
FPGA-Based Face Detection System
Using Haar Classifiers

Junguk Cho† Shahnam Mirzaei‡
†Department of Computer Science and Engineering

University of California, San Diego
La Jolla, CA 92093, United States

{jucho, kastner}@cs.ucsd.edu

Jason Oberg‡ Ryan Kastner†
‡Department of Electrical and Computer Engineering

University of California, Santa Barbara
Santa Barbara, CA93106, United States

{shahnam, jason_oberg}@umail.ucsb.edu

ABSTRACT
This paper presents a hardware architecture for face detection
based system on AdaBoost algorithm using Haar features. We
describe the hardware design techniques including image scaling,
integral image generation, pipelined processing as well as
classifier, and parallel processing multiple classifiers to accelerate
the processing speed of the face detection system. Also we discuss
the optimization of the proposed architecture which can be
scalable for configurable devices with variable resources. The
proposed architecture for face detection has been designed using
Verilog HDL and implemented in Xilinx Virtex-5 FPGA. Its
performance has been measured and compared with an equivalent
software implementation. We show about 35 times increase of
system performance over the equivalent software implementation.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Real-
Time and Embedded Systems

General Terms
Design, Experimentation, Measurement, Performance

Keywords
AdaBoost, architecture, face detection, FPGA, Haar classifier,
image processing, real-time

1. INTRODUCTION
Face detection in image sequence has been an active research area
in the computer vision field in recent years due to its potential
applications such as monitoring and surveillance [1], human
computer interfaces [2], smart rooms [3], intelligent robots [4],
and biomedical image analysis [5]. Face detection is based on
identifying and locating a human face in images regardless of size,
position, and condition. Numerous approaches have been
proposed for face detection in images. Simple features such as
color, motion, and texture are used for the face detection in early
researches. However, these methods break down easily because of
the complexity of the real world. Face detection proposed by
Viola and Jones [6] is most popular among the face detection
approaches based on statistic methods. This face detection is a
variant of the AdaBoost algorithm [7] which achieves rapid and

robust face detection. They proposed a face detection framework
based on the AdaBoost learning algorithm using Haar features.
However, the face detection requires considerable computation
power because many Haar feature classifiers check all pixels in
the images. Although real-time face detection is possible using
high performance computers, the resources of the system tend to
be monopolized by face detection. Therefore, this constitutes a
bottleneck to the application of face detection in real time.

Almost all of the available literatures on real-time face detection
are theoretical or describe a software implementation. Only a few
papers have addressed a hardware design and implement of real-
time face detection. Theocharides et al. [8] presented the
implementation of neural network based face detection in an
ASIC to accelerate processing speed. However, VLSI technology
requires a large amount of development time and cost. Also it is
difficult to change design. McCready [9] designed and
implemented face detection for the Transmogrifier-2 configurable
hardware system. This implementation utilized nine FPGA boards.
Sadri et al. [10] implemented neural network based face detection
on the Virtex-II Pro FPGA. Skin color filtering and edge detection
are used to reduce the processing time. However, some operations
are implemented on hardcore PowerPC processor with embedded
software. Wei et al. [11] presented FPGA implementation for face
detection using scaling input images and fixed-point expressions.
However, the image size is too small (120×120 pixels) to be
practical and only some parts of classifier cascade are actually
implemented. A low-cost detection system was implemented
using Cyclone II FPGA by Yang et al. [12]. The frame rate of this
system is 13 fps with low detection rate of about 75%. Nair et al.
[13] implemented an embedded system for human detection on an
FPGA. It can process the images at speeds of 2.5 fps with about
300 pixels images. Gao et al. [14] presented an approach to use an
FPGA to accelerate the Haar feature classifier based face
detection. They re-trained the Haar classifier with 16 classifiers
per stage. However, only classifiers are implemented in the FPGA.
The integral image generation and detected face display are
processed in a host microprocessor. Also the largest Virtex-5
FPGA was used for the implementation because the design size is
too large. Hiromoto et al. [15] implemented real-time object
detection based on the AdaBoot algorithm. They proposed hybrid
architecture of a parallel processing module for the former stages
and a sequential processing module for the subsequent stages in
the cascade. Since the parallel processing module and the
sequential processing module are divided after evaluating a
processing time with fixed Haar feature data, it should be
designed and implemented again in order to apply new Haar
feature data. Also the experimental result and analysis of the
implemented system are not discussed.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FPGA'09, February 22-24, 2009, Monterey, California, USA.
Copyright 2009 ACM 978-1-60558-410-2/09/02...$5.00.

In this paper, we present a hardware architecture for real-time face
detection system. We propose hardware design techniques to
accelerate the processing speed of face detection. The face
detection system generates an integral image window to perform a
Haar feature classification during one clock cycle. And then it
performs classification operations in parallel using Haar
classifiers to detect a face in the image sequence. The main
contribution of our work, described in this paper, is design and
implementation of a physically feasible hardware system to
accelerate the processing speed of the operations required for real-
time face detection. Therefore, this work has resulted in the
development of a real-time face detection system employing an
FPGA implemented system designed by Verilog HDL. Its
performance has been measured and compared with an equivalent
software implementation.

This paper is organized as follows: In Section 2, we explain the
face detection algorithm. In Section 3, we describe the
architecture, designed with Verilog HDL, of a face detection
system using block diagrams. In Section 4, we show the
implementation of the real-time face detection system in an FPGA
and measure the corresponding performance. Finally, we conclude
in Section 5.

2. FACE DETECTION ALGORITHM
The face detection algorithm proposed by Viola and Jones is used
as the basis of our design. The face detection algorithm looks for
specific Haar features of a human face. When one of these
features is found, the algorithm allows the face candidate to pass
to the next stage of detection. A face candidate is a rectangular
section of the original image called a sub-window. Generally
these sub-windows have a fixed size (typically 24×24 pixels).
This sub-window is often scaled in order to obtain a variety of
different size faces. The algorithm scans the entire image with this
window and denotes each respective section a face candidate [6].
The algorithm uses an integral image in order to process Haar
features of a face candidate in constant time. It uses a cascade of
stages which is used to eliminate non-face candidates quickly.
Each stage consists of many different Haar features. Each feature
is classified by a Haar feature classifier. The Haar feature
classifiers generate an output which can then be provided to the
stage comparator. The stage comparator sums the outputs of the
Haar feature classifiers and compares this value with a stage
threshold to determine if the stage should be passed. If all stages
are passed the face candidate is concluded to be a face. These
terms will be discussed in more detail in the following sections.

2.1 Integral Image
The integral image is defined as the summation of the pixel values
of the original image. The value at any location (x, y) of the
integral image is the sum of the image’s pixels above and to the
left of location (x, y). Figure 1 illustrates the integral image
generation.

2.2 Haar Features
Haar features are composed of either two or three rectangles.
Face candidates are scanned and searched for Haar features of the
current stage. The weight and size of each feature and the features
themselves are generated using a machine learning algorithm from
AdaBoost [6][7]. The weights are constants generated by the
learning algorithm. There are a variety of forms of features as
seen below in Figure 2. Each Haar feature has a value that is
calculated by taking the area of each rectangle, multiplying each

by their respective weights, and then summing the results. The
area of each rectangle is easily found using the integral image.
The coordinate of the any corner of a rectangle can be used to get
the sum of all the pixels above and to the left of that location
using the integral image. By using each corner of a rectangle, the
area can be computed quickly as denoted by Figure 3. Since L1 is
subtracted off twice it must be added back on to get the correct
area of the rectangle. The area of the rectangle R, denoted as the
rectangle integral, can be computed as follows using the locations
of the integral image: L4-L3-L2+L1

2.3 Haar Feature Classifier
A Haar feature classifier uses the rectangle integral to calculate
the value of a feature. The Haar feature classifier multiplies the
weight of each rectangle by its area and the results are added
together. Several Haar feature classifiers compose a stage. A stage
comparator sums all the Haar feature classifier results in a stage
and compares this summation with a stage threshold. The
threshold is also a constant obtained from the AdaBoost algorithm.
Each stage does not have a set number of Haar features.
Depending on the parameters of the training data individual stages
can have a varying number of Haar features. For example, Viola
and Jones’ data set used 2 features in the first stage and 10 in the
second. All together they used a total of 38 stages and 6060
features [6]. Our data set is based on the OpenCV data set which
used 22 stages and 2135 features in total [16][17].

Figure 1. Integral image generation. The shaded region
represents the sum of the pixels up to position (x, y) of the
image. It shows a 3×3 image and its integral image
representation.

Figure 2. Examples of Haar features. Areas of white and black
regions are multiplied by their respective weights and then
summed in order to get the Haar feature value.

Figure 3. Calculating the area of a rectangle R is done using
the corner of the rectangle: L4-L3-L2+L1.

2.4 Cascade
The Viola and Jones face detection algorithm eliminates face
candidates quickly using a cascade of stages. The cascade
eliminates candidates by making stricter requirements in each
stage with later stages being much more difficult for a candidate
to pass. Candidates exit the cascade if they pass all stages or fail
any stage. A face is detected if a candidate passes all stages. This
process is shown in Fig 4.

3. IMPLEMENTATION
3.1 System Overview
We proposed an architecture for a real-time face detection system.
Figure 5 shows the overview of the proposed architecture for face
detection. It consists of seven modules: image interface, frame
grabber, image store, image scaler, classifier, display, and DVI
interface. The image interface and DVI interface are implemented
using ASIC custom chips with the FPGA board. The others are
designed using Verilog HDL and implemented in an FPGA in
order to perform face detection in real-time.

3.2 Architecture for Face Detection
3.2.1 Frame Grabber
In frame grabber module, the frame grabber controller generates
the control signals for controlling the A/D converter which
converts the analog image signals into digital image data, and the
sync separator which generates the image sync signals in the
image interface module. The image sync signal and the color
image data are transferred from the image interface module. The
image cropper crops the images based on the sync signals. These
image data and sync signals are used in all of the modules of the
face detection system.

3.2.2 Image Store
The image store module stores the image data arriving from the
frame grabber module frame by frame. This module transfers the
image data to the classifier module based on the scale information
from the image scaler module. The image of a frame is stored in a
BRAM of the FPGA.

3.2.3 Image Scaler
The images are scaled down based on a scale factor by the image
scaler module. The image scaler module generates and transfers
the address of the BRAM containing a frame image in the image
store module to request image data according to a scale factor.
The image store module transfers a pixel data to the classifier
module based on the address of BRAM required from the image
scaler module.

3.2.4 Classifier
The classifier module performs the classification for the face
detection using Haar feature data. This module consists of the
image line buffer, image window buffer, integral image window
buffer, feature classifier, stage comparator, and feature training
data. The face detection is performed by the Haar feature
classification using an integral image. The integral image
generation requires substantial computation. A general purpose
computer of Von Neumann architecture has to access image
memory at least width×height times to get the value of each pixel
when it processes an image with width×height pixels. It may take
a long latency delay every frame. In order to reduce memory
access and processing time, we propose a specific architecture for
the integral image generation. This architecture stores the
necessary pixels for processing each pixel and its neighboring
pixels together. It consists of the image line buffer, image window
buffer, and integral image window buffer. Each buffer has its own

Figure 4. Cascade of stages. Candidate must pass all stages in
the cascade to be concluded as a face.

Figure 5. Block diagram of proposed face detection system.

controller. The image line buffer stores some parts of the image
and its controller generates the control signals for moving and
storing the pixel values. The image line buffer uses dual port
BRAMs where the number of BRAMs is the same as that of the
row in the image window buffer. Each dual port BRAM can store
one line of an image. Thus, the x-coordinates of the pixels can be
used as the address for the dual port BRAM. For the incoming
pixel where the coordinate is (x, y), the image line buffer
controller performs operations such as in (1), where n is the image
window row size, p(x, y) is the incoming pixel value, and L(x, y)
represents each pixel in the image line buffer.

, , 1 , where 1 2 (1)

, , , where 0

With these operations, the pixel values in the lines of an image are
stored in dual port BRAMs. Since each dual port BRAM stores
one line of an image, it is possible to get one pixel value from
every line simultaneously.

The image window buffer stores pixel values moving from the
image line buffer and its controller generates control signals for
moving and storing the pixel values. Since pixels of an image
window buffer are stored in registers, it is possible to access all
pixels in the image window buffer simultaneously to generate the
integral image window. For the incoming pixel with coordinate (x,
y), the image window buffer controller performs operation as in (2)
where n and m are the row and column size of the image window
buffer, respectively. p(i, j) is the incoming pixel value in the
image window buffer; p(x, y) is the incoming pixel value; I(i, j)
represents each of the pixels in the image window buffer; and L(x,
y) represents each of the pixels in the image line buffer.

, 1 , , where 1 1 (2)

, , 1 , where 1 1

, , , , where 0,

when 1 , 1 1 , 0 2 , 2 ,

, 1 , 1 , 1

The integral image window buffer stores integral pixel values
moving from the image window buffer and its controller generates
control signals for moving and calculating the integral pixel
values. Since pixels of an integral image window buffer are stored
in registers, it is possible to access all integral pixels in the
integral image window buffer simultaneously to perform the Haar
feature classification. For incoming pixel with coordinate (i, j), the
integral image window buffer controller performs operation as in
(3) where n is the row and column size of the integral image
window buffer. II(s, t) represents each of the integral pixels in the
integral image window buffer; and I(i, j) represents each of the
pixels in the image window buffer.

, (3)
 , , 2 1 , ,
where 0 1, 0 1, 1 2 2,
0 1

Figure 6 shows all of the actions in the proposed architecture to
generate the integral image. For every image from the frame
grabber module, the integral image window buffer is calculated to
perform the feature classification using the integral image.

A Haar classifier consists of two or three rectangles and their
weight values, feature threshold value, and left and right values.
Each rectangle presents four points using the coordinates (x, y) of
most left and up point, width w, and height h as shown in Figure 7.
The integral pixel value of each rectangle can be calculated using
these points from the integral image window buffer as shown in
Figure 8. Since integral pixel values in an integral image window
buffer are stored in registers, it is possible to access all integral
pixel values in the integral image window buffer simultaneously
to calculate the integral image value of the rectangles of the Haar
feature classifier. It enables us to save the memory access time.

Figure 9 shows the architecture of a Haar classifier for face
detection. All Haar feature data are stored in the BRAMs. Four
points of the rectangles of the Haar feature classifer are calculated

Figure 6. Architecture for generating integral image window.

by the method as shown in Figure 7. The integral image values of
Haar classifier are obtained from the integral image window
buffer as shown in Figure 8. Integral image value of each
rectangle multiplies with its weight. The summation of all integral
image values multiplied by their weight is the result of one Haar
feature classifier. This result is compared with the feature
threshold. If the result is smaller than the feature threshold, the
final resultant value of this Haar classifier is the left value.
Otherwise, the final resultant value is the right value. This final
resultant value is accumulated during the same stage. The
accumulative value of the stage is compared with the stage
threshold. If the accumulative value is larger than the stage
threshold, it goes to the next stage and so on to decide if this
image window could pass all stages. The proposed architecture of
the Haar classifier is implemented based on a pipeline scheme as
shown in Figure 9. During each clock cycle, the integral pixel
values of Haar classifier from the integral image window buffer
and the parameters of Haar classifier from the Haar feature
BRAMs are fed to calculate the result of classification
continuously. The latency for the first Haar classifier is five clock
cycles.

3.2.5 Display
In the display module, the Digital Visual Interface (DVI)
specification is applied to display the image sequence to the LCD
monitor through a DVI transmitter in the DVI interface module.
This module generates the sync signals and image data for the
DVI transmitter using the image signals and image data from the
other modules.

3.3 FPGA Implementation
The proposed architecture for face detection has been designed
using Verilog HDL and implemented in Xilinx Virtex-5 FPGA.
We use the Haar feature training data from OpenCV to detect the

frontal human faces based on the Viola and Jones algorithm
[16][17]. This cascade Haar feature training data are trained by
frontal faces whose size are 20x20, that includes a total of 22
stages, 2135 Haar classifiers, and 4630 Haar features. Table 1
shows the number of Haar classifiers in each stage.
In the proposed face detection system as shown in Figure 5, the
face detection is performed in three major parts. The first part is
grabbing and scaling. This part consists of the frame grabber,
image store, and image scaler modules. These modules are for
grabbing images and generating scaled images. Sub-windows for
the Haar classifier are expanded to detect large objects in Viola
and Jones object detection algorithm. Since the Haar feature
classifier consists of simple rectangles, scaling a sub-window is
not hard. Therefore, this method is widely used for software
object detection implementation. However, the larger cache
memory of the integral image is required according to the larger
size of a sub-window to achieve fast memory access, which is
difficult to implement in hardware. A scaling image technique is
used in hardware instead of the scaling sub-window because it
does not need a huge cache memory for fast memory access and it
is easy to implement in hardware. Since our architecture has a

Figure 7. Rectangle calculation of Haar feature classifier.

Figure 8. Simultaneous access to integral image window in
order to calculate integral image of Haar feature classifiers.

Figure 9. Architecture for performing Haar feature
classification.

Table 1. Number of weak classifiers in each stage
Stage

of

Classifier
Stage

of

Classifier
Stage

of

Classifier
0 3 8 56 16 140
1 16 9 71 17 160
2 21 10 80 18 177
3 39 11 103 19 182
4 33 12 111 20 211
5 44 13 102 21 213
6 50 14 135 Total 2135 7 51 15 137

fixed integral image window (21×21 pixels), it needs to scale
input images down to detect large faces. To make scaled images,
we use a nearest neighbor interpolation algorithm with a factor of
1.2. A pixel value in the scaled images is set to the value of the
nearest pixel in the original images. This is the simplest
interpolation algorithm that requires a lower computation cost.
The number of the scaled images depends on the input image
resolution. Our scaler module performs the down-scaling of input
images until the height of the scaled image is similar with the size
of the image window (21x21 pixels). The scaler module for
320×240 pixels images has 14 scale factors (1.20~1.213), the scaler
module for 640×480 pixels images has 18 scale factors
(1.20~1.217).
The second part is classifying to perform Haar feature
classification using the integral image. This part consists of a
classifier module which has the image line buffer, image window
buffer, integral image window buffer, feature classifier, stage
comparator, and feature training data blocks. Since generating
integral image of the whole scaled image requires substantial
computation power and time, we generate the integral image of
only the current image window. The image line buffer (20 lines),
image window buffer (21×41 cells), and integral image window
buffer (21×21 cells) are implemented to generate the integral
image of the current window during one clock cycle. The pixel
data are stored and moved in the image line buffer according to
the mechanism of the architecture explained in the previous
section. The pixel data with the same address of the image line
buffer are transferred to the image window buffer simultaneously.
The image window buffer performs pre-calculation to generate the
integral image widow. The image window buffer has two parts:
The first part (21x20 cells) calculates the accumulation values of
each column of the image window buffer. Each column has only
one adder. The adder of the most left column calculates the
summation of first row and second row pixel values in the most
left column. The adder of the second left column calculates the
summation of the first, second, and third row pixel values in the
second left column. Finally, the adder of 20th column calculates
the summation of all pixel values in the 20th column. The pipeline
scheme is applied in this part, so the latency of first summation of
all pixel values in the 20th column is 20 clock cycles.
The second part (21x22 cells) latches and moves the accumulative
pixel values of the column to the adjacent column. The
accumulated pixel values are used to generate the integral image
window. The integral image window buffer calculates the integral
image of the current image window. Each element of the integral
image window adds the previous integral pixel values to the
accumulative pixel values from the image window buffer, and
subtracts the accumulative pixel values from the leftmost column
of the image window buffer. Using this mechanism and
architecture, we can generate the integral image of current
window during one clock cycle. The contents of the image line
buffer, image window buffer, and integral image window buffer
are updated according to any stage fail signal or the all stages pass
signal from the stage comparator. So while the Haar classification
is processing, they maintain their value corresponding the current
window.
We design and implement both single and triple classifiers. The
triple classifier has three single classifiers which process in
parallel. The integral image window buffer can be accessed
simultaneously by three single classifiers because the integral
image window stores the integral pixel values in registers.

The Haar feature training data are stored in the BRAMs of an
FPGA. The BRAMs for the Haar feature training data consist of 5
BRAMs: 3 BRAMs for 3 rectangles of Haar feature (x, y, width,
height, weight), 1 BRAM for the feature threshold, left and right
values, and 1 BRAM for the stage threshold value. Although Haar
feature classifiers composed of either two or three rectangles, all
Haar feature classifiers are uniformed as having only 3 rectangles
for hardware implementation. If the Haar feature classifier has 2
rectangles, the third rectangle has 0 values. These values are
called according to the current stage and feature number. The
classifier module calculates the current stage and feature number,
and then generates the address of the Haar feature data BRAMs to
read the Haar feature values. In order to implement parallel
processing of multiple classifiers, Haar feature data should be
accessed simultaneously. Since BRAM allows the access to one
address, the contents of BRAM are divided and stored in several
BRAMs to allow multiple accesses of the Haar feature data. We
divided the contents of each BRAM into 3 BRAMs for the triple
classifier. The first content of BRAM is for the first classifier, the
second content is for the second classifier, and the third content is
for the third classifier. Again, the forth content is for the first
classifier, the fifth content is for the second classifier, and sixth
content is for the third classifier. This routine continues until the
end of BRAM contents. Therefore, 5 BRAMs are used for each
single classifier and total 15 BRAMs are used for the triple
classifier. Since the quantity of the Haar feature data is fixed, the
size of BRAMs used for the single classifier is the same the triple
classifier.

3.4 Optimization
Table 2 indicates a summary of the device utilization
characteristics for our face detection systems. There are four face
detection systems: single classifier and triple classifier for
320×240 (QVGA) resolution images and single classifier and
triple classifier for 640×480 (VGA) resolution images. Both
single classifier face detection systems can be implemented in
Virtex-5 LX110 FPGA [18]. And both triple classifier face
detection systems can be implemented in Virtex-5 LX155 FPGA
[18]. Face detection design involves a numerous number of
addition and subtraction operations to generate the integral image
window buffer and perform Haar feature classification. Hence it
leaves us plenty of optimization alternatives. In our design, the
classifier module performs face detection in real-time. Also it uses
almost all system resources of the face detection system shown in
Table 2 and 3. The classifier module includes two major
functional blocks: image window buffer and integral image
window buffer which include adders and subtractors. We use 13-
bit and 17-bit adders for all operations of the image window
buffer and the integral image window buffer, respectively, in our

Table 2. Device utilization characteristics for the face
detection system

Type of
Classifier

Slice
Registers

Slice
LUTs BRAMs DSP48Es

Q
V
G
A

Single
Classifier 19,066 64,143 41 7

Triple
Classifier 21,163 79,537 41 7

V
G
A

Single
Classifier 19,556 66,851 97 7

Triple
Classifier 21,902 84,232 97 7

design including carry for all adders and subtractors. However,
this implementation can be futher optimized in terms of area if we
replace these adders and subractors with the proper sized adders
and subtractors. We consider two following cases:

Each adder cell in the image window buffer has two operands.
One is from the right cell and the other is from the upper right cell.
The first adder cell accepts two 8-bit operands but each other
adder cell Ii accepts the output of the previous adder Ii-1 and an 8-
bit operand from the right cell in the image window buffer.
Consequently we do not need a 13-bit adder for all cells since all
the numbers to be added are a 8-bit wide. In fact we need 8-bit
adder for the first operation, a 9-bit adder for the second operation,
a 10-bit adder for the third and fourth operation, a 11-bit adder for
fifth through eighth operations, etc. This is due to the fact that the
maximum number to be represented is limited to 8-bit integers. In
a Virtex-5 device, each n-bit adder consumes n LUTs, so using
the above optimization scheme, the image window buffer can be
modified to use less LUTs. Here, we can implement this module
with one 8-bit adder, one 9-bit adder, two 10-bit adders, four 11-
bit adders, eight 12-bit adders and finally four 13-bit adders as
opposed to twenty 13-bit adders which results in 31 LUTs saving.
This may sound small but the very same architecture repeats in

integral image buffer and could result in higher FPGA resource
savings. This is explained in following paragraph.

In the integral image window buffer, the optimization scheme
explained in previous paragraph can be incorporated to save more
FPGA resources. The integral image window buffer is an adder
matrix of size 21x21. In its current implementation, each adder
cell is 17-bits wide. This obviously can be optimized using the
scheme explained in previous paragraph. Each integral image
window buffer adder cell implements an addition and a
subtraction (IIi = IIi + Ii - Ij). Ii/Ij bit range varies from 8-bit to 13-
bit. These operands are fed to the integral image window buffer
from the image window buffer. The maximum number to be
represented in the image window buffer varies from 255 for II(0,
0) which can be represented by 8-bit to 255*21 = 5355 which can
be represented by 13-bit for II(0, 20) or II(20, 0). The II(20, 20)
should be as large as 255*21*21 = 112455 which can be
represented by 17-bits. We have used 17-bit adders in this
implementation for all cells of the integral image window buffer
but this can also be modified to save FPGA resources as explained.
Applying the above scheme, 31 LUTs can be saved per each row
or column which translates to total of 651 LUTs for the whole
calculator.

On the other hand, we can design the adders and subtractors of the
classifier module with DSP blocks instead of LUTs. This
optimization can be scalable for configurable devices with
variable resources. Virtex-5 LX devices have a lot of logic cells as
slice registers and LUTs. Virtex-5 SX devices are rich in terms of
DSP blocks, hence more suitable for implementation of adders
and subtractors using DSP blocks. Table 3 shows the device
utilization of the classifier module according to the DSP block
usage option.

4. EXPERIMENTS / RESULTS
A high frame processing rate and low latency are important for
many applications that must provide quick decisions based on
events in the scene [19]. We measure the performance of the
proposed architecture for the face detection system. Table 4 shows
the performance of the implemented face detection system when it
is applied to a camera, which produces images consisting of
320×240 pixels at 60 frames per second. The system performance
depends on the number of faces in the images. The single
classifier face detection system is capable of processing the
images at speeds of an average of 15.14 fps. The triple classifier
face detection system is capable of processing the images at
speeds of an average of 26.51 fps. The triple classifier face
detection system has the performance improvement of 1.75 times
than the single classifier one. Table 5 shows the performance of
the implemented face detection system when it is applied to a
camera, which produces images consisting of 640×480 pixels at
60 frames per second. The single classifier face detection system
is capable of processing the images at speeds of an average of
4.35 fps. The triple classifier face detection system is capable of
processing the images at speeds of an average of 6.96 fps. The
triple classifier face detection system has the performance
improvement of 1.6 times than the single classifier one. This is
due to the concurrent operations of the three single classifiers in
parallel. Although the usage of the system resource increases, the
system performance increases dramatically. The performance of
the software program is determined by measuring the computation
time required for performing face detection on the PC; in this case
a Intel Core 2 Extreme CPU (2.80 GHz), 2.98 GB DDR2 SDRAM

Table 3. Device utilization characteristics for the classifier
module of the face detection system with DSP block usage
option

Modules Slices
Register

Slice
LUTs

BRA
Ms

DSP
48Es

DSP
Option
 “No”

Line
Buffer 179 11 10 0

Window
Buffer 10064 12311 0 0

Integral
Window
Buffer

7524 18038 0 0

Feature
Classifier/
Stage
Comparator

444 18297 0 0

Feature
Data 11 94 11 0

Total
Classifier
Module

18122 62890 21 0

DSP
Option
“Yes”

Line
Buffer 179 2 10 1

Window
Buffer 10074 11476 0 20

Integral
Window
Buffer

986 3236 0 886

Feature
Classifier/
Stage
Comparator

463 16283 0 46

Feature
Data 11 94 11 0

Total
Classifier
Module

13245 45340 21 964

(800 MHz), Microsoft Windows XP Professional, and Microsoft
Visual Studio. All of the software programs are developed using
Microsoft Visual C++. The algorithm and parameters used in
software face detection are exactly the same with one of hardware
face detection. When the face detection system, using the software
program, is applied to the same conditions as the hardware face
detection, it is capable of processing the images at speeds of an
average of 0.71 fps with 320×240 pixels and 0.37 fps with
640×480 pixels at 60 frames per second. The hardware face
detection system has the performance improvement up to 37.33
times the software face detection system with the 320×240 pixel
images and up to 18.81 times the software face detection system
with the 640×480 pixel images.

Figure 10 shows the experimental result of the proposed face
detection system. The white squares present the detected face on
the images. It shows that the face can be detected successfully.

5. CONCLUSION
We present a hardware architecture for face detection based on the
AdaBoost algorithm using Haar features. In our architecture, the
scaling image technique is used instead of the scaling sub-window,
and the integral image window is generated instead of the integral
image contains whole image during one clock cycle. The Haar
classifier is designed using a pipelined scheme, and the triple
classifier which three single classifiers processed in parallel is
adopted to accelerate the processing speed of the face detection
system. Also we discussed the optimization of the proposed
architecture which can be scalable for configurable devices with
variable resources. Finally, the proposed architecture is
implemented on a Virtex-5 FPGA and its performance is
measured and compared with an equivalent software
implementation. We show about 35 times increase of system
performance over the equivalent software implementation. We
plan to implement more classifiers to improve our design. When
the proposed face detection system is used in a system which
requires face detection, only a small percentage of the system
resources are allocated for face detection. The remainder of the
resources can be assigned to preprocessing stage or to high level
tasks such as recognition and reasoning. We have demonstrated
that this face detection, combined with other technologies, can
produce effective and powerful applications.

6. REFERENCES
[1] Z. Guo, H. Liu, Q. Wang, and J. Yang, “A Fast Algorithm of

Face Detection for Driver Monitoring,” In Proceedings of the
Sixth International Conference on Intelligent Systems Design
and Applications, vol.2, pp.267 - 271, 2006.

[2] M. Yang, N. Ahuja, “Face Detection and Gesture
Recognition for Human-Computer Interaction,” The
International Series in Video Computing , vol.1, Springer,
2001.

[3] Z. Zhang, G. Potamianos, M. Liu, T. Huang, “Robust Multi-
View Multi-Camera Face Detection inside Smart Rooms
Using Spatio-Temporal Dynamic Programming,”
International Conference on Automatic Face and Gesture
Recognition, pp.407-412, 2006.

[4] W. Yun; D. Kim; H. Yoon, “Fast Group Verification System
for Intelligent Robot Service,” IEEE Transactions on
Consumer Electronics, vol.53, no.4, pp.1731-1735, Nov.
2007.

[5] V. Ayala-Ramirez, R. E. Sanchez-Yanez and F. J.
Montecillo-Puente “On the Application of Robotic Vision
Methods to Biomedical Image Analysis,” IFMBE
Proceedings of Latin American Congress on Biomedical
Engineering, pp.1160-1162, 2007.

[6] P. Viola and M. Jones, “Robust real-time object detection,”
International Journal of Computer Vision, 57(2), 137-154,
2004.

[7] Y. Freund and R. E. Schapire, “A Decision-Theoretic
Generaliztion of On-Line Learning and an Application to
Boosting,” Journal of Computer and System Sciences, no.
55, pp. 119-139, 1997.

Table 4. Performance of proposed face detection system with
320×240 resolution images

of
Faces

Software
Classifier

Hardware

Single Classifier Triple Classifier

1 1,256 ms
(0.79 fps)

57.131 ms
(17.50 fps)

34.712 ms
(28.80 fps)

6 1,402 ms
(0.71 fps)

64.981 ms
(15.39 fps)

37.378 ms
(26.75 fps)

11 1,538 ms
(0.65 fps)

79.628 ms
(12.55 fps)

41.711 ms
(23.97 fps)

Table 5. Performance of proposed face detection system with
640×480 resolution images

of
Faces

Software
Classifier

Hardware

Single
Classifier Triple Classifier

1 2,165 ms
(0.46 fps)

189.199 ms
(5.28 fps)

133.143 ms
(7.51 fps)

6 2,919 ms
(0.34 fps)

254.254 ms
(3.93 fps)

146.745 ms
(6.81 fps)

11 3,129 ms
(0.31 fps)

260.169 ms
(3.84 fps)

152.664 ms
(6.55 fps)

Figure 10. Experimental result of face detection system.

[8] T. Theocharides, N. Vijaykrishnam, and M. J. Irwin, “A
parallel architecture for hardware face detection,” In
Proceedings of IEEE Computer Society Annual Symposium
Emerging VLSI Technologies and Architectures, pp. 452-
453, 2006.

[9] R. McCready “Real-time face detection on a configurable
hardware system,” In Proceedings of the Roadmap to
Reconfigurable Computing, International Workshop on
Field-Programmable Logic and Applications, pp.157-162,
2000.

[10] M. S. Sadri, N. Shams, M. Rahmaty, I. Hosseini, R. Changiz,
S. Mortazavian, S. Kheradmand, and R. Jafari, “An FPGA
Based Fast Face Detector,” In Global Signal Processing
Expo and Conference, 2004.

[11] Y. Wei, X. Bing, and C. Chareonsak, “FPGA implementation
of AdaBoost algorithm for detection of face biometrics,” In
Proceedings of IEEE International Workshop Biomedical
Circuits and Systems, page S1, 2004.

[12] M. Yang, Y. Wu, J. Crenshaw, B. Augustine, and R.
Mareachen, “Face detection for automatic exposure control
in handheld camera,” In Proceedings of IEEE international
Conference on Computer Vision System, pp.17, 206.

[13] V. Nair, P. Laprise, and J. Clark, “An FPGA-based people
detection system,” EURASIP Journal of Applied Signal
Processing, 2005(7), pp. 1047-1061, 2005.

[14] C. Gao and S. Lu, “Novel FPGA based Haar classifier face
detection algorithm acceleration,” In Proceedings of
International Conference on Field Programmable Logic and
Applications, 2008.

[15] M. Hiromoto, K. Nakahara, H. Sugano, “A specialized
processor suitable for AdaBoost-based detection with Haar-
like features,” In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, pp.1-8, 2007.

[16] G. Bradski and A. Kaehler, “Learning OpenCV: Computer
Vision with the OpenCV Library,” O'Reilly Media, Inc.,
2008.

[17] Open Couter Vision Library, , Oct. 2008.
DOI=http://sourceforge.net/projects/opencvlibray/

[18] Xilinx Inc., “Virtex-4 Data Sheets: Virtex-4 Family
Overview,” Sep. 2008. DOI= http://www.xilinx.com/

[19] J. I. Woodfill, G. Gordon, R. Buck, “Tyzx DeepSea High
Speed Stereo Vision System,” In Proceedings of the
Conference on Computer Vision and Pattern Recognition
Workshop, pp.41-45, 2004.

