtex-6
 Used Avail. Utilized Used Avail. Utilized

Registers 449 51840 0.86% 531 93120 0.57%
LUTs 953 51840 1.83% 819 46560 1.75%
Slices 338 12960 2.60% 276 11640 2.55%

TABLE VI. FPGA STATIC POWER (mW) OF BASIC DESIGN.

 Virtex-5 Virtex-6
Static Power 900.27 1008.59

Normalized per Slices 41.41 23.19

TABLE VII. FPGA STATIC POWER (mW) OF ENHANCED DESIGN.

 Virtex-5 Virtex-6 Virtex-6
 w/o CG w/o CG CG

Static Power 903.42 1045.54 1043.99
Normalized per Slices 23.03 26.66 24.74

III. SIMULATION RESULTS

A. FPGA Design

Square root calculation requires up to 40 clock cycles.
Two cycles are spent in pre-normalization for an input that
does not conform to IEEE754. The computation core takes

24th IEEE International Conference on Application‐specific Systems, Architectures and Processors, June 2013.

31 clock cycles; 26 cycles for the iterative algorithm and
five cycles for initialization (this overhead can be zeroed
with specialized circuitry, but we assume that the involved
registers can also be used by other processes). Post-
normalization requires three cycles. Finally, the top module
that controls the three stages adds four cycles. To keep
clock skew to a minimum, clock management block
modules were embedded in the FPGA design. The Virtex-5
designs employ DCM (Digital Clock Module) while the
Virtex-6 designs use MMCM (Mixed Mode Clock
Manager) to generate a clock tree. They are instantiated
using the Xilinx LogicCORE IP clocking wizard.

CG changes the clock tree structure. Due to the
embedded clock blocks in Virtex-6 that increase the FPGA
resources, there is slightly higher static power consumption
than with the PLL in Virtex-5. A lot of the logic is
synthesized using many LUTs, especially for Virtex-5. This
also affects the timing and power consumption. Beyond the
optimizations during design, the tool also does a better job
in synthesizing the design on Virtex-6 than on Virtex-5.
Hence, there are more gaps in terms of timing, area and
power when targeting Virtex-5 as compared to Virtex-6.

TABLE VIII. FPGA DYNAMIC POWER (mW) OF COMPUTATIONAL

CORE FOR BASIC DESIGN (CG: AUTO).
Activity (%) Virtex-5 Virtex-6

0 39.91 19.44
25 46.88 22.39
50 55.41 26.14
75 62.66 28.73

100 67.61 30.75

TABLE IX. FPGA DYNAMIC POWER (mW) OF COMPUTATIONAL

CORE FOR ENHANCED DESIGN.
Activity

(%)
Virtex-5 Virtex-6
w/o CG w/o CG CG

0 18.87 11.81 12.03
25 24.34 17.98 16.43
50 29.84 24.26 21.38
75 35.26 30.21 26.41

100 40.66 34.82 30.91

Tables I-II show the maximum operating

frequencies of the FPGA designs after synthesis; it also
shows CG for the enhanced design. The operating frequency
of the enhanced design is much higher for Virtex-5; it more
than doubles compared to the basic design. Tables III-V
compare various implementations in FPGA resource
utilization. Each Virtex-5 slice contains four LUTs and four
flip-flops, whereas each Virtex-6 slice contains four LUTs
and eight flip-flops. Without CG, enabling circuitry is
embedded by the design tool within individual flip flops;
CG is facilitated selectively by the developer using external
clock gates. CG generally reduces the numbers of consumed
resources for both the FPGA and ASIC designs.

To obtain the average power consumed by an FPGA, the
Xilinx XPower analyzer tool was used. Native Circuit
Description (NCD) and Physical Constraints File (PCF)
files generate the estimated power figures. For accurate
estimation of the dynamic power a Value Change Dump
(VCD) file is also generated to monitor all the signals and
their toggling in the enhanced architecture. A testbench was

designed to generate simulations for activity rates 0%-100%
(in increments of 25%), and the average dynamic power
was measured. For the basic design, the CG setting in
Xilinx ISE is set to Auto (the tool attempts to optimize the
design for power). For the enhanced design the flag is set to
Yes (with CG) or No (without CG).

Tables VI-VII report the static power. Due to increased
resources compared to the basic design, the static power
increases slightly. Tables VIII-IX show the average
dynamic power of the computational core under various
activity rates. The enhanced design is better than the basic
design on Virtex-5, and also on Virtex-6 without CG. With
CG, it is still better at lower than peak activity rate. CG on
Virtex-6 is the best choice for total power consumption.

TABLE X. ASIC AREA OF ENHANCED DESIGN W/O CK.

 40 nm 65 nm
Library: Temp (0C), Volts 125, 1.21 125, 1.1
Combinational Area (µm2) 3254.76 8353.44

Non-combinational Area (µm2) 2423.56 6309.12
Total Cell Area (µm2) 5678.32 14662.56

B. ASIC Design
40 nm and 65 nm NLDM (Non Linear Delay Model)

design libraries of Synopsys were used for synthesis,
simulation, and timing/area/power estimation in order to
match the feature sizes of the target FPGAs. Based on the
fan-out, NLDM estimates the parasitic capacitances and
resistances of wires and the loads of gates. Propagation
delays are presented in a non-linear format and are
calculated with a cell’s output load (wire and fan-out loads)
and slew rate. The data is stored in a two-dimensional LUT
and intermediate values are interpolated. Apart from the
transistor channel lengths, the two libraries (shown in
Tables X-XI) vary with respect to the operating conditions.

TABLE XI. ASIC AREA OF ENHANCED DESIGN WITH CG.

 40 nm 65 nm
Library: Temp (0C), Volts 125, 1.21 125, 1.1 V
Combinational Area (µm2) 3190.37 8076.48

Non-combinational Area (µm2) 2389.87 6145.92
Total Cell Area (µm2) 5580.24 14222.40

Design synthesis was performed using Synopsys Design

Compiler. RTL and Netlist simulations used VCS (Verilog
Compiler and Simulator). For power consumption reports,
the design run at 900 MHz for both feature sizes, and the
Switching Activity was monitored. PrimeTime from
Synopsys was used to analyze the design, and the results
were extracted using the SAIF file obtained from netlist
simulations. Tables X-XI show area statistics for the ASIC
enhanced design with and without CG. CG reduces the area
needs since modules do not contain embedded clock enable
ports and associated interfaces.

TABLE XII. ASIC POWER (mW) AT 40 nm W/O CG.

Activity
(%)

Net
Switching

Cell
Internal

Cell
Leakage

Total
Power

0 0; 0% 3.84;83.4% 0.76; 16.6% 4.61
25 0.34;6.5% 4.12; 78.9% 0.77; 14.7% 5.22
50 0.69;11.8% 4.40; 75.1% 0.77;13.1% 5.86
75 1.04; 16% 4.70; 72.2% 0.77;11.8% 6.51

24th IEEE International Conference on Application‐specific Systems, Architectures and Processors, June 2013.

100 1.40;19.5% 5.01;69.8% 0.77;10.8% 7.18

TABLE XIII. ASIC POWER (mW) AT 65 nm W/O CG.
Activity

(%)
Net

Switching
Cell

Internal
Cell

Leakage
Total
Power

0 0.02;0.2% 9;61.8% 5.54;38% 14.56
25 0.5;3.2% 9.5;61% 5.6;35.8% 15.65
50 1; 6% 10.1;60.4% 5.64;33.6% 16.74
75 1.5;8.4% 10.7;59.9% 5.67;31.7% 17.86

100 1.98;10.5% 11.2;59.4% 5.69;30.1% 18.86

TABLE XIV. ASIC POWER (mW) AT 40 nm WITH CG.
Activity

Rate (%)
Net

Switching
Cell

Internal
Cell

Leakage
Total
Power

0 0;0% 2.42; 75.76% 0.77;24.24% 3.19
25 0.51; 12.56% 2.8; 68.52% 0.77;18.92% 4.08
50 1.05; 20.81% 3.2; 63.69% 0.78;15.50% 5.03
75 1.58; 26.43% 3.63; 60.57% 0.78;13.00% 5.99
100 2.12; 30.39% 4.07; 58.43% 0.78;11.19% 6.97

Tables XII-XIV show the ASIC static and dynamic

power. The power at 40 nm is significantly lower than that
at 65 nm by about a threefold. At 40 nm, the power with CG
is lower than without CG. The difference is higher at lower
activity rates. At low rates, clock gates capture most of the
clock power consumption of the CG design, while at high
activity rates both designs rely on distributed clocks. Cell
static power is consumed by a gate when it is not switching;
it is caused by currents flowing through the transistors even
when they are turned off. Dynamic power has two
components: switching power and cell internal power.
Switching power is dissipated when charging or discharging
the load capacitance at the cell output. Its amount depends
on the switching activity (and obviously the operating
frequency) of the cell. The larger the number of logic
transitions on the cell output, the larger the switching
power. Internal power is consumed in a cell for charging or
discharging internal cell capacitances.

Fig. 2 plots its energy consumption per square-root
computation. 40 nm with CG provides the best choice in
terms of total power and energy consumption per square-
root evaluation. The lower the activity rate is, the more
striking are the benefits of CG. For very high activity rates,
the 40 nm design without CG competes favorably since all
parts of the design have to be active during execution.

IV. CONCLUSIONS
The proposed low-cost design for square root

computation with IEEE754 single-precision compliant
floating-point data uses a non-restoring iterative approach
that provides a high operating efficiency. 40 nm and 65 nm
FPGA and ASIC designs were optimized for reduced
resource and energy consumption. Several versions of the
ASIC design were investigated, including designs with the
absence or presence of CG. The results show substantial
performance growth and reduced power consumption for
both FPGA and ASIC technologies in comparison to the
realization of the basic non-restoring iterative algorithm.
ASIC designs demonstrate much lower power consumption
than FPGA designs. ASIC power at 40 nm is lower than that

at 65 nm by about a threefold. At 40 nm, CG for the ASIC
design is justified for low activity rates.

REFERENCES

[1] V. Hopkin and B. Kirk, "FPGA Migration to ASICs,"
WESCON Conf. Record Microel. Comm. Techn., 1995.

[2] S.G. Ziavras, et al., "Coprocessor Design to Support MPI
Primitives in Configurable Multiprocessors," Integration, the
VLSI Journal, Vol. 40, No. 3, 2007, pp. 235-252.

[3] Y. Li and W. Chu, “Implementation of Single Precision
Floating Point Square Root on FPGAs”, 5th IEEE symposium
on FPGA-based Custom Computing Machines, April 1997.

[4] F. Rivoallon, “Reducing Switching Power with Intelligent
Clock Gating”, Xilinx white paper, March 2011.

[5] J. Bannur and A. Varma, “The VLSI Implementation of
Square Root Algorithm,” IEEE Symp. Comp. Arith., 1985.

[6] S. Churiwala, S. Garg and M. Gianfagna, Principles of VLSI
RTL Design: A Practical Guide, Springer publ., May 2011.

[7] I. Sajid, M.M. Ahmed and S.G. Ziavras, “Novel Pipelined
Architecture for Efficient Evaluation of the Square Root
Using a Modified Non-Restoring Algorithm,” Journal Signal
Proces. Systems, Vol. 67, No. 2, May 2012, pp. 157-166.

[8] J. Al-Eryani, http://opencores.org/project,fpu100.
[9] S.G. Haridas and S.G. Ziavras, "FPGA Implementation of a

Cholesky Algorithm for a Shared-Memory Multiprocessor
Architecture," Parallel Alg. Applic., Dec. 2004, pp. 211-226.

[10] T.-J. Kwon, et al., “Floating-Point Division and Square Root
Implementation using a Taylor-Series Expansion Algorithm,”
Midwest Symp. Circuits Syst., 2008.

[11] www.synopsys.com, Synopsys, Inc.
[12] X. Wang and S.G. Ziavras, "A Configurable Multiprocessor

and Dynamic Load Balancing for Parallel LU Factorization,"
18th Intern. Parallel Distrib, Proc. Symp., April 2004.

[13] X. Wang, S.G. Ziavras, et al., “Parallel Solution of Newton’s
Power Flow Equations on Configurable Chips,” Intern.
Journal Electr. Power Energy Syst., June 2007, pp. 422-431.

[14] R.F. Woods, et al., “High Performance DSP ASIC for
Multiply, Divide and Square Root,” 5th IEEE Intern. ASIC
Conf. Exh., 1992.

[15] S.F. Beldianu, C. Dahlberg, T. Steele and S.G. Ziavras,
“Versatile Design of Shared Vector Coprocessors for
Multicores,” Micropr. Micros., Oct. 2012, pp. 543–554.

[16] M. Arora, et al., “Redefining the Role of the CPU in the Era
of CPU-GPU Integration,” IEEE Micro, Nov. 2012, pp. 4-16.

[17] H. Esmaeilzadehy, et al., “Dark Silicon and the End of
Multicore Scaling,” IEEE Micro, May 2012, pp. 122-134

[18] S.F. Beldianu and S.G. Ziavras, “On-Chip Vector
Coprocessor Sharing for Multicores,” 19th Euromicro Intern.
Conf. Paral. Distr. Netw.-based Comp., Febr. 2011.

Fig. 2. ASIC energy consumption (nJ) per square-root computation of
enhanced design for various activity rates.

0

0.5

1

1.5

2

2.5

3

25% 50% 75% 100%

40nm

40nm [CG]

65nm

