
FPGA-based Implementation of a serial RSA processor

A. Mazzeo, L. Romano, G. P. Saggese - Universita’ degli Studi di Napoli “Federico II”
N. Mazzocca - Seconda Universita’ degli Studi di Napoli

{mazzeo, lrom, saggese, n.mazzocca}@unina.it

Abstract

In this paper we present an hardware implementation of
the RSA algorithm for public-key cryptography. The RSA al-
gorithm consists in the computation of modular exponentials
on large integers, that can be reduced to repeated modular
multiplications. We present a serial implementation of RSA,
which is based upon an optimized version of the RSA algo-
rithm originally proposed by P.L. Montgomery. The proposed
architecture is innovative, and it widely exploits specific ca-
pabilities of Xilinx programmable devices. As compared to
other solutions in the literature, the proposed implementa-
tion of the RSA processor has smaller area occupation and
comparable performance. The final performance level is a
function of the serialization factor. We provide a thorough
discussion of design tradeoffs, in terms of area requirements
vs performance, for different values of the key length and of
the serialization factor.

1. Introduction and RSA algorithm

In the recent years, we have witnessed increasing deploy-
ment of hardware devices for the provisioning of security
functions, such as confidentiality, authentication, integrity
and non-repudiation [1]. Hardware devices appear to be a
promising solution to inherent performance issues of sym-
metric (private key) and asymmetric (public-key) cryptosys-
tems, and provide greater resistance to tampering [1].

Among the existing algorithms the Rivest-Shamir-
Adleman (RSA) is the most widely adopted [2] public-key
cryptography algorithm. Its security lies in the difficulty of
factorizing large integers. The basic operation of such an al-
gorithm is modular exponentiation on large integers. The pri-
vate key consists of two large primes p and q and an exponent
D. The public key consists of the modulus N = p · q, and
an exponent E such that E = D−1 mod (p − 1) · (q − 1).
To encrypt a message X , the algorithm requires the computa-
tion of Y = XE mod N . Decryption is done by calculating
X = Y D mod N . Both encryption and decryption require
the computation of modular exponentiation. In this paper,
we thus concentrate on the calculation of modular exponen-
tiation Y = XE mod N .

Two are the major problems that make an effective imple-
mentation of modular exponentiation difficult:

1) modular exponentiation is typically carried out via re-

peated modular multiplication. The problem of determin-
ing the minimum sequence of multiplications is itself a hard
task. In fact, for a given positive exponent E, the problem
of computing the minimum sequence of multiplications for
E is known as Addition Chains, and it is established to be
an NP-complete problem [3]. Heuristic search can be used
only when the modulus is known in advance and a prepro-
cessing step is thus possible. However, many algorithms
are known, which can guarantee shorter sub-optimal addi-
tion chains, such as: binary methods (RL-algorithm, LR-
algorithm), M-ary methods, Power Tree, etc. [4]);

2) the design and the implementation of an effective al-
gorithm for modular multiplication is also an issue. In fact,
modular multiplication is generally considered a complex
arithmetic operation because of the inherent multiplication
and division operations. This is particularly true if the size
of the operands is large, i.e. greater than 64 bits or so. It
is worth noting that the involved operands are indeed large,
since in order to thwart currently known attacks, the modulus
N , X and Y have lengths of K of 512-1024 bits at least.

As far as the first issue is concerned, i.e. the computa-
tion of an addition chain for a given exponent, we adopted
the method known as Binary Right-to-Left Algorithm [5]
which consists in repeated squarings and multiplications.
This choice was motivated by the simple hardware imple-
mentation of the method. This is actually the only feasible
alternative, especially when limited hardware resources are
available.

The main focus of the paper is thus the second issue,
i.e. the problem of modular multiplication. Two are the
main approaches to calculating modular multiplication in the
literature: division-after-multiplication, and division-during-
multiplication. In the former, modulo operation follows mul-
tiplication: the K-bit multiplication is carried out, and then
the 2K-bit result is divided, thus leading to the desired re-
mainder. In the latter, the modulo operation is repeated
after each iteration of the multiplication procedure. An
overview of different algorithms employed in the division-
after-multiplication method is in [4]. This approach re-
quires more hardware resources than the division-during-
multiplication counterpart, mainly because of multiplication
and computation of remainder. The only reason why it was
originally adopted is its intuitiveness. The division-during-
multiplication method is widely recognized as a more effec-
tive method and it is thus the preferred one.

1530-1591/03 $17.00 2003 IEEE

Two are the main division-during-multiplication tech-
niques: Blakley’s method and Montgomery’s method. Blak-
ley’s method [6] computes a modular multiplication by inter-
leaving the shift-add steps of the multiplication and the shift-
subtract steps of the division. Montgomery’s method [7] in-
stead, computes M = A ·B mod N , without performing any
division by the modulus N .

The advantage of this approach is that it exploits a rep-
resentation of A and B as a residue class modulo N , thus
replacing the division by N operation with a division by R.
Since R can be chosen as a power of 2, this operation is a low-
cost operation for binary represented numbers. However, the
preprocessing and postprocessing steps, which are needed to
convert the numbers to and from residue based representation
are expensive. The cost of the conversion may be unaccept-
able if a few modular multiplications are to be performed, but
it becomes negligible as the number of modular multiplica-
tions with the same modulus increases. Since this is the case
of modular exponentiation, we resorted to the Montgomery
algorithm.

The rest of the paper is organized as follows. In Section 2
we explain the algorithms which we have adopted in the pro-
posed implementation of RSA. Section 3 describes the archi-
tecture of the RSA processor, parameterized with respect to
the length of the key, K, and the size S of the operands of the
elementary steps. Sections 4, addresses issues related to the
implementation of the proposed RSA processor on a COTS
(Commercial Off The Shelf) reconfigurable device, namely
Xilinx VirtexE. Section 5, discusses performance results and
analyzes area vs throughput trade-offs, with respect to other
architectures proposed in the literature. Finally, section 6
concludes the paper with some final remarks.

2 Algorithms used in the RSA processor

This section describes the algorithms we have used in our
RSA processor. For implementation of modular multiplica-
tion we exploit some optimizations of Montgomery Product
first described by Walter [8]. We suppose that N can be rep-
resented with K bit, and we take R = 2K+2. The N -residue
of A with respect to R is defined as the positive integer Ā =
A ·R mod N . Montgomery Product [7] of residues of A and
B, MonPro(Ā, B̄), is defined as (Ā · B̄ ·R−1) mod N , that
is the N -residue of the desired A ·B mod N . If A,B < 2N ,
combining [8] and [4], the following radix-2 binary add-shift
algorithm can be employed to calculate MonPro:
Algorithm 2.1 - Montgomery Product MonPro(A,B) radix-2.
Given A =

∑K+2

i=0
Ai ·2

i, B =
∑K

i=0
Bi ·2

i, N =
∑K−1

i=0
Ni ·2

i,
where Ai, Bi, Ni ∈ {0, 1}, AK+1, AK+2 = 0, computes a num-
ber falling in [0, 2N [which is modulo N congruent with desired
(A · B · 2−(K+2)) mod N

1. U = 0

2. For j = 0 to K + 2 do

3. if (U0 = 1) then U = U + N

4. U = (U/2) + Aj · B

5. end for

We report exponentiation algorithm for computing XE mod

N known as Right-To-Left binary method [5], modified in
order to take advantage of Montgomery Product.
Algorithm 2.2 - Right-To-Left Modular Exponentiation using Mont-
gomery Product.
Given X , N , and E =

∑H−1

i=0
Ei · 2i, Ei ∈ {0, 1}, computes

P = XE mod N .
1. P0 = MonProd(1, R2 mod N)

2. Z0 = MonProd(X, R2 mod N)

3. For i = 0 to H − 1 do

4. Zi+1 = MonProd(Zi, Zi)

5. if (Ei = 1) then Pi+1 = MonProd(Pi, Zi)

6. else Pi+1 = Pi

7. end for

8. P = MonProd(PH , 1)

9. if (P ≥ N) then return P − N

10. else return P

The first phase (lines 1-2) calculates residues of initial val-
ues 1 and X . For a given key value, the factor R2 mod N
remains unchanged. It is thus possible to use a precomputed
value for such a factor and reduce residue calculation to a
MonProd. The core of the computation is a loop in which
modular squares are performed, and previous partial result Pi

is multiplied by Zi, based on a test performed on the value of
i-th bit of E (H is the number of the bits composing E).
It is worth noting that, because of the absence of dependen-
cies between instructions 4 and 5-6, these can be executed
in parallel. Instruction 8 allows to switch back from residue
domain to normal representation of numbers. After line 8
is executed, a further check is needed (lines 9-10) to ensure
that the obtained value of P is actually XE mod N . In fact,
while it is acceptable in intermediate loop executions that the
MonProd temporary result (line 4 and line 5) be in the range
[0, 2N [, this cannot be in the last iteration. Thus, if the final
value of P is greater than N , it must be diminished by N .

3 Description of RSA processor

This section describes the architecture of our RSA proces-
sor, which implements the algorithms described in the previ-
ous section. From Alg. 2.2 it follows that basic operation is
modular product, so the RSA processor must be able to prop-
erly sequence repeated modular products on data, and store
intermediate results in a register file, according to the control
flow of Alg. 2.2. Again, each MonProd (see Alg. 2.1) is
composed of different micro-operations consisting of load-
store on registers, shifts, and additions. Operands are long
integers with length related to K. In our implementation,
each instruction is broken up into several parts and executed
in a serial fashion on S-bit long operands.

At a high level of abstraction, the RSA processor is com-
posed of two modules: a Data-path Unit performing data-
processing operations, and a Control Unit which determines
the sequence of operations. To master the complexity of the
design, we used a modular approach. We divided the Con-
trol Unit in two entities, in accordance to Alg. 2.2 (which
is composed by a main routine, calling the MonProd rou-
tine). The ModExp Controller block implements the routine

corresponding to Alg. 2.2. It is thus in charge of generating
control flow signals (for loops, conditional and unconditional
jumps), of activating the MonProd Controller when a modu-
lar product is met, and of waiting until this has finished. The
MonProd Controller supervises correct modular product ex-
ecution, i.e. it sequences long integer operations, which are
performed serially on S bits at a time.

The Data-path is designed to operate on S-bit wide words.
As such, S represents the serialization factor, or in other
terms, S is digit-size in multiprecision arithmetic. Data-path
is composed by three macro blocks (Fig. 1): a Memory Sec-
tion block storing intermediate data inherent in Alg. 2.2, and
two processing units named P-processor and Z-processor,
implementing in parallel respectively modular product and
modular squaring.

POUT

BusIN

MemOUT,1

MemOUT,2

S

Memory Section P-processorZ-processor

ZOUT

S

Control
Unit

Control
signals

Data-Path
Unit

Result

Figure 1. Overall architecture of RSA proces-
sor

Data-path is organized as a 3-stage pipeline. The first
stage fetches the operands. Data are read from the register file
in the Memory Section and from scratchpad registers, con-
taining current partial result U for squaring and product. The
second stage (Adder/Sub block) operates on the data. The
last stage writes results back into Registers U .

In the following, we will first describe the P-processor,
which performs a serial modular product and a reduction
step. Then, we will describe the Z-processor. Since squaring
can be realized as a product, the Z-processor is a simplified
version of a P-processor. We will thus limit our description to
those characteristics of the Z-processor which differ from the
P-processor. Finally, we will describe the Memory Section
block and the microcoded controller has been designed.

3.1 P-processor

The P-processor realizes different operations in several
phases of the RSA algorithm:
1) it can act, along with the Memory Section, as a serial
Montgomery multiplier implementing Alg. 2.1;
2) it can carry out a simple preprocessing phase to accelerate
modular product (i.e. 2B+N computation);
3) finally, it can realize reduction step (a comparison and if
necessary a subtraction) to ensure that result is actually the
modulus of requested exponentiation.

MonProd(A,B) of Alg. 2.1 is a sequence of K+3 con-
ditional sums, in which the operands depend both on the
least significant bit U0 of partial result U , and on bits of the
operand A. The (K+2)-bit additions are performed serially
with an S-bit adder in M = d(K+2)/Se clock cycles. This

has two fundamental advantages. First, it allows area saving,
since serial implementation of an algorithm makes it possible
to use smaller operators (saving is actually achieved provided
that area-overhead due to serial to parallel data formatting
and subsequent inverse conversion does not frustrate area-
saving deriving from smaller data-path). Second, a serial ap-
proach avoids long carry chains. Long carry chains cannot
be accommodated in a single column of a Xilinx logic block
array and must thus be broken down into several columns,
which results in an increased net delay. These advantages

U0

signum

From
Memory

S S

UShiftREG,P

clk

S

Add/Sub

0 1

loadFIFO,P

S

AI,P

Reset
carryP

SS

Set
carry

POUT

Shift SelADD2

Reg Reg

S

0 1SelA,P

loadREG,P

BusIN

shiftSresetS

S

2

A

MemOUT,1

MemOUT,2

S

2
SelOP,P

To
Controller

S S

Figure 2. Structure of P-processor

come at the price of: i) a slightly more complex control unit,
ii) time-area overhead due to serial-to-parallel and vice versa
conversions, and iii) a potential increase of the overall de-
lay due to the need of allowing the flip-flop delay to elapse S
times (as opposed to only one time, in the completely parallel
alternative).

The major drawback is certainly the second one. To ad-
dress this, we use the RAM as a set of register files, storing
(K+3)-bit operands as composed by M words, of size S. We
then access directly the required portion of operands. By do-
ing so, we can get rid of multiplexer/demultiplexer blocks.
This results in a dramatic reduction of time-area overhead.

The computational core of the P-processor is reported in
Fig. 2. Steps 3-4 of Alg. 2.1 are actually implemented as:

3. U = (U + Ai · 2B + U0 · N)/2 = (U + V)/2

where V ∈ {0, 2B, 2B+N , N} depending on Ai and U0. It
can be proved that U before division by two is always even,
and so a simple shift can yield the correct result. In the pro-
posed implementation, the modular product is composed by
a preprocessing phase for computing (once for all) the value
2B+N [9]. This saves time, because 2B+N is added to U
(K+3)/4 times in average (assuming Ai and U0 independent
and equally distributed). Hence, at a price of one register of
K+3 bit, we can save M ·((K+3)/4-1) clock ticks, and also
save hardware, since a two word adder can be used instead of
a three word adder.
The sequential circuit implementing the Shift block, com-
putes a multiplication by two when required (i.e. when
adding 2B to N in the preprocessing phase or adding 2B
during multiplication). It uses a flip-flop to store the most
significant bit of a word, and an S-wide multiplexer, indi-
cating whether to execute the shift or not. The multiplexer
on one of the inputs of Adder/Subtracter is controlled by

SelADD2: in the preprocessing phase of a modular multi-
plication it switches output of memory bank MemOUT2 to
calculate 2B+N , then it closes in reaction the partial result
U , in order to update it with the next addendum 2B, 2B+N ,
or N . The S-bit registers Reg are pipelining registers. The
Adder/Subtracter is a simple block which sums operands, or
subtracts operand on the right of Fig. 2 from the one on the
left. The flip-flop in reaction stores carry-out of the previous
operation. The Adder/Subtracter can add or subtract simply
xor-ing the second operand with a S-bit word of ’0’ or ’1’, in
accordance with the OpADD/SUB signal. In the first step of
individual operations, proper activation of the synchronous
set/reset inputs of the flip-flop is necessary. Register U stores
the value of U prior the shifting, as required by the modular
product algorithm. It shows its content shifted by 1 bit on the
right. It also outputs least significant bit of U , necessary for
the Controller to choose which is the next operand that is to
be added to U . Signum signal states if content of register is
less than zero. In fact, the final reduction step is actually per-
formed by storing U (PH in Alg. 2.2) in the Memory Section,
subtracting N from final U . If the result is greater than 0, the
current result is output, otherwise the previously stored one
is output. Register A holds the value of A operand of modular
product, which can be loaded serially through MemOUT1 or
BusIN . It can shift one bit at a time, showing the least sig-
nificant bit to the controller.

3.2 Memory Section and Z-processor

The Memory Section and the Z-processor schematics are
reported in Fig. 3. Memory Section supplies P and Z proces-
sors with contents of register file, in a serial fashion, S bits at
a time. It receives output data from processors or from exter-
nal through BusIN . Memory RAM0 stores (K+3)-bit words

S
AddrA

2
P

Z

2B+N

N
clk

AddrB

weaA

Di

DoB

DoA

S

S

Mem1

Mem2

Mem3

Mem4
clk

weaA

Di

DoC

00

01

10

SelDI

2

POUT

ZOUT

BusIN

Memory-section

2

AddrA

2

SelMEM

0

1

S

MemOUT,1

E
LengthE

loadE shiftE enE

EJ

S

SBusIN

S

S

U

clk

S

Adder

S

Reset
carryZ

ZOUT

Reg Reg

S S

Z-processor

MemOUT,2

S

2

SelOP,Z

S

U0signum

ShiftREG,Z

loadFIFO,Z

AI,Z

clk

loadREG,Z

S

2

A

To Controller

From
MemoryMemOUT,2

RAM0

RAM1

Figure 3. Memory Section and Z-processor

that can be added to partial sum U of Alg. 2.1 (P , Z, 2B+N ,
N), while RAM1 stores K-bit constants that are useful when
calculating an N -residue, or returning to normal number rep-
resentation and when the key is changed (R2 mod N , P0,
1, R mod N). Each operand is stored as an array of S-bit
words, in order to avoid the use of area-consuming multiplex-
ers for selecting the correct part of the operand to be summed.
The Memory Section also contains RegisterE, which stores

exponent E.
Please note that, strictly speaking, we only need a P-

processor and a Memory-Section to implement a modular
product and squaring. Hence, the Z-processor could be dis-
carded (at the cost of doubling the time for modular expo-
nentiation). This simplification however scales down overall
required area by a factor smaller than 2 (area of Memory Sec-
tion is constant), so the version of RSA processor with both
P and Z processors is characterized by a better value of the
product A ·T . When the available area is reduced and perfor-
mance is not an issue, the design option which relies solely
on the P-processor can gain interest.

3.3 Control Unit

Due to complexity of the algorithm, we split Control Unit,
in two different coordinated entities ModExp Controller and
MonProd Controller, which alternatively take control of the
data path. ModExp Controller is implemented as a mi-
crocoded architecture (basically a ROM), since it has to se-
quence instructions managing control flow of Alg. 2.2. Mon-
Prod Controller, instead, is designed as a simple FSM. It is in
charge of coordinating actions for serial implementation, by
means of P and Z processors, of simple instructions such as
MonProd, reduction phase, and other steps of the algorithm
(see Sec. 3.1). The Control Unit as a whole runs concurrently
in pipelining with the Data-Path, in a such way that elabora-
tion of data and sequencing of operations can be overlapped.
It is worth noting that no control hazards can happen.

4. Implementation of the RSA processor

4.1 Target Device and Associated Tools

The Xilinx Virtex series of FPGAs, consists of a logic cell
(or CLB) and interconnect tiled to form a chip. Each CLB
consists of two slices, each slice containing 2 4-LUTs, 2 flip
flops, and associated carry chain logic. Each LUT can either
be used as 16x1 bit RAM, or a 1-17 cycle delay shift register
(SRL16 mode), while the flip flop has a clock enable and a re-
set. Both the LUT and the flip flop can be accessed indepen-
dently. A flip-flop is present in each slice of the Virtex archi-
tecture: so an S bit register requires S slices. Our approach
to limit area growth, is to exploit whenever possible ability of
a slice of Virtex to be configured as a memory block (named
Block RAM): a LUT can be configured as a 16 × 1 single-
ported RAM, and 2 LUTs as a 16 × 1 dual-ported RAM or
a 16-bit shift-register. We have used a Xilinx Virtex-E 2000-
8bg560. Xilinx XCV2000E presents 19200 slices and 19520
tristate buffers. For synthesis we used Synplicity Synplify
Pro 7.1, integrated in Xilinx ISE 4.1 design flow in order to
use Xilinx Place&Route, Timing Analyzer and tools generat-
ing post-mapping and post-place&route VHDL descriptions.

4.2 FPGA implementation

Registers A and U are large registers which may occupy
many slices, so implementations other than simple ones (flip-

flop-based), but less area expensive, are desirable. During
modular product, two read and one write operations are ex-
ecuted every clock tick on Register U (see 4). In fact, two
reads are needed to access an S-bit word which consists of
S − 1 most significant bits of one word of register U and one
bit of the adjacent word, since such a word is not aligned with
a memory word. This drawback does not affect the memory
write back of the result of the serial addition, since this hap-
pens to be aligned with a word of Register U. Unfortunately,

CK 0 1 2 3 4

Read U1, U0 U2, U1 U3, U2 U4, U3 U5, U4 …

AddrR,EVEN 0000 0001 0001 0010 0010 …

AddrR,ODD 0000 0000 0001 0001 0010 …

SelOP 01 10 01 10 01 …

Adder - sum sum sum sum …

Write - - U0 U1 U2 …

Figure 4. Timing of Register U

the Virtex device does not support concurrent execution of
two reads and one write on the same RAM at a time. A so-
lution is to increase parallelism using two RAM blocks, ar-
ranged as reported in Fig. 5. The Mixing block is composed
only of wirings, which output four S-bit words in parallel, as
reported in the figure. A Multiplexer is then used to select one
of the S sized outputs. It can be easily proved that this block
controlled with signals of Fig. 4, functions properly. We de-

SelREG_U

RAMODD

clk S

M
ix

in
g

00

01

10

AS-1, A , ... , AS-2 0

RAMEVEN

clk

B0 , A , ... , AS-1 1

BS-1 , B , ... , BS-2 0

A0 S-1 1, B , ... , B

11

S

S

S

AddR,ODD

W

AddW,ODD

W

AddR,EVEN

W

AddW,EVEN

W

WeEVEN

WeODD

Signum

2

UOUT

UIN

A

B

Figure 5. Structural view of register U

cided to implement Register A exploiting the capability of
Virtex devices to realize compact shifting registers. Register
A is implemented as a first-in-first-out queue of depth M − 1
and length S, followed by a right shift register S bit wide
(Fig. 6). Words composing operand A, are inserted from the
least significant to the most significant ones: at the end of the
loading phase, in the shift register there are AS−1, . . . , A0,
which can be shifted one bit at a time, showing its less sig-
nificant bit. When S bits have been shown, the queue moves
forward and the next word is loaded into the shift register. A
16-depth ×1 shift register takes one LUT and one flip-flop
slice.

4.3 Performance analysis

We implemented our design in RTL VHDL for K = 1024
and for widths of S from 32 to 256. First we verified the
correctness of the design. We then performed synthesis,

A
1

S 0

1..
.

Shifting direction

d
IN A

2

A
M

-1

S

A
0

S
h

if
t

S

S
h

if
ti

n
g

d
ir

ec
ti

o
nA

I

M-1 deep S-bit wide fifo S-bit shift register

Shift
REG

load
FIFO

Load
REG

Figure 6. Structural view of register A

place&route step, and timing verification. A partial manu-
ally floorplan of different blocks was carried out occasion-
ally, upon need.

Fig. 7 reports minimum clock period and total number of
slices required for different values of S and for each stage of
the pipeline. It is evident that the stage which limits clock
frequency is the Adder. In fact, since net delay is minimized
through mapping of carry path into dedicated hardware of
CLBs, delay is entirely due to logic and no optimizations can
be brought off. Hence, for a fixed S, we determined the max-
imum sustainable clock rate from the Adder, and used that as
the target clock for other stages. Furthermore we exploited
the capability of Virtex devices to realize multiplexers using
tristate buffers instead of LUTs. In fact, Virtex is very rich of
tristates that are used as routing resources. Clearly, tristate-
based multiplexers show delays quite larger than their LUT-
based counterparts, and so we used them only when it is pos-
sible to slow down the cycle period of stages, without reduc-
ing the operation frequency of the pipeline. This technique
(see column “Tristate Buffers” of Fig. 7) can be adopted for
Memory Section and for Write stage of P and Z processors,
for every S, except for Memory Section in case S = 32.

Number of clock cycles for each modular product is given
by (2M + 2) + (K + 3) · M , whereas former contribution
is due to A loading into Register A, and preprocessing phase
of 2B + N , and the latter concerns the computation of loop
on j of Alg. 2.1, where additions are serial and require M
clock ticks. The number of sequential modular products in
Alg. 2.2 is H + 2 because squarings and products of the loop
on i are executed in parallel, and a product is essential for
residue calculation (step 2) and for turning residue of result
in normal representation (step 8). Finally, M clock ticks are
needed for subtraction (step 9) and M + 1 clock ticks for the
last S bits of result to appear on the output Pout. The number
of clock ticks (NCK), total area, and total time for exponent
E = 216 + 1 as functions of parameter S are reported in
Fig. 8.

5. Comparison to previously reported imple-
mentations

Most hardware implementations of modular exponentia-
tion are either dated or they rely on an ASIC implementation.
As a consequence, a fair comparison is difficult.

Reference [8] first combined Montgomery technique and
systolic multiplication, proposing a bidimensional systolic

S Stage
Tck

[ns]
Total
Slices

FF/LUT
slices

Lut for
Dual-port

RAM/Single-
port RAM

Lut for
Shift
Reg

Tristate
buffers

Mux
implemen-

tation

Memory 8,7 627 44 / 486 512 / 256 0 0 LUTs

Adder 7,4 32 2 / 64 0 / 0 0 032

Write 8,6 336 385 / 143 256 / 0 128 448 Tristates

Memory 10,7 563 44 / 108 512 / 256 0 960 Tristates

Adder 11,6 64 2 / 128 0 / 0 0 064

Write 11,5 561 577 / 209 512 / 0 128 1152 Tristates

Memory 17,5 688 44 / 34 512 / 256 0 1344 Tristates

Adder 18,6 132 2 / 264 0 / 0 0 0128

Write 17,8 1050 1025 / 278 1024 / 0 256 2816 Tristates

Memory 30,5 553 44 / 30 512 / 256 0 2122 Tristates

Adder 30,9 264 2 /528 0 / 0 0 0256

Write 30,2 2085 2049 / 543 2048 / 0 512 4608 Tristates

Figure 7. Hardware resources and clock peri-
ods for each pipeline stage varying S

S
Tck

[ns]
Area

[Slices]
NCK

Total
Time
[ms]

A×T

[Slices×ms]

32 8,74 995 645288 5,64 5612

64 11,6 1188 176016 3,86 4586

128 18,6 1870 332440 3,27 6115

256 30,9 2902 97804 2,99 8677

Figure 8. RSA encryption with 1024 bit key

array architecture which gave a throughput of one modular
multiplication per clock cycle and a latency of 2K+2 cycles.
Major drawback of this structure is great area request, deriv-
ing from inherent high-parallelism. We compare our results
to unidimensional systolic architecture proposed in [9]. This
work implements the same algorithm as ours (radix-2 Mont-
gomery algorithm for modular product Alg. 2.1), on top of a
Xilinx device with the same basic architecture, but with a dif-
ferent technology. More precisely, a Virtex-E 2000-8 and a
XC40250XV-09 were used in our study and in theirs, respec-
tively. In a successive study, Blum and Paar in [10] improved
their architecture using a high-radix formulation of Alg. 2.1.
Our architecture can also exploit a higher radix, and we are
planning to do so. At the time of this writing, we can only
compare our current implementation to their radix-2 based
one. It should be noted, however, that both [9] and [10] solu-
tions have a major flaw, that is occasionally an incorrect value
of (XE mod N) + N is return (instead of (XE mod N)).
Authors of [9] argue that this situation is infrequent because
it has a probability of 2−(K+2). So based on the observation
that most of the times correct result is available prior the re-
duction pass, they simply do not execute the final reduction
pass (steps 9-10 of Alg. 2.2), thus saving both time and hard-
ware resources. In contrast, our architecture always provides
the correct result. This happens at a cost, in terms of time
and hardware resources, as compared to [9], due to the extra
operation.

To output the entire result, [9] requires 2(H + 2)(K +
4)+K/U clock cycles, where U is the dimension of the pro-
cessing elements. The fastest design (U = 4) of [9] requires
0.75 ms for the same encryption of Fig. 8 and requires 4865
XC4000 CLBs that are equivalent to 4865 Virtex slices. Our
fastest design (S = 256) requires 2.99 ms (4 times slower),
but it requires 2902 slices (with a saving of area equal to

40%). Our design requiring the least area (S = 32) occu-
pies only 995 slices, while the smallest in [9] requires 3786
slices. Finally, our design with best A · T (S = 64) presents
A·T = 4586, while the corresponding design of [9], presents
A · T = 3511.

In summary, the solution presented in [9] exhibits better
performance, as compared to ours. This was made possible
by the improved parallelism due to pipelining, inherent in the
systolic paradigm of computation. However, the solution pre-
sented in [9] has occasionally an incorrect behavior, resulting
in wrong outputs. On the other side, our implementation is
slower, but it always produces correct outputs, and also has
lower area requirements.

6. Conclusions

We presented a novel serial architecture for RSA encryp-
tion/decryption operation. The design is targeted for imple-
mentation on reconfigurable logic, and exploits inherent char-
acteristics of the Xilinx devices, for compact implementation
of shift registers via distributed RAM blocks, and for mul-
tiplexers via tristate buffers. The design allows to tradeoff
area for performance, by modifying the value of the serial-
ization factor S. Quantitative evaluation of such a tradeoff
is conducted via simulation, and results are discussed. Re-
sults show that the presented architecture achieves good per-
formance with low area requirements, as compared to other
architectures.

References

[1] B. Schneier, Applied Cryptography, New York: Wiley, 1996.

[2] R. L. Rivest et al., “A Method for Obtaining Digital Signa-
tures”, Commun. ACM, vol. 21, pp. 120-126, 1978.

[3] P. Downey et al., “Computing sequences with addition
chains”, SIAM J. on Computing, 3:638-696, 1981.

[4] Ç. K. Koç, “High-speed RSA Implementation”, Technical Re-
port TR 201, RSA Laboratories, November 1994

[5] D.E. Knuth, “The Art of Computer Programming: Seminu-
merical Algorithms”, vol. 2, Addison-Wesley, 1981.

[6] G. R. Blakley, “A computer algorithm for the product...”,
IEEE Trans. on Computers, Vol.32, No.5, pp. 497-500, May
1983.

[7] P. L. Montgomery, “Modular multiplication without trial divi-
sion”, Math. of Computation, 44(170):519-521, April 1985.

[8] C. D. Walter, “Systolic Modular Multiplication”, IEEE Trans.
on Computers, Vol.42, No.3, pp. 376-378, March 1993.

[9] T. Blum, and C. Paar, “Montgomery Modular Exponentia-
tion...”, Proc. 14th Symp. Comp. Arith., pp. 70-77, 1999.

[10] T. Blum, and C. Paar, “High-Radix Montgomery Modular...”,
IEEE Trans. on Comp., Vol.50, No.7, pp. 759-764, July 2001.

