
Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2008, Article ID 636145, 8 pages
doi:10.1155/2008/636145

Research Article

FPGA-Based Embedded Motion Estimation Sensor

Zhaoyi Wei, Dah-Jye Lee, Brent E. Nelson, James K. Archibald, and Barrett B. Edwards

Electrical and Computer Engineering Department, Brigham Young University, Provo, UT 84602, USA

Correspondence should be addressed to Dah-Jye Lee, djlee@ee.byu.edu

Received 27 March 2008; Accepted 24 June 2008

Recommended by Fernando Pardo

Accurate real-time motion estimation is very critical to many computer vision tasks. However, because of its computational power
and processing speed requirements, it is rarely used for real-time applications, especially for micro unmanned vehicles. In our
previous work, a FPGA system was built to process optical flow vectors of 64 frames of 640 × 480 image per second. Compared
to software-based algorithms, this system achieved much higher frame rate but marginal accuracy. In this paper, a more accurate
optical flow algorithm is proposed. Temporal smoothing is incorporated in the hardware structure which significantly improves
the algorithm accuracy. To accommodate temporal smoothing, the hardware structure is composed of two parts: the derivative
(DER) module produces intermediate results and the optical flow computation (OFC) module calculates the final optical flow
vectors. Software running on a built-in processor on the FPGA chip is used in the design to direct the data flow and manage
hardware components. This new design has been implemented on a compact, low power, high performance hardware platform for
micro UV applications. It is able to process 15 frames of 640 × 480 image per second and with much improved accuracy. Higher
frame rate can be achieved with further optimization and additional memory space.

Copyright © 2008 Zhaoyi Wei et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Optical flow aims to measure motion field from the apparent
motion of the brightness pattern. Optical flow is one of
the most important descriptions for an image sequence
and is widely used in 3D vision tasks such as motion
estimation, structure from motion (SfM), time-to-impact,
and so forth. An accurate hardware-friendly optical flow
algorithm is proposed and its hardware design is presented
in this paper. This design can be used for unmanned air
vehicle (UAV) navigation tasks, moving object detection, and
other applications which require fast and accurate motion
estimation.

The basic assumption of optical flow algorithms is the
brightness constancy constraint, which assumes that image
brightness changes are due only to motion. In other words,
if motion between frames is small, other effects (such as
changes in lighting conditions) causing brightness changes
can be neglected. However, one limitation of the use of
optical flow is its computational requirement. The processing
time of existing optical flow algorithms is usually on the
order of seconds or longer per frame. This long processing
time thus prevents optical flow algorithms from being

used for most real-time applications such as autonomous
navigation for unmanned vehicles.

In recent years, a number of different schemes have been
proposed to implement optical flow algorithms for real-time
applications. The basic idea behind them is to use pipeline or
parallel processing architectures to speed up computations.
For example, graphics processing unit (GPU) devices have
recently been used for optical flow implementation with
good results [1–3]. Alternatively, Correia and Campilho [4]
proposed a design which can process the Yosemite sequence
in 47.8 milliseconds using a pipeline image processor.
Compared to GPUs or processors, FPGAs are more suitable
for small UAV operation because of their compact size
and low power consumption. FPGAs have been used to
calculate optical flow [5–13] in the past few years because
of their configuration flexibility and high data processing
speed. For example an iterative algorithm proposed by Horn
and Schunck [14] was implemented in an FPGA in [5–
7]. The classical Lucas and Kanade approach [15] was also
implemented in [7, 8] and provided a tradeoff between
accuracy and processing efficiency.

To improve accuracy and provide high-performance
solutions, many different optical flow algorithms have been

mailto:djlee@ee.byu.edu

2 International Journal of Reconfigurable Computing

developed in the last two decades. During this time, 3D
tensor techniques have shown their superiority in producing
dense and accurate optical flow fields [16–19]. The 3D tensor
provides a powerful and closed form representation of the
local brightness structure. In our previous work, a tensor-
based optical flow algorithm was implemented on an FPGA
to process 64 frames of 640 × 480 image per second.

Despite the fact that hardware-based optical flow design
can achieve much higher processing rates than software,
hardware-based designs are usually less accurate. Using
the design in [12] as an example, its accuracy measured
in angular error is 12.7◦ on the Yosemite sequence while
state-of-art optical flow algorithms using software and with
sufficient memory space can achieve accuracy close to 1.0◦

on the same sequence. Two main reasons affecting accuracy
are the following.

(1) Algorithm limitation: many software-based algo-
rithms use iteration and apply various optimization
techniques to find optimal values. However, hardware
is best for algorithms which can be pipelined and
processed in parallel. Therefore, only a very limited
subset of the available software-based algorithms is
a good fit for hardware. Sacrificing accuracy for
processing speed is inevitable for hardware imple-
mentation.

(2) Hardware resource limitations: for optical flow
algorithms, smoothing is a very important opera-
tion for suppressing noise and extracting accurate
motion information. However, current smoothing
algorithms for software are not suitable for hardware
implementation where a tradeoff between accuracy
and feasibility needs to be made. Moreover, software-
based algorithms mostly use floating point compu-
tations. When implementing software optical calcu-
lations in hardware, data truncation, rounding, and
saturation operations lower the algorithm’s accuracy.

Our goal in this paper is to improve the accuracy of
previous hardware optical flow designs under the prereq-
uisite of speed and feasibility. The design described herein
uses temporal smoothing in addition to spatial smoothing in
the calculation to improve the accuracy and stability of the
algorithm. To accommodate temporal smoothing (which is
not trivial in hardware), a new hardware organization is used.
The hardware pipeline is decomposed into two modules.
The first module calculates derivative frames for each image
frame. The second module calculates optical flow from the
derivative frames. From the experimental analysis done, it
can be seen that this design achieves an error rate of 6.7◦

on the Yosemite sequence which doubles the accuracy of
previous work [12]. The temporal smoothing used prevents
the creation of a fully pipelined design. Further, it requires
additional memory bandwidth, leading to a processing rate
of 15 frames per second for 640 × 480 images. Higher
frame rates could be achieved with further optimizations
and additional memory space. However, this frame rate
is sufficient for many unmanned vehicle applications that
require higher accuracy.

The proposed algorithm is implemented on a newly
developed standalone hardware platform. Images captured
by the on-board CMOS camera are processed by hardware
and can be transferred to PC for debugging and evaluation
purposes.

This paper is organized as follows. In Section 2, the algo-
rithm is formulated and our modifications are introduced. In
Section 3, the hardware structure and tradeoffs made in the
design are discussed. In Section 4, the hardware platform is
introduced. Performance analysis of the proposed design on
synthetic and real sequences is also shown. Conclusions and
future work are discussed in Section 5.

2. Optical Flow Algorithm

2.1. Algorithm Description

An image sequence g(X) can be treated as volume data where
X = (x, y, t)T , x and y are the spatial components, and
t is the temporal component. According to the brightness
constancy constraint, object movement in the spatiotempo-
ral domain will generate brightness patterns with certain
orientations. The 3D tensor is a compact representation of
local orientation and there are different types of 3D tensors
based on different formulations [20, 21]. The gradient tensor
is used in this design because it is easier to implement with
pipelines in hardware.

The outer product O of the averaged gradient ∇g(x) is
defined as

O = ∇g(x)∇g(x)T =

⎛

⎜

⎜

⎝

o1 o4 o5

o4 o2 o6

o5 o6 o3

⎞

⎟

⎟

⎠

, (1)

where

∇g(x) =
∑

i

wi∇g
(

xi

)

=

(

gx(x) g y(x) g t(x)
)T

, (2)

and wi are weights for averaging the gradients. The gradient
component is calculated using a simple mask shown in (3)
which is the same as in [12], which was chosen as a tradeoff

between accuracy and efficiency,

d =

(

1 −8 0 8 −1
)

. (3)

Gradient tensor T is a 3× 3 positive semidefinite matrix that
is constructed by weighting O in a small neighborhood as

T =
∑

i

ciOi =

⎛

⎜

⎜

⎝

t1 t4 t5

t4 t2 t6

t5 t6 t3

⎞

⎟

⎟

⎠

. (4)

Optical flow (vx, vy)T is measured in pixels per frame
and can be extended to a 3D spatiotemporal vector, V =

(vx, vy , 1)T . For an object with only translational movement
and without noise in the neighborhood, VTTV = 0. In
the presence of noise and rotation, VTTV will not be zero.

International Journal of Reconfigurable Computing 3

DER

PLB IPIF

Multiport

SRAM arbiter

SRAM

OFC

PLB IPIF

PLB bus

PLB IPIF PLB IPIF PLB IPIF

SDRAMUSB
Camera
CTRL

PLB2OPB
bridge

GPIO

OPB IPIF

PC OPB bus

Camera

OPB IPIF OPB IPIF OPB IPIF

CAM
serial UART INTC

Figure 1: System hardware diagram.

Instead, V can be determined by minimizing VTTV. A cost
function can be defined for this purpose as

e(V) = V
T

TV. (5)

The velocity vector V is the 3D spatiotemporal vector
which minimizes the cost function at each pixel. The initial
optical flow can be solved as

vx =

(

t6t4 − t5t2

)

(

t1t2 − t
2
4

)
,

vy =

(

t5t4 − t6t1

)

(

t1t2 − t
2
4

)
.

(6)

The initial optical flow vector is smoothed in a local
neighborhood to suppress noise further. The final optical
flow vector is formulated as

vi =

(

vx

vy

)

=

∑

i

mi

(

vxi

vyi

)

. (7)

The algorithm proposed in this paper is similar to the
one in [17] which assumes a constant motion model. Affine
motion model is often used to incorporate tensors in a
small neighborhood [17] where pixels in a neighborhood are
assumed to belong to the same motion model. To conserve
hardware resources, the constant model is used in this design.
The constant model performs almost as well as affine motion
model when operating in a small neighborhood.

2.2. Smoothing Masks

As mentioned in Section 2.1, smoothing is very important
to the algorithm performance. Smoothing is performed
through three smoothing masks wi, ci, and mi as shown in
(2), (4), and (7) where wi is for gradient averaging, ci is for
tensor construction, and mi is for velocity smoothing. The
first mask is a spatiotemporal smoothing mask, and the other
two are spatial smoothing masks.

To reach an optimal tradeoff between algorithm per-
formance and hardware resources, the configurations of

these masks were evaluated carefully by simulation before
implementation. Smoothing mask parameters were deter-
mined by three factors: mask shape, mask size, and mask
kernel components. In software, large smoothing masks (e.g.,
19 × 19 or larger) are often used. In hardware, smaller
masks must be used because of resource limitations (e.g.,
7 × 7 or smaller). As for mask shape, a square mask
is usually used for the sake of simplicity and efficiency.
Spatial and temporal smoothings can use different size masks
to improve performance. While spatial smoothing can be
readily performed in either software or hardware, spatiotem-
poral smoothing is much more challenging in hardware
than in than software. Temporal smoothing is significantly
more complicated than spatial smoothing because it involves
multiple image frames. However, temporal smoothing is
important for estimating motion field consistency over a
short period of time. Incorporating temporal smoothing
substantially improves algorithm performance as can be seen
in the experimental analysis section. In this design, the size
of the first smoothing mask wi in (2) is 5 × 5 × 3 of which
3 is the temporal smoothing size (3 frames). The number of
frames used for temporal smoothing is largely determined by
hardware resources and processing speed requirement. The
sizes of the other two spatial smoothing masks ci, and mi are
3× 3 and 7× 7, respectively. Parameters of all the smoothing
masks are in a shape of Gaussian function. To save hardware
resources, a 2D Gaussian mask is decomposed into two 1D
Gaussian masks which are cascaded and convolved along x
and y directions separately [12]. Different settings of these
masks are simulated by software at bit-level accuracy and
evaluated on synthetic sequence with ground truth to obtain
an optimal combination in practice.

3. Hardware Structure

The diagram of the hardware platform using a Xilinx
Virtex-4 FX series FPGA for implementing our optical flow
algorithm discussed in Section 2 is shown in Figure 1. Most
hardware components are either connected to the processor
local bus (PLB) or on-chip peripheral bus (OPB). The PLB

4 International Journal of Reconfigurable Computing

R
ea

d
in

g
lo

gi
c

frame(t)

frame(t)

frame(t − 1)

frame(t − 3)

frame(t − 4)

frame(t − 2)

g t
ca

lc
u

la
ti

o
n

g x
,g

y
ca

lc
u

la
ti

o
n

gt(t)

gt(t)

gx(t)

gx(t)

gy(t)

gy(t)

Data stored in SRAM

Data stored in SDRAM

Figure 2: DER module diagram.

is used for connecting hardware components that require
high bandwidth such as camera and USB ports, and so forth.
The OPB is used for connecting relatively slower units such
as UART, interrupt controller, and so on. PLB and OPB are
connected through PLB2OPB bridge. Two main components
of this design: derivative (DER) module and optical flow
computation (OFC) module are connected to the PLB bus
through a bus interface. The DER and OFC modules share
the SRAM through a multiport SRAM arbiter connected
to the SRAM to obtain optimal accessing bandwidth. The
slower SDRAM is accessed through the PLB bus.

The main difference between this design and our previ-
ous design [10] is that it incorporates temporal smoothing in
the pipeline. In this design, three sets of derivative frames, gx,
gy , and gt shown in (2) are temporally smoothed.

With temporal smoothing, multiple sets (3 in this design)
of derivative frames must be stored as they are calculated and
then reloaded during the smoothing process. It is impossible
to store multiple sets of derivative frames on-chip using
the hardware resources that are available. Therefore, the
optical flow calculation pipeline has to be divided into two
steps. The first part (called DER module) generates derivative
frames and the second part (called OFC module) handles the
rest of calculations. These two hardware modules must be
managed to synchronize their computation tasks and handle
exceptions such as dropped frames. Software running on
the built-in on-chip powerPC processors is used for this
management task.

Figure 2 shows the diagram of the DER module. Every
cycle when a new image frame(t) is captured directly into
the SDRAM through the PLB bus, reading logic reads
the captured image from the SDRAM into a pipeline and
stores it in the SRAM. Whenever there are five consecutive

image frames stored in the SRAM, they are all read out for
computing the derivative frames gx, gy , and gt using (3). gx
and gy are calculated from the current incoming frame(t)
and gt is calculated from frame(t−4), frame(t−3), frame(t−
2), frame(t − 1), and the current incoming frame. The
resulting derivative frames are stored in the SRAM as well
as the SDRAM for future usage. The duplicate copy stored
in the SDRAM is needed for temporal smoothing for future
frames. This storing and retrieving of derivative frames from
SDRAM consumes PLB bus bandwidth and hence slows
down the processing speed. As shown in Figure 1, if the
hardware platform used had sufficient SRAM (currently only
4 Mb), then all 9 derivative frames (3 sets of gx, gy , and gt)
could be stored in the SRAM and take the advantage of a
high-speed multiport memory interface.

Figure 3 shows the dataflow of the OFC module. Once
a new set of derivative frames is calculated, software will
trigger the OFC module to start the calculation of optical
flow. Derivative frames for the current frame in the SRAM
(gx(t), gy(t), and gt(t)) and the derivative frames already
stored in the SDRAM (gx(t − 1), gy(t − 1), and gt(t − 1))
and (gx(t − 2), gy(t − 2), and gt(t − 2)) are first read
into the pipeline for temporal smoothing. Because the size
of the temporal smoothing mask is 3, derivative frames
at time t, t − 1, and t − 2 are averaged to obtain the
smoothed derivative frames for the current frame at time
t (gx t, g y t, and gt t, in Figure 3). These frames are then
spatially smoothed. The spatially smoothed derivative frames
(gx t, g y t, and gt t, in Figure 3) are then used to construct
the tensors as shown in (4). Six tensor components t1,
t2, t3, t4, t5, and t6 are obtained after this step. These six
components are spatially smoothed using a 3 × 3 smoothing
mask. Then, vx and vy can be calculated from these smoothed
components as shown in (6). Two motion components vx
and vy are spatially smoothed with mi to get the final optical
flow vectors as shown in (7).

Figure 4 shows the system software diagram. There are
three types of frames existing in the system:

(1) image frames captured by the camera;

(2) derivative frames calculated by the DER module;

(3) optical flow fields calculated by the OFC module.

The DER module uses the raw images as input and the OFC
module uses the output from the DER module (derivative
frames) as the input. Three linked lists are used to store
these frames and maintain their temporal correspondence.
A frame table entry (FTE) is used to store image frames, a
DER FTE is used to store derivative frames and an OFC FTE
is used to store optical flow frames. As shown in Figure 4,
there are 5 corresponding pairs of FTE and DER FTE and 3
pairs of DER FTE and OFC FTE.

It is noted that these modules execute asynchronously.
When a new raw image is captured (FTE7 in this case), the
camera core invokes an interrupt. This interrupt is sensed
by the FTE interrupt handler in software and a trigger
signal is generated and sent to the DER module to initiate
a derivative computation. When a new set of derivative
frames is calculated (DER FTE4 in this case), the DER

International Journal of Reconfigurable Computing 5

gx(t)

gy(t)

gt(t)

gx(t − 1)

gy(t − 1)

gt(t − 1)

gx(t − 2)

gy(t − 2)

gt(t − 2)

g x
te

m
p

o
ra

l

sm
o

o
th

in
g

g y

te
m

p
o

ra
l

sm
o

o
th

in
g

g t
te

m
p

o
ra

l

sm
o

o
th

in
g

gx t gx t

gy t gy t

gt t gt t
T

en
so

r
ca

lc
u

la
ti

o
n

g x
sp

at
ia

l

sm
o

o
th

in
g

g y

sp
at

ia
l

sm
o

o
th

in
g

g t
sp

at
ia

l

sm
o

o
th

in
g

t1
spatial

smoothing
t1 t1

t2t2

t3 t3

t4 t4

t5 t5

t6t6

t2
spatial

smoothing

t3
spatial

smoothing

t4
spatial

smoothing

t5
spatial

smoothing

t6
spatial

smoothing

O
p

ti
ca

l
fl

o
w

ca
lc

u
la

ti
o

n

O
p

ti
ca

l
fl

o
w

sm
o

o
th

in
gvx

vy

vx

vy

Data stored in SRAM

Data stored in SDRAM

Intermediate data

Figure 3: OFC module diagram.

module invokes an interrupt. This interrupt is sensed by the
DER FTE interrupt handler in software and a trigger signal is
generated and sent to the OFC module to initiate an optical
flow computation.

4. Results

4.1. Hardware Platform

This design was implemented on the BYU Helios Robotic
Vision board [22, 23]. This embedded vision sensor board
was developed in the Robotic Vision Laboratory at Brigham
Young University for real-time visual computing. The Helios
board, shown in Figure 5(a), is compatible with Xilinx
Virtex-4 FX series FPGAs, up to the FX60. The Virtex-4
FX60 has 25 280 slices and two built-in 400 MHz powerPC
processors, allowing for both custom hardware and soft-
ware development. The Autonomous Vehicle Toolkit (AVT)
daughterboard (Figure 5(c)) which is capable of supporting
up to two CMOS cameras (Figure 5(b)) was designed to
enhance the functionalities of the Helios board. The CMOS
camera (capable of acquiring 60 frames per second) was set
to capture 30 frames of 640 × 480 8-bit color image data per
second in this design.

For computer vision tasks, high-speed memory is critical.
There are currently 32 Mb SDRAM and 4 Mb SRAM on
the Helios platform. The SRAM is faster and easier to
access than the SDRAM. In this design, we tried to store
as much intermediate data as possible (e.g., image frames

FTE linklist

FTE1

FTE2

FTE3

FTE4

FTE5

FTE6

FTE7

FTE8

DER FTE
linklist

DER FTE1

DER FTE2

DER FTE3

DER FTE4

DER FTE5

OFC FTE
linklist

OFC FTE1

OFC FTE2

OFC FTE3

Figure 4: Software diagram.

and derivative frames) in the SRAM. The rest of the data
was stored in the SDRAM and accessed through the PLB
Bus. There are other hardware resources and features on the
Helios that are useful for other real-time vision tasks but
which were not used in this design. This hardware platform

6 International Journal of Reconfigurable Computing

(a) (b) (c)

Figure 5: Hardware components: (a) Helios FPGA board, (b) CMOS imager, and (c) AVT daughter board.

(a) (b)

Figure 6: Result of synthetic sequences: (a) Yosemite, and (b) Flower garden.

is suitable for small UGV or UAV which requires low power,
real-time computation capability. Detailed information can
be found in [22, 23].

The whole system executes at a clock speed of 100 MHz
and the system is using one clock domain. At this frequency,
it is able to calculate 15 frames of optical flow field per
second. All computations used fixed point representation
to save hardware resources. Temporal smoothing requires
much more data transfer than spatial smoothing, and the
PLB bandwidth is the limiting factor to increased processing
speed. Our estimation is that higher frame rate can be
achieved with further optimization work and additional
memory space (specifically on-board SRAM). These process-
ing speed improvements are discussed in Section 5. From the
performance analysis in the following sections, it can be seen
that with temporal smoothing the accuracy of the estimated
optical flow is improved substantially on a synthetic sequence
that is commonly used for benchmarking.

The whole design utilized 21481 slices (84% of the total
25280 slices on a Virtex-4 FX60 FPGA). The DER module
used 2196 slices (8% of the total) and the OFC module used
6324 slices (25% of the total). The remainder was used for the
camera core, I/O, and other interface circuitry. A graphical
user interface (GUI) was developed to transfer the status of
the Helios board and the real-time video to PC for display
through the USB interface.

4.2. Synthetic Sequences

This design was tested on two synthetic sequences to show
its effectiveness. One of these sequences (Yosemite) has
an established ground truth and is commonly used for

benchmarking. A bit level simulation coded in MATLAB
was programmed to evaluate the algorithm’s accuracy. The
error is measured in angular error which is widely used for
evaluating optical flow algorithm.

Figure 6(a) shows one frame of the Yosemite sequence
with the calculated optical flow vectors superimposed for
visual feedback. The angular error of the Yosemite sequence
was 6.7◦. To the best of our knowledge, this is the most
accurate result generated to date using hardware, and has
half the error rate of our previous design [12] which
achieved an error rate of 12.7◦. There are two major reasons
for this improvement. The first is that a better hardware
platform (the Helios platform) was used and supported the
implementation of a more complex algorithm on the hard-
ware. The second reason is the incorporation of temporal
smoothing in the algorithm. Without temporal smoothing,
the accuracy would deteriorate to approximately 10.5◦. This
experiment demonstrates that temporal smoothing has a
significant impact on the algorithm performance. Using
temporal smoothing is an acceptable tradeoff of processing
speed for accuracy for applications that require higher
accuracy.

Figure 6(b) shows the result of the other synthetic
sequence (flower garden). While the proposed algorithm did
not perform well in regions without much texture, this is
a shortcoming of all optical flow and motion estimation
algorithms. In regions with noticeable texture, the algorithm
performed very well.

4.3. Real Sequences

Two real sequences were also used to test the performance of
the proposed algorithm. Figure 7(a) shows the result of the

International Journal of Reconfigurable Computing 7

(a) (b)

Figure 7: Result of real sequences: (a) SRI trees and (b) corridor.

(a) (b)

Figure 8: Real-time result from hardware: (a) original frame and (b) coded optical flow.

SRI tree sequence, another standard benchmark sequence for
testing optical flow algorithms based on captured image data.
It can be seen that the proposed algorithm performed very
well on this sequence. Optical flow vectors were generally
very smooth except for some few noisy vectors along the
motion boundary. This was caused by the violation of the
assumption that the motion should be constant in a local
neighborhood which is another shortcoming of all optical
flow and motion estimation algorithms.

Figure 7(b) shows the result of the corridor sequence, an
image sequence consisting of around 500 frames captured in
our lab. As can be seen, there are noisy motion vectors in the
background area which has less texture than other regions. In
this case, even stronger smoothing would help suppress the
noise and “infer” the velocity from the local neighborhoods.

The data width transferred between the Helios board and
GUI was 8 bits per pixel. To transfer the optical flow vector
values, we defined the data as a 4.4 format signed fixed point
number which means it had 1 sign bit, 3 integer bits, and 4
fraction bits. Therefore, small optical flow vectors are coded
with gray intensity values. Large positive optical flow vectors
(object moves down or to the right) are coded with bright
intensity values. Similarly, large negative optical flow vectors
(object moves up or to the left) are coded with dark intensity
values. This coding mechanism was for the display of the
motion field in real time for debugging purpose.

Figure 8(a) shows the screenshot of an original video
frame that was captured using our hardware platform,
transferred to the PC through the USB interface, and
displayed in the GUI. The palm moved downwards from the

top of the screen at a steady speed. Figure 8(b) shows the
motion field (mostly in y direction). Since the palm moving
downwards, the resulting optical flow vectors are coded with
low intensity as explained previously. The light gray intensity
values in the background represent very small motion that
was caused by the flickering of the fluorescent lights in the
lab and the digitization noise from the camera.

5. Conclusion

High computation and low power consumption require-
ments make it difficult to use general purpose processors
or GPU to implement optical flow algorithms for real-
time small unmanned vehicle applications. A hardware
accelerated design of a tensor-based optical flow algorithm
has been developed and implemented in an FPGA platform.
Two synthetic sequences and two real sequences were used to
test its effectiveness. The accuracy on the Yosemite sequence
was shown to be substantially better than our previous design
and other hardware implementation found in the literature.

The accuracy improvement in this design is due to two
reasons.

(1) A better hardware platform is used in this design to
be able to compute a more complex algorithm.

(2) Temporal smoothing is incorporated into the cal-
culation. Temporal smoothing increases the tem-
poral coherency, provides stronger smoothing, and
improves performance.

8 International Journal of Reconfigurable Computing

To accommodate temporal smoothing, the pipelined
hardware structure is divided into two parts: DER and OFC
modules. Accordingly, the amount of image data that must
be stored and transferred increases dramatically. Currently,
this design is running slower (15 fps of 640× 480 image) than
our previous design. The limiting factor of the processing
speed as well as the accuracy is the PLB bus bandwidth usage.
This limiting factor can be alleviated by reducing the image
size or increasing the SRAM size. Processing speed could
reach 60 fps if the image size is reduced to 320× 240. Increas-
ing the SRAM size could avoid the storing and retrieving of
derivative frames from the slower SDRAM through the PLB
bus. Also, increasing the SRAM size would allow the use of a
larger temporal smoothing kernel which would significantly
improve the optical flow computation accuracy.

Our future work includes improving the hardware
structure so that the design uses less bus bandwidth and
thereby is able to achieve a higher frame rate. Another goal
is to develop navigation algorithms for obstacle avoidance
and implement the whole design on a UGV. Once this goal
has been achieved, we will look into the hallway or canyon
navigation applications for UAV.

Acknowledgment

This work was supported in part by David and Deborah
Huber.

References

[1] Y. Mizukami and K. Tadamura, “Optical flow computation
on compute unified device architecture,” in Proceedings of the
14th International Conference on Image Analysis and Processing
(ICIAP ’07), pp. 179–184, Modena, Italy, September 2007.

[2] R. Strzodka and C. Garbe, “Real-time motion estimation and
visualization on graphics cards,” in Proceedings of the 15th
IEEE Visualization Conference (VIS ’04), pp. 545–552, Austin,
Tex, USA, October 2004.

[3] J. Chase, B. Nelson, J. Bodily, Z. Wei, and D.-J. Lee, “FPGA
and GPU architectures for real-time optical flow calculations,”
in Proceedings of the IEEE Symposium on Field-Programmable
Custom Computing Machines, Palo Alto, Calif, USA, April
2008.

[4] M. V. Correia and A. C. Campilho, “Real-time implementation
of an optical flow algorithm,” in Proceedings of the 16th
International Conference on Pattern Recognition (ICPR ’02),
vol. 4, pp. 247–250, Quebec City, Canada, August 2002.

[5] A. Zuloaga, J. L. Martı́n, and J. Ezquerra, “Hardware architec-
tural for optical flow estimation in real time,” in Proceedings
of the IEEE International Conference on Image Processing (ICIP
’98), vol. 3, pp. 972–976, Chicago, Ill, USA, October 1998.

[6] J. L. Martı́n, A. Zuloaga, C. Cuadrado, J. Lázaro, and U.
Bidarte, “Hardware implementation of optical flow constraint
equation using FPGAs,” Computer Vision and Image Under-
standing, vol. 98, no. 3, pp. 462–490, 2005.

[7] J. C. Sosa, J. A. Boluda, F. Pardo, and R. Gómez-Fabela,
“Change-driven data flow image processing architecture for
optical flow computation,” Journal of Real-Time Image Process-
ing, vol. 2, no. 4, pp. 259–270, 2007.

[8] J. Dı́az, E. Ros, S. Mota, and R. Rodriguez-Gomez, “FPGA-
based architecture for motion sequence extraction,” Interna-

tional Journal of Electronics, vol. 94, no. 5, pp. 435–450, 2007.
[9] J. Dı́az, E. Ros, F. Pelayo, E. M. Ortigosa, and S. Mota, “FPGA-

based real-time optical-flow system,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 16, no. 2, pp.
274–279, 2006.

[10] P. C. Arribas and F. M. H. Maciá, “FPGA implementation of
camus correlation optical flow algorithm for real time images,”
in Proceedings of the 14th International Conference on Vision
Interface (VI ’01), pp. 32–38, Ottawa, Canada, June 2001.

[11] H. Niitsuma and T. Maruyama, “High speed computation
of the optical flow,” in Proceedings of the 13th International
Conference on Image Analysis and Processing (ICIAP ’05),
vol. 3617 of Lecture Notes in Computer Science, pp. 287–295,
Cagliari, Italy, September 2005.

[12] Z. Wei, D.-J. Lee, B. Nelson, and M. Martineau, “A fast and
accurate tensor-based optical flow algorithm implemented in
FPGA,” in Proceedings of the IEEE Workshop on Applications
of Computer Vision (WACV ’07), p. 18, Austin, Tex, USA,
February 2007.

[13] Z. Wei, D.-J. Lee, and B. E. Nelson, “FPGA-based real-time
optical flow algorithm design and implementation,” Journal of
Multimedia, vol. 2, no. 5, pp. 38–45, 2007.

[14] B. K. P. Horn and B. G. Schunck, “Determining optical flow,”
Artificial Intelligence, vol. 17, no. 1–3, pp. 185–203, 1981.

[15] B. D. Lucas and T. Kanade, “An iterative image registration
technique with an application to stereo vision,” in Proceedings
of the DARPA Image Understanding Workshop, pp. 121–130,
Washington, DC, USA, April 1981.

[16] G. Farnebäck, “Very high accuracy velocity estimation using
orientation tensors, parametric motion, and simultaneous
segmentation of the motion field,” in Proceedings of the 8th
IEEE International Conference on Computer Vision (ICCV ’01),
vol. 1, pp. 171–177, Vancouver, Canada, July 2001.

[17] G. Farnebäck, “Fast and accurate motion estimation using
orientation tensors andparametric motion models,” in Pro-
ceedings of the 15th IEEE International Conference on Pattern
Recognition (ICPR ’00), vol. 1, pp. 135–139, Barcelona, Spain,
September 2000.

[18] B. Jähne, H. Haussecker, H. Scharr, H. Spies, D. Schmundt,
and U. Schur, “Study of dynamical processes with tensor-based
spatiotemporal image processing techniques,” in Proceedings of
the 5th European Conference on Computer Vision (ECCV ’98),
vol. 2, pp. 322–336, Freiburg, Germany, June 1998.

[19] G. Farnebäck, “Orientation estimation based on weighted
projection onto quadratic polynomials,” in Proceedings of the
Conference on Vision, Modeling, and Visualization, pp. 89–96,
Saarbrücken, Germany, November 2000.

[20] B. Johansson and G. Farnebäck, “A theoretical comparison
of different orientation tensors,” in Proceedings of the SSAB02
Symposium on Image Analysis, pp. 69–73, Lund, Sweden,
March 2002.

[21] H. Haussecker and H. Spies, Handbook of Computer Vision and
Application. Vol 2, chapter 13, Academic Press, New York, NY,
USA, 1999.

[22] Robotic Vision Lab, Brigham Young University,
http://www.ee.byu.edu/roboticvision/helios.

[23] W. S. Fife and J. K. Archibald, “Reconfigurable on-board
vision processing for small autonomous vehicles,” EURASIP
Journal of Embedded Systems, vol. 2007, Article ID 80141, 14
pages, 2007.

http://www.ee.byu.edu/roboticvision/helios

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation

http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at

http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in

OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

