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ABSTRACT 
This paper presents a hardware architecture for face detection 
based system on AdaBoost algorithm using Haar features. We 
describe the hardware design techniques including image scaling, 
integral image generation, pipelined processing as well as 
classifier, and parallel processing multiple classifiers to accelerate 
the processing speed of the face detection system. Also we discuss 
the optimization of the proposed architecture which can be 
scalable for configurable devices with variable resources. The 
proposed architecture for face detection has been designed using 
Verilog HDL and implemented in Xilinx Virtex-5 FPGA. Its 
performance has been measured and compared with an equivalent 
software implementation. We show about 35 times increase of 
system performance over the equivalent software implementation. 

Categories and Subject Descriptors 
C.3 [Special-Purpose and Application-Based Systems]: Real-
Time and Embedded Systems 

General Terms 
Design, Experimentation, Measurement, Performance 

Keywords 
AdaBoost, architecture, face detection, FPGA, Haar classifier, 
image processing, real-time 

1. INTRODUCTION 
Face detection in image sequence has been an active research area 
in the computer vision field in recent years due to its potential 
applications such as monitoring and surveillance [1], human 
computer interfaces [2], smart rooms [3], intelligent robots [4], 
and biomedical image analysis [5]. Face detection is based on 
identifying and locating a human face in images regardless of size, 
position, and condition. Numerous approaches have been 
proposed for face detection in images. Simple features such as 
color, motion, and texture are used for the face detection in early 
researches. However, these methods break down easily because of 
the complexity of the real world. Face detection proposed by 
Viola and Jones [6] is most popular among the face detection 
approaches based on statistic methods. This face detection is a 
variant of the AdaBoost algorithm [7] which achieves rapid and 

robust face detection. They proposed a face detection framework 
based on the AdaBoost learning algorithm using Haar features. 
However, the face detection requires considerable computation 
power because many Haar feature classifiers check all pixels in 
the images. Although real-time face detection is possible using 
high performance computers, the resources of the system tend to 
be monopolized by face detection. Therefore, this constitutes a 
bottleneck to the application of face detection in real time. 

Almost all of the available literatures on real-time face detection 
are theoretical or describe a software implementation. Only a few 
papers have addressed a hardware design and implement of real-
time face detection. Theocharides et al. [8] presented the 
implementation of neural network based face detection in an 
ASIC to accelerate processing speed. However, VLSI technology 
requires a large amount of development time and cost. Also it is 
difficult to change design. McCready [9] designed and 
implemented face detection for the Transmogrifier-2 configurable 
hardware system. This implementation utilized nine FPGA boards. 
Sadri et al. [10] implemented neural network based face detection 
on the Virtex-II Pro FPGA. Skin color filtering and edge detection 
are used to reduce the processing time. However, some operations 
are implemented on hardcore PowerPC processor with embedded 
software. Wei et al. [11] presented FPGA implementation for face 
detection using scaling input images and fixed-point expressions. 
However, the image size is too small (120×120 pixels) to be 
practical and only some parts of classifier cascade are actually 
implemented. A low-cost detection system was implemented 
using Cyclone II FPGA by Yang et al. [12]. The frame rate of this 
system is 13 fps with low detection rate of about 75%. Nair et al. 
[13] implemented an embedded system for human detection on an 
FPGA. It can process the images at speeds of 2.5 fps with about 
300 pixels images. Gao et al. [14] presented an approach to use an 
FPGA to accelerate the Haar feature classifier based face 
detection. They re-trained the Haar classifier with 16 classifiers 
per stage. However, only classifiers are implemented in the FPGA. 
The integral image generation and detected face display are 
processed in a host microprocessor. Also the largest Virtex-5 
FPGA was used for the implementation because the design size is 
too large. Hiromoto et al. [15] implemented real-time object 
detection based on the AdaBoot algorithm. They proposed hybrid 
architecture of a parallel processing module for the former stages 
and a sequential processing module for the subsequent stages in 
the cascade. Since the parallel processing module and the 
sequential processing module are divided after evaluating a 
processing time with fixed Haar feature data, it should be 
designed and implemented again in order to apply new Haar 
feature data. Also the experimental result and analysis of the 
implemented system are not discussed.  
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In this paper, we present a hardware architecture for real-time face 
detection system. We propose hardware design techniques to 
accelerate the processing speed of face detection. The face 
detection system generates an integral image window to perform a 
Haar feature classification during one clock cycle. And then it 
performs classification operations in parallel using Haar 
classifiers to detect a face in the image sequence. The main 
contribution of our work, described in this paper, is design and 
implementation of a physically feasible hardware system to 
accelerate the processing speed of the operations required for real-
time face detection. Therefore, this work has resulted in the 
development of a real-time face detection system employing an 
FPGA implemented system designed by Verilog HDL. Its 
performance has been measured and compared with an equivalent 
software implementation. 

This paper is organized as follows: In Section 2, we explain the 
face detection algorithm. In Section 3, we describe the 
architecture, designed with Verilog HDL, of a face detection 
system using block diagrams. In Section 4, we show the 
implementation of the real-time face detection system in an FPGA 
and measure the corresponding performance. Finally, we conclude 
in Section 5. 

2. FACE DETECTION ALGORITHM 
The face detection algorithm proposed by Viola and Jones is used 
as the basis of our design. The face detection algorithm looks for 
specific Haar features of a human face. When one of these 
features is found, the algorithm allows the face candidate to pass 
to the next stage of detection. A face candidate is a rectangular 
section of the original image called a sub-window. Generally 
these sub-windows have a fixed size (typically 24×24 pixels).  
This sub-window is often scaled in order to obtain a variety of 
different size faces. The algorithm scans the entire image with this 
window and denotes each respective section a face candidate [6]. 
The algorithm uses an integral image in order to process Haar 
features of a face candidate in constant time. It uses a cascade of 
stages which is used to eliminate non-face candidates quickly. 
Each stage consists of many different Haar features. Each feature 
is classified by a Haar feature classifier. The Haar feature 
classifiers generate an output which can then be provided to the 
stage comparator. The stage comparator sums the outputs of the 
Haar feature classifiers and compares this value with a stage 
threshold to determine if the stage should be passed.  If all stages 
are passed the face candidate is concluded to be a face.  These 
terms will be discussed in more detail in the following sections.   

2.1 Integral Image 
The integral image is defined as the summation of the pixel values 
of the original image. The value at any location (x, y) of the 
integral image is the sum of the image’s pixels above and to the 
left of location (x, y). Figure 1 illustrates the integral image 
generation. 

2.2 Haar Features 
Haar features are composed of either two or three rectangles.  
Face candidates are scanned and searched for Haar features of the 
current stage. The weight and size of each feature and the features 
themselves are generated using a machine learning algorithm from 
AdaBoost [6][7]. The weights are constants generated by the 
learning algorithm. There are a variety of forms of features as 
seen below in Figure 2. Each Haar feature has a value that is 
calculated by taking the area of each rectangle, multiplying each 

by their respective weights, and then summing the results. The 
area of each rectangle is easily found using the integral image. 
The coordinate of the any corner of a rectangle can be used to get 
the sum of all the pixels above and to the left of that location 
using the integral image. By using each corner of a rectangle, the 
area can be computed quickly as denoted by Figure 3. Since L1 is 
subtracted off twice it must be added back on to get the correct 
area of the rectangle. The area of the rectangle R, denoted as the 
rectangle integral, can be computed as follows using the locations 
of the integral image: L4-L3-L2+L1 

2.3 Haar Feature Classifier 
A Haar feature classifier uses the rectangle integral to calculate 
the value of a feature. The Haar feature classifier multiplies the 
weight of each rectangle by its area and the results are added 
together. Several Haar feature classifiers compose a stage. A stage 
comparator sums all the Haar feature classifier results in a stage 
and compares this summation with a stage threshold. The 
threshold is also a constant obtained from the AdaBoost algorithm.  
Each stage does not have a set number of Haar features.  
Depending on the parameters of the training data individual stages 
can have a varying number of Haar features.  For example, Viola 
and Jones’ data set used 2 features in the first stage and 10 in the 
second. All together they used a total of 38 stages and 6060 
features [6]. Our data set is based on the OpenCV data set which 
used 22 stages and 2135 features in total [16][17]. 

 
Figure 1. Integral image generation. The shaded region 
represents the sum of the pixels up to position (x, y) of the 
image. It shows a 3×3 image and its integral image 
representation. 
 

         
Figure 2. Examples of Haar features. Areas of white and black 
regions are multiplied by their respective weights and then 
summed in order to get the Haar feature value. 

 
Figure 3. Calculating the area of a rectangle R is done using 
the corner of the rectangle: L4-L3-L2+L1. 



2.4 Cascade 
The Viola and Jones face detection algorithm eliminates face 
candidates quickly using a cascade of stages. The cascade 
eliminates candidates by making stricter requirements in each 
stage with later stages being much more difficult for a candidate 
to pass. Candidates exit the cascade if they pass all stages or fail 
any stage. A face is detected if a candidate passes all stages. This 
process is shown in Fig 4. 

3. IMPLEMENTATION 
3.1 System Overview 
We proposed an architecture for a real-time face detection system. 
Figure 5 shows the overview of the proposed architecture for face 
detection. It consists of seven modules: image interface, frame 
grabber, image store, image scaler, classifier, display, and DVI 
interface. The image interface and DVI interface are implemented 
using ASIC custom chips with the FPGA board. The others are 
designed using Verilog HDL and implemented in an FPGA in 
order to perform face detection in real-time. 

3.2 Architecture for Face Detection 
3.2.1 Frame Grabber 
In frame grabber module, the frame grabber controller generates 
the control signals for controlling the A/D converter which 
converts the analog image signals into digital image data, and the 
sync separator which generates the image sync signals in the 
image interface module. The image sync signal and the color 
image data are transferred from the image interface module. The 
image cropper crops the images based on the sync signals. These 
image data and sync signals are used in all of the modules of the 
face detection system. 

3.2.2 Image Store 
The image store module stores the image data arriving from the 
frame grabber module frame by frame. This module transfers the 
image data to the classifier module based on the scale information 
from the image scaler module. The image of a frame is stored in a 
BRAM of the FPGA. 

3.2.3 Image Scaler 
The images are scaled down based on a scale factor by the image 
scaler module. The image scaler module generates and transfers 
the address of the BRAM containing a frame image in the image 
store module to request image data according to a scale factor. 
The image store module transfers a pixel data to the classifier 
module based on the address of BRAM required from the image 
scaler module. 

3.2.4 Classifier 
The classifier module performs the classification for the face 
detection using Haar feature data. This module consists of the 
image line buffer, image window buffer, integral image window 
buffer, feature classifier, stage comparator, and feature training 
data. The face detection is performed by the Haar feature 
classification using an integral image. The integral image 
generation requires substantial computation. A general purpose 
computer of Von Neumann architecture has to access image 
memory at least width×height times to get the value of each pixel 
when it processes an image with width×height pixels. It may take 
a long latency delay every frame. In order to reduce memory 
access and processing time, we propose a specific architecture for 
the integral image generation. This architecture stores the 
necessary pixels for processing each pixel and its neighboring 
pixels together. It consists of the image line buffer, image window 
buffer, and integral image window buffer. Each buffer has its own 

  
Figure 4. Cascade of stages. Candidate must pass all stages in 
the cascade to be concluded as a face. 

 
Figure 5. Block diagram of proposed face detection system.



controller. The image line buffer stores some parts of the image 
and its controller generates the control signals for moving and 
storing the pixel values. The image line buffer uses dual port 
BRAMs where the number of BRAMs is the same as that of the 
row in the image window buffer. Each dual port BRAM can store 
one line of an image. Thus, the x-coordinates of the pixels can be 
used as the address for the dual port BRAM. For the incoming 
pixel where the coordinate is (x, y), the image line buffer 
controller performs operations such as in (1), where n is the image 
window row size, p(x, y) is the incoming pixel value, and L(x, y) 
represents each pixel in the image line buffer. 

, , 1 , where 1 2           (1) 

, , , where 0 

With these operations, the pixel values in the lines of an image are 
stored in dual port BRAMs. Since each dual port BRAM stores 
one line of an image, it is possible to get one pixel value from 
every line simultaneously. 

The image window buffer stores pixel values moving from the 
image line buffer and its controller generates control signals for 
moving and storing the pixel values. Since pixels of an image 
window buffer are stored in registers, it is possible to access all 
pixels in the image window buffer simultaneously to generate the 
integral image window. For the incoming pixel with coordinate (x, 
y), the image window buffer controller performs operation as in (2) 
where n and m are the row and column size of the image window 
buffer, respectively. p(i, j) is the incoming pixel value in the 
image window buffer; p(x, y) is the incoming pixel value; I(i, j) 
represents each of the pixels in the image window buffer; and L(x, 
y) represents each of the pixels in the image line buffer. 

, 1 , , where 1 1               (2) 

, , 1 , where 1 1 

, , , , where 0, 

when 1 , 1 1 , 0 2 , 2 , 

, 1 , 1 , 1  

The integral image window buffer stores integral pixel values 
moving from the image window buffer and its controller generates 
control signals for moving and calculating the integral pixel 
values. Since pixels of an integral image window buffer are stored 
in registers, it is possible to access all integral pixels in the 
integral image window buffer simultaneously to perform the Haar 
feature classification. For incoming pixel with coordinate (i, j), the 
integral image window buffer controller performs operation as in 
(3) where n is the row and column size of the integral image 
window buffer. II(s, t) represents each of the integral pixels in the 
integral image window buffer; and I(i, j) represents each of the 
pixels in the image window buffer. 

,                                                                         (3) 
             , , 2 1 , ,  
where 0 1, 0 1, 1 2 2, 
0 1                                             

Figure 6 shows all of the actions in the proposed architecture to 
generate the integral image. For every image from the frame 
grabber module, the integral image window buffer is calculated to 
perform the feature classification using the integral image. 

A Haar classifier consists of two or three rectangles and their 
weight values, feature threshold value, and left and right values. 
Each rectangle presents four points using the coordinates (x, y) of 
most left and up point, width w, and height h as shown in Figure 7. 
The integral pixel value of each rectangle can be calculated using 
these points from the integral image window buffer as shown in 
Figure 8. Since integral pixel values in an integral image window 
buffer are stored in registers, it is possible to access all integral 
pixel values in the integral image window buffer simultaneously 
to calculate the integral image value of the rectangles of the Haar 
feature classifier. It enables us to save the memory access time. 

Figure 9 shows the architecture of a Haar classifier for face 
detection. All Haar feature data are stored in the BRAMs. Four 
points of the rectangles of the Haar feature classifer are calculated 

 
Figure 6. Architecture for generating integral image window. 



by the method as shown in Figure 7. The integral image values of 
Haar classifier are obtained from the integral image window 
buffer as shown in Figure 8. Integral image value of each 
rectangle multiplies with its weight. The summation of all integral 
image values multiplied by their weight is the result of one Haar 
feature classifier. This result is compared with the feature 
threshold. If the result is smaller than the feature threshold, the 
final resultant value of this Haar classifier is the left value. 
Otherwise, the final resultant value is the right value. This final 
resultant value is accumulated during the same stage. The 
accumulative value of the stage is compared with the stage 
threshold. If the accumulative value is larger than the stage 
threshold, it goes to the next stage and so on to decide if this 
image window could pass all stages. The proposed architecture of 
the Haar classifier is implemented based on a pipeline scheme as 
shown in Figure 9. During each clock cycle, the integral pixel 
values of Haar classifier from the integral image window buffer 
and the parameters of Haar classifier from the Haar feature 
BRAMs are fed to calculate the result of classification 
continuously. The latency for the first Haar classifier is five clock 
cycles. 

3.2.5 Display 
In the display module, the Digital Visual Interface (DVI) 
specification is applied to display the image sequence to the LCD 
monitor through a DVI transmitter in the DVI interface module. 
This module generates the sync signals and image data for the 
DVI transmitter using the image signals and image data from the 
other modules. 

3.3 FPGA Implementation 
The proposed architecture for face detection has been designed 
using Verilog HDL and implemented in Xilinx Virtex-5 FPGA. 
We use the Haar feature training data from OpenCV to detect the 

frontal human faces based on the Viola and Jones algorithm 
[16][17]. This cascade Haar feature training data are trained by 
frontal faces whose size are 20x20, that includes a total of 22 
stages, 2135 Haar classifiers, and 4630 Haar features. Table 1 
shows the number of Haar classifiers in each stage. 
In the proposed face detection system as shown in Figure 5, the 
face detection is performed in three major parts. The first part is 
grabbing and scaling. This part consists of the frame grabber, 
image store, and image scaler modules. These modules are for 
grabbing images and generating scaled images. Sub-windows for 
the Haar classifier are expanded to detect large objects in Viola 
and Jones object detection algorithm. Since the Haar feature 
classifier consists of simple rectangles, scaling a sub-window is 
not hard. Therefore, this method is widely used for software 
object detection implementation. However, the larger cache 
memory of the integral image is required according to the larger 
size of a sub-window to achieve fast memory access, which is 
difficult to implement in hardware. A scaling image technique is 
used in hardware instead of the scaling sub-window because it 
does not need a huge cache memory for fast memory access and it 
is easy to implement in hardware. Since our architecture has a 

  
Figure 7. Rectangle calculation of Haar feature classifier. 

 

Figure 8. Simultaneous access to integral image window in 
order to calculate integral image of Haar feature classifiers. 

Figure 9. Architecture for performing Haar feature 
classification. 

Table 1. Number of weak classifiers in each stage 
Stage 

# 
# of 

Classifier 
Stage 

# 
# of 

Classifier 
Stage 

# 
# of 

Classifier 
0 3 8 56 16 140 
1 16 9 71 17 160 
2 21 10 80 18 177 
3 39 11 103 19 182 
4 33 12 111 20 211 
5 44 13 102 21 213 
6 50 14 135 Total 2135 7 51 15 137 



fixed integral image window (21×21 pixels), it needs to scale 
input images down to detect large faces. To make scaled images, 
we use a nearest neighbor interpolation algorithm with a factor of 
1.2. A pixel value in the scaled images is set to the value of the 
nearest pixel in the original images. This is the simplest 
interpolation algorithm that requires a lower computation cost. 
The number of the scaled images depends on the input image 
resolution. Our scaler module performs the down-scaling of input 
images until the height of the scaled image is similar with the size 
of the image window (21x21 pixels). The scaler module for 
320×240 pixels images has 14 scale factors (1.20~1.213), the scaler 
module for 640×480 pixels images has 18 scale factors 
(1.20~1.217). 
The second part is classifying to perform Haar feature 
classification using the integral image. This part consists of a 
classifier module which has the image line buffer, image window 
buffer, integral image window buffer, feature classifier, stage 
comparator, and feature training data blocks. Since generating 
integral image of the whole scaled image requires substantial 
computation power and time, we generate the integral image of 
only the current image window. The image line buffer (20 lines), 
image window buffer (21×41 cells), and integral image window 
buffer (21×21 cells) are implemented to generate the integral 
image of the current window during one clock cycle. The pixel 
data are stored and moved in the image line buffer according to 
the mechanism of the architecture explained in the previous 
section. The pixel data with the same address of the image line 
buffer are transferred to the image window buffer simultaneously. 
The image window buffer performs pre-calculation to generate the 
integral image widow. The image window buffer has two parts: 
The first part (21x20 cells) calculates the accumulation values of 
each column of the image window buffer. Each column has only 
one adder. The adder of the most left column calculates the 
summation of first row and second row pixel values in the most 
left column. The adder of the second left column calculates the 
summation of the first, second, and third row pixel values in the 
second left column. Finally, the adder of 20th column calculates 
the summation of all pixel values in the 20th column. The pipeline 
scheme is applied in this part, so the latency of first summation of 
all pixel values in the 20th column is 20 clock cycles. 
The second part (21x22 cells) latches and moves the accumulative 
pixel values of the column to the adjacent column. The 
accumulated pixel values are used to generate the integral image 
window. The integral image window buffer calculates the integral 
image of the current image window. Each element of the integral 
image window adds the previous integral pixel values to the 
accumulative pixel values from the image window buffer, and 
subtracts the accumulative pixel values from the leftmost column 
of the image window buffer. Using this mechanism and 
architecture, we can generate the integral image of current 
window during one clock cycle. The contents of the image line 
buffer, image window buffer, and integral image window buffer 
are updated according to any stage fail signal or the all stages pass 
signal from the stage comparator. So while the Haar classification 
is processing, they maintain their value corresponding the current 
window. 
We design and implement both single and triple classifiers. The 
triple classifier has three single classifiers which process in 
parallel. The integral image window buffer can be accessed 
simultaneously by three single classifiers because the integral 
image window stores the integral pixel values in registers. 

The Haar feature training data are stored in the BRAMs of an 
FPGA. The BRAMs for the Haar feature training data consist of 5 
BRAMs: 3 BRAMs for 3 rectangles of Haar feature (x, y, width, 
height, weight), 1 BRAM for the feature threshold, left and right 
values, and 1 BRAM for the stage threshold value. Although Haar 
feature classifiers composed of either two or three rectangles, all 
Haar feature classifiers are uniformed as having only 3 rectangles 
for hardware implementation. If the Haar feature classifier has 2 
rectangles, the third rectangle has 0 values. These values are 
called according to the current stage and feature number. The 
classifier module calculates the current stage and feature number, 
and then generates the address of the Haar feature data BRAMs to 
read the Haar feature values. In order to implement parallel 
processing of multiple classifiers, Haar feature data should be 
accessed simultaneously. Since BRAM allows the access to one 
address, the contents of BRAM are divided and stored in several 
BRAMs to allow multiple accesses of the Haar feature data. We 
divided the contents of each BRAM into 3 BRAMs for the triple 
classifier. The first content of BRAM is for the first classifier, the 
second content is for the second classifier, and the third content is 
for the third classifier. Again, the forth content is for the first 
classifier, the fifth content is for the second classifier, and sixth 
content is for the third classifier. This routine continues until the 
end of BRAM contents. Therefore, 5 BRAMs are used for each 
single classifier and total 15 BRAMs are used for the triple 
classifier. Since the quantity of the Haar feature data is fixed, the 
size of BRAMs used for the single classifier is the same the triple 
classifier. 

3.4 Optimization 
Table 2 indicates a summary of the device utilization 
characteristics for our face detection systems. There are four face 
detection systems: single classifier and triple classifier for 
320×240 (QVGA) resolution images and single classifier and 
triple classifier for 640×480 (VGA) resolution images. Both 
single classifier face detection systems can be implemented in 
Virtex-5 LX110 FPGA [18]. And both triple classifier face 
detection systems can be implemented in Virtex-5 LX155 FPGA 
[18]. Face detection design involves a numerous number of 
addition and subtraction operations to generate the integral image 
window buffer and perform Haar feature classification. Hence it 
leaves us plenty of optimization alternatives. In our design, the 
classifier module performs face detection in real-time. Also it uses 
almost all system resources of the face detection system shown in 
Table 2 and 3. The classifier module includes two major 
functional blocks: image window buffer and integral image 
window buffer which include adders and subtractors. We use 13-
bit and 17-bit adders for all operations of the image window 
buffer and the integral image window buffer, respectively, in our 

Table 2. Device utilization characteristics for the face 
detection system 

Type  of 
Classifier 

Slice 
Registers 

Slice 
LUTs BRAMs DSP48Es 

Q
V
G
A 

Single 
Classifier 19,066 64,143 41 7 

Triple 
Classifier 21,163 79,537 41 7 

V
G
A 

Single 
Classifier 19,556 66,851 97 7 

Triple 
Classifier 21,902 84,232 97 7 



design including carry for all adders and subtractors. However, 
this implementation can be futher optimized in terms of area if we 
replace these adders and subractors with the proper sized adders 
and subtractors. We consider two following cases: 

Each adder cell in the image window buffer has two operands. 
One is from the right cell and the other is from the upper right cell. 
The first adder cell accepts two 8-bit operands but each other 
adder cell Ii accepts the output of the previous adder Ii-1 and an 8-
bit operand from the right cell in the image window buffer. 
Consequently we do not need a 13-bit adder for all cells since all 
the numbers to be added are a 8-bit wide. In fact we need 8-bit 
adder for the first operation, a 9-bit adder for the second operation, 
a 10-bit adder for the third and fourth operation, a 11-bit adder for 
fifth through eighth operations, etc. This is due to the fact that the 
maximum number to be represented is limited to 8-bit integers. In 
a Virtex-5 device, each n-bit adder consumes n LUTs, so using 
the above optimization scheme, the image window buffer can be 
modified to use less LUTs. Here, we can implement this module 
with one 8-bit adder, one 9-bit adder, two 10-bit adders, four 11-
bit adders, eight 12-bit adders and finally four 13-bit adders as 
opposed to twenty 13-bit adders which results in 31 LUTs saving. 
This may sound small but the very same architecture repeats in 

integral image buffer and could result in higher FPGA resource 
savings. This is explained in following paragraph.  

In the integral image window buffer, the optimization scheme 
explained in previous paragraph can be incorporated to save more 
FPGA resources. The integral image window buffer is an adder 
matrix of size 21x21. In its current implementation, each adder 
cell is 17-bits wide. This obviously can be optimized using the 
scheme explained in previous paragraph. Each integral image 
window buffer adder cell implements an addition and a 
subtraction (IIi = IIi + Ii - Ij). Ii/Ij bit range varies from 8-bit to 13-
bit. These operands are fed to the integral image window buffer 
from the image window buffer. The maximum number to be 
represented in the image window buffer varies from 255 for II(0, 
0) which can be represented by 8-bit to 255*21 = 5355 which can 
be represented by 13-bit for II(0, 20) or II(20, 0). The II(20, 20) 
should be as large as 255*21*21 = 112455 which can be 
represented by 17-bits. We have used 17-bit adders in this 
implementation for all cells of the integral image window buffer 
but this can also be modified to save FPGA resources as explained. 
Applying the above scheme, 31 LUTs can be saved per each row 
or column which translates to total of 651 LUTs for the whole 
calculator. 

On the other hand, we can design the adders and subtractors of the 
classifier module with DSP blocks instead of LUTs. This 
optimization can be scalable for configurable devices with 
variable resources. Virtex-5 LX devices have a lot of logic cells as 
slice registers and LUTs. Virtex-5 SX devices are rich in terms of 
DSP blocks, hence more suitable for implementation of adders 
and subtractors using DSP blocks. Table 3 shows the device 
utilization of the classifier module according to the DSP block 
usage option. 

4. EXPERIMENTS / RESULTS 
A high frame processing rate and low latency are important for 
many applications that must provide quick decisions based on 
events in the scene [19]. We measure the performance of the 
proposed architecture for the face detection system. Table 4 shows 
the performance of the implemented face detection system when it 
is applied to a camera, which produces images consisting of 
320×240 pixels at 60 frames per second. The system performance 
depends on the number of faces in the images. The single 
classifier face detection system is capable of processing the 
images at speeds of an average of 15.14 fps. The triple classifier 
face detection system is capable of processing the images at 
speeds of an average of 26.51 fps. The triple classifier face 
detection system has the performance improvement of 1.75 times 
than the single classifier one. Table 5 shows the performance of 
the implemented face detection system when it is applied to a 
camera, which produces images consisting of 640×480 pixels at 
60 frames per second. The single classifier face detection system 
is capable of processing the images at speeds of an average of 
4.35 fps. The triple classifier face detection system is capable of 
processing the images at speeds of an average of 6.96 fps. The 
triple classifier face detection system has the performance 
improvement of 1.6 times than the single classifier one. This is 
due to the concurrent operations of the three single classifiers in 
parallel. Although the usage of the system resource increases, the 
system performance increases dramatically. The performance of 
the software program is determined by measuring the computation 
time required for performing face detection on the PC; in this case 
a Intel Core 2 Extreme CPU (2.80 GHz), 2.98 GB DDR2 SDRAM 

Table 3. Device utilization characteristics for the classifier 
module of the face detection system with DSP block usage 
option 

Modules Slices 
Register 

Slice 
LUTs 

BRA
Ms 

DSP
48Es 

 
DSP 
Option 
 “No” 
 

 

Line  
Buffer 179 11 10 0 

Window  
Buffer 10064 12311 0 0 

Integral  
Window  
Buffer 

7524 18038 0 0 

Feature  
Classifier/ 
Stage  
Comparator 

444 18297 0 0 

Feature 
Data 11 94 11 0 

Total 
Classifier  
Module  

18122 62890 21 0 

DSP 
Option  
“Yes” 

Line  
Buffer 179 2 10 1 

Window  
Buffer 10074 11476 0 20 

Integral  
Window  
Buffer 

986 3236 0 886 

Feature  
Classifier/ 
Stage  
Comparator 

463 16283 0 46 

Feature 
Data 11 94 11 0 

Total 
Classifier  
Module  

13245 45340 21 964 



(800 MHz), Microsoft Windows XP Professional, and Microsoft 
Visual Studio. All of the software programs are developed using 
Microsoft Visual C++. The algorithm and parameters used in 
software face detection are exactly the same with one of hardware 
face detection. When the face detection system, using the software 
program, is applied to the same conditions as the hardware face 
detection, it is capable of processing the images at speeds of an 
average of 0.71 fps with 320×240 pixels and 0.37 fps with 
640×480 pixels at 60 frames per second. The hardware face 
detection system has the performance improvement up to 37.33 
times the software face detection system with the 320×240 pixel 
images and up to 18.81 times the software face detection system 
with the 640×480 pixel images. 

Figure 10 shows the experimental result of the proposed face 
detection system. The white squares present the detected face on 
the images. It shows that the face can be detected successfully. 

5. CONCLUSION 
We present a hardware architecture for face detection based on the 
AdaBoost algorithm using Haar features. In our architecture, the 
scaling image technique is used instead of the scaling sub-window, 
and the integral image window is generated instead of the integral 
image contains whole image during one clock cycle. The Haar 
classifier is designed using a pipelined scheme, and the triple 
classifier which three single classifiers processed in parallel is 
adopted to accelerate the processing speed of the face detection 
system. Also we discussed the optimization of the proposed 
architecture which can be scalable for configurable devices with 
variable resources. Finally, the proposed architecture is 
implemented on a Virtex-5 FPGA and its performance is 
measured and compared with an equivalent software 
implementation. We show about 35 times increase of system 
performance over the equivalent software implementation. We 
plan to implement more classifiers to improve our design. When 
the proposed face detection system is used in a system which 
requires face detection, only a small percentage of the system 
resources are allocated for face detection. The remainder of the 
resources can be assigned to preprocessing stage or to high level 
tasks such as recognition and reasoning. We have demonstrated 
that this face detection, combined with other technologies, can 
produce effective and powerful applications.  
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