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Abstract. Hyperspectral data compression is expected to play a crucial role in 
remote sensing applications. Most available approaches have largely over-
looked the impact of mixed pixels and subpixel targets, which can be accurately 
modeled and uncovered by resorting to the wealth of spectral information pro-
vided by hyperspectral image data. In this paper, we develop an FPGA-based 
data compression technique based on the concept of spectral unmixing. It has 
been implemented on a Xilinx Virtex-II FPGA formed by several millions of 
gates, and with high computational power and compact size, which make this 
reconfigurable device very appealing for onboard, real-time data processing.  

1   Introduction 

Our focus in this work is to design a hyperspectral data compression technique able to 
reduce significantly the large volume of information contained in hyperspectral data 
while, at the same time, being able to retain information that is crucial to deal with 
mixed pixels and subpixel targets. A mixed pixel is a mixture of two or more different 
substances present in the same pixel1. A subpixel target is a mixed pixel with size 
smaller than the available pixel size (spatial resolution). So, it is embedded in a single 
pixel and its existence can only be verified by using the wealth of spectral information 
provided by hyperspectral sensors. In this case, spectral information can greatly help 
to effectively characterize the substances within the mixed pixel via spectral unmixing 
techniques. However, a major drawback of spectral-based data compression methods 
for hyperspectral imaging is their computational complexity2. The possibility of real-
time, onboard data compression is a highly desirable feature to overcome the problem 
of transmitting a sheer volume of high-dimensional data to Earth control stations via 
downlink connections. In this work, we develop and FPGA-based compression algo-
rithm based on spectral unmixing concepts. Section 2 develops the lossy compression 
algorithm. Section 3 maps the algorithm in hardware using systolic array design. 
Section 4 evaluates the algorithm in terms of both mixed-pixel and subpixel charac-
terization accuracy, using a real image data set collected by the NASA Jet Propulsion 
Laboratory’s Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS). Perform-
ance data in a Xilinx Virtex-II FPGA are also given. Section 5 concludes with some 
remarks.  
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2   Hyperspectral Data Compression Algorithm 

The first step of the algorithm consists of extracting endmembers from the input data. 
A well-known approach to accomplish this goal is the PPI algorithm3, which proceeds 
by generating a large number of N-dimensional (N-D) random unit vectors called 
“skewers” through the dataset. Every data point is projected onto each skewer, and the 
data points that correspond to extrema in the direction of a skewer are identified and 
placed on a list. The number of times a given pixel is placed on the list is tallied, and 
the t pixels with the highest tallies are considered the final endmembers. 

Using the set of t endmembers above, an inversion model is required to estimate 
the fractional abundances of each of the endmembers at the mixed pixels. Here, we 
use a commonly adopted technique as the second step of our compression algorithm, 
i.e., the linear spectral unmixing (LSU)1 technique. Suppose that there are t endmem-

bers { }tii 1=e  in a hyperspectral image scene, and let f  be a mixed pixel vector. LSU 

assumes that the spectral signature of f  can be represented by a linear mixture of 

1e , 2e ,…, te  with appropriate abundance fractions specified by an abundance vector 

{=a 1a , 2a ,…, ta }. Then, we can model the spectral signature of an image pixel f  by 

a linear regression form tt aaa ⋅+⋅⋅⋅+⋅+⋅= eeef 2211 . Two constraints are usually im-

posed on this model to produce adequate solutions1, i.e., abundance sum-to-one con-

straint: ∑ =
=

t

i
ia

1
1 , and abundance non-negativity constraint: 0≥ia  for ti ≤≤1 . 

Taking advantage of PPI and LSU, the idea of the proposed data compression algo-
rithm is to represent a hyperspectral image cube by a set of fractional abundance im-
ages4. More precisely, for each N-D pixel vector f , its associated LSU-derived abun-
dance vector a  of t dimensions is used as a fingerprint of f  with regards to t end-
members obtained by the PPI algorithm. The implementation of the PPI/LSU algo-
rithm can be summarized as follows: 

1. Use the PPI to generate a set of t endmembers { }t

ii 1=e . 

2. Use the LSU algorithm to estimate the corresponding endmember abundance 
fractions {=a 1a , 2a ,…, ta } and approximate each pixel vector as 

tt aaa ⋅+⋅⋅⋅+⋅+⋅= eeef 2211 . Note that this is a reconstruction of f . 

3. Construct t fractional abundance images, one for each PPI-derived endmember. 
4. Apply lossless predictive coding to reduce spatial redundancy within each of the t 

fractional abundance images, using Huffman coding to encode predictive errors. 

3   FPGA-Based Hardware Implementation 

Fig. 1 shows our proposed systolic array design for FPGA implementation of the PPI 
algorithm. The nodes labeled as “dot” in Fig. 1 perform the individual products for 
the skewer projections, while the nodes labeled as “max” and “min” respectively 
compute the maxima and minima projections after the dot product calculations have 
been completed (asterisks in Fig. 1 represent delays). In Fig. 1, ( )i

js  denotes the j-th 

value of the i-th skewer vector, with { }ki  ,,...1∈ , and { }bj ,,...1∈ , where b is the  
 



890 D. Valencia and A. Plaza 

 

( )1
1s

( )1
2s( )1

bs ...

*
( )2
1s

( )2
2s...( )2

bs

**
( )3
1s

( )3
2s...( )3

bs

***
( )ks1

( )ks2...( )k
bs

***
( )p

1f
( )p
2f...( )p

bf**
( )3

1f
( )3
2f...( )3fb*

( )2
1f

( )2
2f...( )2fb

( )1
1f

( )1
2f( )1fb ...

dot dot dot

dot dot dot

dot dot dot

dot

dot

dot

dot dot dot dot

min

min

min

min

max max max max

∞

0

( )1
1s

( )1
2s( )1

bs ... ( )1
1s

( )1
2s( )1

bs ...

*
( )2
1s

( )2
2s...( )2

bs *
( )2
1s

( )2
2s...( )2

bs

**
( )3
1s

( )3
2s...( )3

bs **
( )3
1s

( )3
2s...( )3

bs

***
( )ks1

( )ks2...( )k
bs ***

( )ks1
( )ks2...( )k

bs

***
( )p

1f
( )p
2f...( )p

bf ***
( )p

1f
( )p
2f...( )p

bf**
( )3

1f
( )3
2f...( )3fb **

( )3
1f

( )3
2f...( )3fb*

( )2
1f

( )2
2f...( )2fb *

( )2
1f

( )2
2f...( )2fb

( )1
1f

( )1
2f( )1fb ... ( )1

1f
( )1
2f( )1fb ...

dot dot dot

dot dot dot

dot dot dot

dot

dot

dot

dot dot dot dot

min

min

min

min

max max max max

∞

0
 

Fig. 1. Systolic array design for the proposed FPGA implementation of the PPI algorithm 

number of bands. Similarly, ( )m
jf  denotes the reflectance value of the j-th band of the 

m-th pixel, with { }pm ,,...1∈  and p is the total number of pixels in the scene. 
We are still working towards the implementation of the LSU algorithm in hard-

ware, so timing results in this work will be related with the optimization introduced 
by PPI-based FPGA design. The synthesis was performed using Handel-C, a hard-
ware design and prototyping language. The implementation was compiled by using 
the DK3.1 software package. We also used other tools such as Xilinx ISE 6.1i to carry 
out automatic place and route (PAR), and to adapt the implementation to the Virtex-II 
FPGA used in experiments. 

4   Experimental Results 

The algorithm was applied to a real hyperspectral scene collected by an AVIRIS 
flight over the Cuprite mining district in Nevada, which consists of 614x512 pixels 
and 224 bands (available online from http://aviris.jpl.nasa.gov). Table 1 reports the 
spectral angle-based similarity scores1 among U.S. Geological Survey reference 
signatures (see http://speclab.cr.usgs.gov) and the PPI-extracted endmembers from 
the resulting images after data compression (the lowest the scores, the highest the 
similarity). As the compression ratio was increased, the quality of extracted end-
members was decreased. We also included results by two standard methods: the 
wavelet-based JPEG2000 multicomponent5 and the set partitioning in hierarchical 
trees (SPIHT)6. Results in Table 1 show that such 3-D techniques, which enjoy suc-
cess in classical image compression, did not find equal success in hyperspectral 
image compression.  
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Table 1. Spectral similarity scores among ground-truth spectra and the endmembers extracted 
and from several reconstructed versions of the original image after compression 

PPI/LSU JPEG2000 SPIHT  

Mineral 
 

Original image 
20:1 40:1 80:1 20:1 40:1 80:1 20:1 40:1 80:1 

Alunite 0.063 0.069 0.078 0.085 0.112 0.123 0.133 0.106 0.119 0.129 
Buddingt. 0.042 0.053 0.061 0.068 0.105 0.131 0.142 0.102 0.125 0.127 
Calcite 0.055 0.057 0.063 0.074 0.102 0.128 0.139 0.097 0.122 0.134 
Kaolinite 0.054 0.059 0.062 0.071 0.114 0.140 0.151 0.110 0.134 0.146 
Muscovite 0.067 0.074 0.082 0.089 0.123 0.145 0.167 0.116 0.139 0.152 

Finally, Table 2 shows the resource utilization by our systolic array-based imple-
mentation of PPI/LSU on the Xilinx Virtex-II XC2V6000-6 FPGA, which com-
pressed the full AVIRIS scene in only 39 seconds approaching (near) real time per-
formance.  

Table 2. Summary of resource utilization for the FPGA-based implementation 

Number of gates Number of slices Percentage of total Maximum operation frequency (MHz) 
526944 12418 36% 18.032 

5   Conclusions 

On-board compression of hyperspectral imagery has been a long-awaited goal by the 
remote sensing community. This paper investigated the importance of mixed pixels in 
hyperspectral data compression and further proposed an innovative, application-
oriented data compression technique which is based on the pixel purity index (PPI) 
algorithm and linear spectral unmixing (LSU). Experimental results demonstrate that 
the algorithm provides very high compression ratios with no apparent spectral signa-
ture degradation. A systolic array-based FPGA implementation of the algorithm on a 
Xilinx Virtex-II XC2V6000-6 FPGA was also provided. 
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