
24th IEEE International Conference on Application‐specific Systems, Architectures and Processors, June 2013. 
 

 
 

FPGA and ASIC Square Root Designs for High 
Performance and Power Efficiency  

Shashank Suresh, Spiridon F. Beldianu and Sotirios G. Ziavras 
Department of Electrical and Computer Engineering 

New Jersey Institute of Technology, Newark, NJ 07102 
ziavras@njit.edu 

 
 

Abstract - Floating-point square root is a fundamental 
operation in signal processing and various HPC applications. 
Since this is an expensive operation in resource and energy 
consumption, its efficient implementation should be of priority 
in future multicores that will face dark silicon issues. This 
paper presents a low-cost, low-power consumption design to 
calculate the square root using the IEEE754 single-precision 
floating-point format. Two versions of the design are 
investigated with and without clock gating (CG), respectively. 
Evaluation involves FPGA and ASIC technologies at 40 and 65 
nm. Substantial performance growth and reduced power 
consumption are gained as compared to a popular iterative 
solution. The ASIC design demonstrates much lower power 
consumption, which at 40 nm is lower than that at 65 nm by 
about a threefold. At 40 nm, CG for the ASIC realization is 
justified primarily for low activity rates. 

Keywords—FPGA, ASIC, floating-point square root, energy 
consumption, multicore processors. 

I. INTRODUCTION 

FPGAs are commonly used to prototype processing or 
communication modules which are then sometimes 
converted into ASIC implementations [1, 2, 14]. Apart from 
the basic arithmetic operations, such as addition, subtraction 
and multiplication, the square root is a key operation often 
required for the realization of signal and image processing 
algorithms. These operations are often implemented on 
high-performance embedded platforms that have resource 
and power constraints. The square root operation is also 
present in several high-performance computing 
applications, such as Cholesky decomposition [9], LU 
factorization [12, 13], solution of quadratic equations, and 
other modern applications [10]. Hardware support for this 
operation is also expected to be common in future 
heterogeneous multicore processors since different cores 
will have different capabilities and various types of 
hardware accelerators will be present for intensive 
arithmetic operations [16]. Since the square root is an 
expensive operation in terms of resource and energy 
consumption [7], its efficient implementation should be of 
high priority in future multicore designs that will also face 
major dark silicon issues [17].   

SSE vector support may not be needed for every core in 
multicore processors [16], and thus the sharing of vector-
processing hardware among multiple cores is highly 
justified [18]. Some shared vector accelerators in future 

multicores will implement directly the square root [15]. 
Square root computation requires more specialized 
hardware than multiplication or division due to its 
complexity [7]; it usually involves iterative approximation 
techniques that are computationally intense [3, 7]. 

We introduce an enhanced square root calculation which 
is based on a basic non-restoring iterative approach [5]. This 
basic approach was chosen for improvement due to its 
simplicity that can render it beneficial for efficient 
realizations of heterogeneous multicores using FPGA and 
ASIC technologies. A major objective of our work is to 
compare square root realizations that are fine tuned for these 
two technologies.  We do not pursue complex square root 
designs, such as fused multiply/divide/square root [10] that 
provides the same latency for division and square root since 
we do not want to penalize the former. We also ignore 
approaches using integer hardware [7]. Although the basic 
design is pipelined, it uses a non-pipelined iterative stage 
that converges closer to the result after every iteration that 
consumes one clock cycle. This iterative process applies 
small increments to a variable, which is initialized 
appropriately, and then squares the variable in order to 
compare it with the initial input. Based on the sign of the 
difference, a small value is added or subtracted accordingly.  

After introducing the design for 40 nm and 65 nm target 
FPGAs, we then optimize it to target 40 nm and 65 nm 
ASIC processes for higher performance and lower energy 
consumption. Finally, we enhance our ASIC design using 
CG that reduces the power consumption by deactivating the 
clock signal for inactive modules at any time. The results 
highlight the effectiveness of our design and performance-
power gaps between FPGAs and ASICs.  
 

II. SQUARE ROOT ARCHITECTURE 
The design of the floating-point square root module is 

divided into the pre-normalization, computational and post-
normalization stages. Pre-normalization splits the 32-bit 
single-precision input into exponent and 
mantissa/significand components. The leading zeros in the 
mantissa are counted by logic that uses basic gates and 
muxes, and operates on the 24 bits in the fractional part of 
the input. The mantissa is shifted left until there are no 
leading zeros and the exponent is adjusted accordingly. The 
shifting of the mantissa is done with a 24-bit barrel shifter; 
intermediate results during an iteration are stored in 52 bits. 
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The computational core employs an iterative non-
restoring algorithm [5, 8] that converges closer to the result 
after every iteration. Two registers are used. The 26-bit reg1 
register will hold the mantissa of the square root while reg2 
will contain the square of the value stored in the former 
register. reg1 is initialized by setting its MSB to 1 and 
clearing all other bits. This is the best initial approximation 
for a random input as it represents half of the maximum 
value. reg2 has 52 bits, that is twice as many bits as in reg1, 
and it is initialized with the square of the former constant. A 
loop is started with a counter equal to the number of bits in 
reg1. A comparison is made between reg2 and the input 
mantissa fract. Based on the sign of the result, the shifted 
constant is either added to or subtracted from reg1. A 
similar operation is performed on reg2 which at the end of 
the iteration becomes the square of reg1. This process is 
applied per iteration, converging each time closer to the 
desired result. When the loop is exited after 26 iterations, 
reg1 will hold the square root of the input mantissa. The 
final phase rounds up the fraction and adjusts the exponent. 
Fig. 1 shows pseudocode to compute the mantissa. The 
result from the core is appended to the exponent and the 
sign bit in the post-normalization phase, thus obtaining the 
square root of the input. Lines 5, 6, 8 and 9 require only 
additions/subtractions since multiplication by two is 
implemented simply with a left shift of the operand. 

Our redesign process had its first focus to maximize the 
operating frequency, and reduce the static and dynamic 
power. Low-cost pipeline stages were added between large 
blocks in order to synchronize the clock signals with the 
data flows in various design parts. In synthesizing the 
original design for FPGAs, it was observed that the pre-
normalization stage had the highest cost in terms of resource 
utilization, counted in number of look-up tables (LUTs).  

 
1 reg1=225

 

2 reg2=250  
3 for (count=26;count >0;count --){ 
4   if (reg2 > fract) { 
5      reg1=reg1-2(count-1) 
6      reg2=reg2+22(count-1) reg1*2count  
7   } else  

  { 
8      reg1=reg1+2(count-1) 
9      reg2= reg2+22(count-1)+reg1*2count 
10   } 
11 } 

 
Fig. 1. Pseudocode for the computational core. 
 

The targeted Xilinx FPGAs are the 65 nm Virtex-5 
(XC5VLX85T) and the 40 nm Virtex-6 (XC6VLX75T). 
Pre-normalization of the basic design consumed 824 and 
622 LUTs on the Virtex-5 and Virtex-6, respectively.  Each 
LUTi type, for i=1-6, accepts i inputs to implement 
functions with 2i possible outputs. More complicated 
functionality is realized by combining the outputs of LUTs 
using multiplexers. Due to its complexity, the pre-
normalization stage affected the design by limiting the 
maximum operating frequency and increasing the static 
power. Bottlenecks in pre-normalization were alleviated by 
optimizing the design. The next objective was to have low 

static and dynamic power consumption for the modules 
involved in iterations. The design was clock gated [6] to 
achieve low dynamic power consumption. This was more 
effective on the Xilinx Virtex-6, since, unlike Virtex-5, 
Virtex-6 offers fine-grain CG  [4]. A similar CG approach 
was followed in the ASIC implementation. 

The Virtex-5 and Virtex-6 FPGAs were chosen to have 
comparable resources. The design was then converted for 65 
nm and 40 nm ASIC technologies using Synopsys Design 
compiler, VCS and PrimeTime [11]. Both designs were also 
simulated separately, with and without CG, for analyzing 
the dynamic power. The simulations were performed under 
various activity rates for functional units. 
 

TABLE I. FPGA MAX. FREQUENCIES OF BASIC DESIGN. 
Virtex-5 Virtex-6

Max. MHz 75.04 176.65
 

TABLE II. FPGA MAX. FREQUENCIES OF ENHANCED DESIGN. 
Virtex-5 Virtex-6

Variant w/o CG CG w/o CG CG
Max. MHz 199.76 196.12 205.68 203.25

 
TABLE III. FPGA RESOURCES IN BASIC DESIGN. 

 Virtex-5 Virtex-6 
 Used Avail. Utilized Used Avail. Utilized 

Registers 452 51840 0.87% 526 93120 0.56% 
Slice LUTs 1550 51840 2.98% 804 46560 1.72% 

Slices 597 12960 4.6% 270 11640 2.3% 
 

TABLE IV. FPGA RESOURCES IN ENHANCED DESIGN W/O CG. 

 Virtex-5 Virtex-6 
 Used Avail. Utilized Used Avail. Utilized 

Registers 475 51840 0.91% 557 93120 0.59% 
LUTs 1055 51840 2.03% 971 46560 2.08% 
Slices 331 12960 2.55% 297 11640 2.3% 

 
TABLE V. FPGA RESOURCES IN ENHANCED DESIGN WITH CG. 

 Virtex-5 Virtex-6 
 Used Avail. Utilized Used Avail. Utilized 

Registers 449 51840 0.86% 531 93120 0.57% 
LUTs 953 51840 1.83% 819 46560 1.75% 
Slices 338 12960 2.60% 276 11640 2.55% 

 
TABLE VI. FPGA STATIC POWER (mW) OF BASIC DESIGN. 

 Virtex-5 Virtex-6 
Static Power 900.27 1008.59 

Normalized per Slices 41.41 23.19 
 
TABLE VII. FPGA STATIC POWER (mW) OF ENHANCED DESIGN. 

  Virtex-5 Virtex-6 Virtex-6 
 w/o CG w/o CG CG 

Static Power 903.42 1045.54 1043.99 
Normalized per Slices 23.03 26.66 24.74 

 
 

III. SIMULATION RESULTS 
 
A. FPGA Design 

Square root calculation requires up to 40 clock cycles. 
Two cycles are spent in pre-normalization for an input that 
does not conform to IEEE754. The computation core takes 
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31 clock cycles; 26 cycles for the iterative algorithm and 
five cycles for initialization (this overhead can be zeroed 
with specialized circuitry, but we assume that the involved 
registers can also be used by other processes). Post-
normalization requires three cycles. Finally, the top module 
that controls the three stages adds four cycles.  To keep 
clock skew to a minimum, clock management block 
modules were embedded in the FPGA design. The Virtex-5 
designs employ DCM (Digital Clock Module) while the 
Virtex-6 designs use MMCM (Mixed Mode Clock 
Manager) to generate a clock tree. They are instantiated 
using the Xilinx LogicCORE IP clocking wizard.  

CG changes the clock tree structure. Due to the 
embedded clock blocks in Virtex-6 that increase the FPGA 
resources, there is slightly higher static power consumption 
than with the PLL in Virtex-5. A lot of the logic is 
synthesized using many LUTs, especially for Virtex-5. This 
also affects the timing and power consumption. Beyond the 
optimizations during design, the tool also does a better job 
in synthesizing the design on Virtex-6 than on Virtex-5. 
Hence, there are more gaps in terms of timing, area and 
power when targeting Virtex-5 as compared to Virtex-6. 
 
TABLE VIII. FPGA DYNAMIC POWER (mW) OF COMPUTATIONAL 

CORE FOR BASIC DESIGN (CG: AUTO). 
Activity (%) Virtex-5 Virtex-6 

0 39.91 19.44 
25 46.88 22.39 
50 55.41 26.14 
75 62.66 28.73 

100 67.61 30.75 

 
TABLE IX. FPGA DYNAMIC POWER (mW) OF COMPUTATIONAL 

CORE FOR ENHANCED DESIGN. 
Activity  

(%) 
Virtex-5 Virtex-6 
w/o CG w/o CG CG 

0 18.87 11.81 12.03 
25 24.34 17.98 16.43 
50 29.84 24.26 21.38 
75 35.26 30.21 26.41 

100 40.66 34.82 30.91 

 
Tables I-II show the maximum operating 

frequencies of the FPGA designs after synthesis; it also 
shows CG for the enhanced design. The operating frequency 
of the enhanced design is much higher for Virtex-5; it more 
than doubles compared to the basic design. Tables III-V 
compare various implementations in FPGA resource 
utilization. Each Virtex-5 slice contains four LUTs and four 
flip-flops, whereas each Virtex-6 slice contains four LUTs 
and eight flip-flops. Without CG, enabling circuitry is 
embedded by the design tool within individual flip flops; 
CG is facilitated selectively by the developer using external 
clock gates. CG generally reduces the numbers of consumed 
resources for both the FPGA and ASIC designs. 

To obtain the average power consumed by an FPGA, the 
Xilinx XPower analyzer tool was used. Native Circuit 
Description (NCD) and Physical Constraints File (PCF) 
files generate the estimated power figures. For accurate 
estimation of the dynamic power a Value Change Dump 
(VCD) file is also generated to monitor all the signals and 
their toggling in the enhanced architecture.  A testbench was 

designed to generate simulations for activity rates 0%-100% 
(in increments of 25%), and the average dynamic power 
was measured. For the basic design, the CG setting in 
Xilinx ISE is set to Auto (the tool attempts to optimize the 
design for power). For the enhanced design the flag is set to 
Yes (with CG) or No (without CG).  

Tables VI-VII report the static power. Due to increased 
resources compared to the basic design, the static power 
increases slightly. Tables VIII-IX show the average 
dynamic power of the computational core under various 
activity rates. The enhanced design is better than the basic 
design on Virtex-5, and also on Virtex-6 without CG. With 
CG, it is still better at lower than peak activity rate.  CG on 
Virtex-6 is the best choice for total power consumption. 

 
TABLE X. ASIC AREA OF ENHANCED DESIGN W/O CK. 

 40 nm 65 nm 
Library: Temp (0C), Volts 125,  1.21 125, 1.1 
Combinational Area (µm2) 3254.76 8353.44 

Non-combinational Area (µm2) 2423.56 6309.12 
Total Cell Area (µm2) 5678.32 14662.56 

 

B. ASIC Design 
40 nm and 65 nm NLDM (Non Linear Delay Model) 

design libraries of Synopsys were used for synthesis, 
simulation, and timing/area/power estimation in order to 
match the feature sizes of the target FPGAs. Based on the 
fan-out, NLDM estimates the parasitic capacitances and 
resistances of wires and the loads of gates. Propagation 
delays are presented in a non-linear format and are 
calculated with a cell’s output load (wire and fan-out loads) 
and slew rate. The data is stored in a two-dimensional LUT 
and intermediate values are interpolated. Apart from the 
transistor channel lengths, the two libraries (shown in 
Tables X-XI) vary with respect to the operating conditions. 

 
TABLE XI. ASIC AREA OF ENHANCED DESIGN WITH CG. 

 40 nm 65 nm 
Library: Temp (0C), Volts 125, 1.21 125, 1.1 V 
Combinational Area (µm2) 3190.37 8076.48 

Non-combinational Area (µm2) 2389.87 6145.92 
Total Cell Area (µm2) 5580.24 14222.40 

 
Design synthesis was performed using Synopsys Design 

Compiler. RTL and Netlist simulations used VCS (Verilog 
Compiler and Simulator). For power consumption reports, 
the design run at 900 MHz for both feature sizes, and the 
Switching Activity was monitored. PrimeTime from 
Synopsys was used to analyze the design, and the results 
were extracted using the SAIF file obtained from netlist 
simulations. Tables X-XI show area statistics for the ASIC 
enhanced design with and without CG. CG reduces the area 
needs since modules do not contain embedded clock enable 
ports and associated interfaces. 

 
TABLE XII. ASIC POWER (mW) AT 40 nm W/O CG. 

Activity  
(%) 

Net 
Switching 

Cell 
Internal 

Cell   
Leakage 

Total  
Power 

0 0; 0% 3.84;83.4% 0.76; 16.6% 4.61 
25 0.34;6.5% 4.12; 78.9% 0.77; 14.7% 5.22 
50 0.69;11.8% 4.40; 75.1% 0.77;13.1% 5.86 
75 1.04; 16% 4.70; 72.2% 0.77;11.8% 6.51 
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100 1.40;19.5% 5.01;69.8% 0.77;10.8% 7.18 
 
 

TABLE XIII. ASIC POWER (mW) AT 65 nm W/O CG. 
Activity 

(%) 
Net 

Switching 
Cell 

Internal 
Cell 

Leakage 
Total 
Power 

0 0.02;0.2% 9;61.8% 5.54;38% 14.56 
25 0.5;3.2% 9.5;61% 5.6;35.8% 15.65 
50 1; 6% 10.1;60.4% 5.64;33.6% 16.74 
75 1.5;8.4% 10.7;59.9% 5.67;31.7% 17.86 

100 1.98;10.5% 11.2;59.4% 5.69;30.1% 18.86 
 

TABLE XIV. ASIC POWER (mW) AT 40 nm WITH CG. 
Activity 

Rate (%) 
Net 

Switching 
Cell 

Internal 
Cell 

Leakage 
Total  
Power 

0 0;0% 2.42; 75.76% 0.77;24.24% 3.19 
25 0.51; 12.56% 2.8; 68.52% 0.77;18.92% 4.08 
50 1.05; 20.81% 3.2; 63.69% 0.78;15.50% 5.03 
75 1.58; 26.43% 3.63; 60.57% 0.78;13.00% 5.99 
100 2.12; 30.39% 4.07; 58.43% 0.78;11.19% 6.97 

 
Tables XII-XIV show the ASIC static and dynamic 

power. The power at 40 nm is significantly lower than that 
at 65 nm by about a threefold. At 40 nm, the power with CG 
is lower than without CG. The difference is higher at lower 
activity rates. At low rates, clock gates capture most of the 
clock power consumption of the CG design, while at high 
activity rates both designs rely on distributed clocks. Cell 
static power is consumed by a gate when it is not switching; 
it is caused by currents flowing through the transistors even 
when they are turned off. Dynamic power has two 
components: switching power and cell internal power. 
Switching power is dissipated when charging or discharging 
the load capacitance at the cell output. Its amount depends 
on the switching activity (and obviously the operating 
frequency) of the cell. The larger the number of logic 
transitions on the cell output, the larger the switching 
power. Internal power is consumed in a cell for charging or 
discharging internal cell capacitances.  

Fig. 2 plots its energy consumption per square-root 
computation. 40 nm with CG provides the best choice in 
terms of total power and energy consumption per square-
root evaluation. The lower the activity rate is, the more 
striking are the benefits of CG. For very high activity rates, 
the 40 nm design without CG competes favorably since all 
parts of the design have to be active during execution. 
 

IV. CONCLUSIONS 
The proposed low-cost design for square root 

computation with IEEE754 single-precision compliant 
floating-point data uses a non-restoring iterative approach 
that provides a high operating efficiency. 40 nm and 65 nm 
FPGA and ASIC designs were optimized for reduced 
resource and energy consumption. Several versions of the 
ASIC design were investigated, including designs with the 
absence or presence of CG.  The results show substantial 
performance growth and reduced power consumption for 
both FPGA and ASIC technologies in comparison to the 
realization of the basic non-restoring iterative algorithm. 
ASIC designs demonstrate much lower power consumption 
than FPGA designs. ASIC power at 40 nm is lower than that 

at 65 nm by about a threefold. At 40 nm, CG for the ASIC 
design is justified for low activity rates. 
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Fig. 2.  ASIC energy consumption (nJ) per square-root computation of  
enhanced design for various activity rates. 
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