
 Open access Proceedings Article DOI:10.1145/1838002.1838035

FPGA based implementation of baseline JPEG decoder — Source link

Jahanzeb Ahmad, Kamran Raza, Mansoor Ebrahim, Umar Talha

Institutions: Iqra University

Published on: 16 Dec 2009 - Frontiers of Information Technology

Topics: JPEG 2000, JPEG File Interchange Format, Soft-decision decoder, Lossless JPEG and JPEG

Related papers:

 A high performance MQ decoder architecture in JPEG2000

 An efficient hardware implementation of MQ decoder of the JPEG2000

 Jpeg Image Compression Using Fpga

 Field programmable gate array (FPGA) based baseline JPEG decoder

 Design and Implementation of FPGA-Based JPEG Decoding IP Core and its Application in Digital Watermarking

Share this paper:

View more about this paper here: https://typeset.io/papers/fpga-based-implementation-of-baseline-jpeg-decoder-
1zm2dpb7zl

https://typeset.io/
https://www.doi.org/10.1145/1838002.1838035
https://typeset.io/papers/fpga-based-implementation-of-baseline-jpeg-decoder-1zm2dpb7zl
https://typeset.io/authors/jahanzeb-ahmad-5b3rqb44oo
https://typeset.io/authors/kamran-raza-52k6zii5l1
https://typeset.io/authors/mansoor-ebrahim-1ibebkmqfb
https://typeset.io/authors/umar-talha-1hh73bwywl
https://typeset.io/institutions/iqra-university-2fbs9ax7
https://typeset.io/conferences/frontiers-of-information-technology-2n10qatc
https://typeset.io/topics/jpeg-2000-12o1hbob
https://typeset.io/topics/jpeg-file-interchange-format-1itagh8j
https://typeset.io/topics/soft-decision-decoder-yxc3u3bq
https://typeset.io/topics/lossless-jpeg-fanyymxy
https://typeset.io/topics/jpeg-v0jrat9m
https://typeset.io/papers/a-high-performance-mq-decoder-architecture-in-jpeg2000-38x4jaf0qi
https://typeset.io/papers/an-efficient-hardware-implementation-of-mq-decoder-of-the-1y80ua0c2v
https://typeset.io/papers/jpeg-image-compression-using-fpga-2u94oa0x15
https://typeset.io/papers/field-programmable-gate-array-fpga-based-baseline-jpeg-3kijlqp7m1
https://typeset.io/papers/design-and-implementation-of-fpga-based-jpeg-decoding-ip-4lzwbo8qco
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/fpga-based-implementation-of-baseline-jpeg-decoder-1zm2dpb7zl
https://twitter.com/intent/tweet?text=FPGA%20based%20implementation%20of%20baseline%20JPEG%20decoder&url=https://typeset.io/papers/fpga-based-implementation-of-baseline-jpeg-decoder-1zm2dpb7zl
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/fpga-based-implementation-of-baseline-jpeg-decoder-1zm2dpb7zl
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/fpga-based-implementation-of-baseline-jpeg-decoder-1zm2dpb7zl
https://typeset.io/papers/fpga-based-implementation-of-baseline-jpeg-decoder-1zm2dpb7zl

 International Journal of Electrical & Computer Sciences IJECS-IJENS Vol:09 No:09 14

 1916091-IJECS-IJENS © October 2009 IJENS
I J E N S

FPGA Based Implementation of Baseline JPEG

Decoder
Jahanzeb Ahmad, Mansoor Ebrahim

Faculty of Engineering, Sciences and Technology, IQRA University, Karachi Pakistan.

jahanzeb.ahmad@iqra.edu.pk , mansoorebrahim99@hotmail.com

Abstract--The JPEG standard (ISO/ IEC 10918-1 ITU-T

Recommendation T.81) defines compression techniques for

image data. As a consequence, it allows to store and transfer

image data with considerably reduced demand for storage space

and bandwidth. From the four processes provided in the JPEG

standard, only one, the baseline process is widely used. In this

paper FPGA based High speed, low complexity and low memory

implementation of JPEG decoder is presented. The pipeline

implementation of the system, allow decompressing multiple

image blocks simultaneously. The hardware decoder is

designed to operate at 100MHz on Altera Cyclon II or Xilinx

Spartan 3E FPGA or equivalent. The decoder is capable of

decoding Baseline JPEG color and gray images. Decoder is also

capable of downscaling the image by 8. The decoder is designed

to meet industrial needs. JFIF, DCF and EXIF standers are

implemented in the design.

 I. INTRODUCTION

Communication and storage cost are reduced by doing data

compression. Data compression techniques can be divided

into two categories “losy” and “lossless”. Lossless
compression model are based on entropy coding schemes.

This model is widely used for text and data compression. In

lossless compression model exact data is obtained at the

receiver. Lossy compression model produces close

approximation of the original data at the receiver. Video, Image

and audio compression commonly use lossy compression

Compression ratio up to 100:1 can be achieved depending on

the fidelity of the data.

There are several standards/formats for image compression/

decompression. Joint Photographic Experts Group (JPEG) [1,

17], Graphics Interchange Format (GIF) [7 8], Portable Network

Graphics (PNG) [9], JPEG 2000 [10], Tagged Image File Format

(TIFF) [11].

 JPEG is a very well know image compression standard. It is

widely adopted as compression standard for still images. Joint

Photographic Expert Group (JPEG) is a joint workgroup of three

international standard organizations, International

Organization for Standardization (ISO), International Telegraph

and telephone consultative committee (CCITT) and

International Electrotechnical commission (IEC).

Enormous amount of data storage is required for digital

images/video. An uncompressed color image requires 24 bits

for each picture element (pixel). A 6 Mega pixel (3038 X 2012)

camera requires 17.5 Mega Bytes, when stored uncompressed,

same image when compressed with JPEG take almost 1.7 Mega

bytes depending on the compression ratio. En-hui Yang,

Longji Wang [18] proposed an algorithm which can further

improve this ratio, the algorithm is iterative, which is more

complex to implement in Hardware.

Digital devices are now more popular then analog devices

especially in the field of multimedia (Audio, Video and Image)

because of amazing improvement in digital signal processing

algorithms and fast hardware. Digital storage media is more

reliable and less effected by noise and distortion.

Real-time implementation of JPEG encoder or decoder requires

efficient and fast hardware architecture. So architecture

specific implementation is required to achieve real-time results.

Variety of architecture designs capable of supporting real time

image/video processing already exists such as ASIC, FPGA,

Microprocessor and Digital signal processor based design,

which implements different algorithms for image and video

processing. But only a few efficient architectures are

implemented for Image and video compression,

decompression, processing [12, 13, 14, 15, 16, 19, 20, 21, 22, 23,

32]. Shizhen Huang and Tianyi Zheng [12] proposed an

architecture for PNG image decoding, they used combination

hardware and software approach which reduce the throughput

of the system. Zulkalnain MohdYousof, et al. [13] proposed a

Digital Signal processor based JPEG Decoder but it can only

support small resolution images. R. P. Jacobi et al. [14]

proposed an FPGA based JPEG decoder design but its

maximum operating frequency is 38.7 MHz on Vertex 6 which is

very slow for commercial design. Mario kovac and N.

Ranganathan [15] presented encoder architecture which is

capable of operating at 100 MHz and can support 1024x1024

spatial color image resolution. Mohammed Elbadri et al [16]

also proposed a FPGA based design for JPEG decoder this

design also has low operating frequency, 67 MHz. Kyeong-

Yuk Min and Jong-Wha Chong [19] proposed an architecture

for JPEG Encoder. Zulkalnain MohdYusof et al [20], proposed a

Digital Signal Processor (DSP) based architecture, DSP based

systems have low development time and cost but low

throughput as compare to FPGA.

FPGA is relatively young technology. FPGA can provide

speed, performance and flexibility because parallel and

mailto:jahanzeb.ahmad@iqra.edu.pk
mailto:mansoorebrahim99@hotmail.com

 International Journal of Electrical & Computer Sciences IJECS-IJENS Vol:09 No:09 15

 1916091-IJECS-IJENS © October 2009 IJENS
I J E N S

pipelined implementation of Algorithm is possible. FPGA

provide a better solution because hardware is designed for

specific algorithm.

In this paper we proposed a FPGA based JPEG decoder

architecture, which gives fast and efficient results. The paper is

organized as follow: In section 2 we discuss JPEG in general. In

section 3 JPEG stream is discussed. Hardware implementation

is discussed in section 4. Synthesis reports are discussed in

subsequent section. Finally, results and conclusions are

discussed.

 II. JPEG COMPRESSION OVERVIEW
Principles of JPEG can be explained better to take a look at the

steps of encoding rather than decoding. Therefore, despite the

fact that a decoder has been developed, due to better

understanding the steps of encoding. The steps of decoding

will be the inverse of the encoding steps but in reverse order

(see Fig. 1 and Fig. 2).

The human eye is more sensitive to brightens then colors [33].

Almost no loss in visual perception quality can be achieved if

chrominance component is stored in half resolution then

luminance component [33]. JPEG images are stored in YCbCr

color space rather then RGB. CCIR Rec 601 [6] defines the

method of conversion between RGB and YCbCr.

Most JPEG encoders reduce the chrominance components to

half of the resolution in both dimensions by taking the mean

value of each 2x2 block. This sampling method is called “4:2:0”.
Another sampling method evolved from analog television

signals [33] is “4:2:2” where chrominance components are
reduced only in the horizontal dimension. For completeness

the “4:4:4” method should be mentioned it does not reduce any
component„s resolution. For grayscale (“4:0:0”) images only
the Y component is processed. Fig.. 3 illustrate the described

sampling methods. If the “4:2:0” or “4:2:2” sampling method is

used this is one of two steps in the compression process

where information is lost.

8x8 Image

Block
FDCT Quantizer DPCM Huffman Encoder JPEG Bitstream

Quantization

Tables
Huffman Tables

DC

AC

Fig. 1. JPEG Encoder

JPEG Bitstream Huffman decoder DPCM De-Quantizer IDCT
8x8 Image

Block

Quantization

Tables
Huffman Tables

DC

AC

Fig. 2. JPEG Decoder

4:2:0 4:2:2 4:4:4 4:0:0
Fig. 3. Sampling

JPEG image is composed of smaller units. An image is

composed of Minimum coded Units (MCUs) which consist of

square blocks of 8x8 pixels. It depends on the chosen sampling

method how many 8x8 blocks form an MCU, in Fig. 4 the 4:2:0

sampling is shown. The order in which the units will be

processed is always from left to right and from top to bottom

as shown in fig. 4. For the MCUs it is also important to keep

the color-decomposition in mind.

Picture when displayed on screen or printed on paper is in

spatial domain. DCT transforms a picture into frequency

domain [34]. Human vision system is more sensitive to low

frequency then higher frequency [33]. Since neighbor pixels are

highly correlated and are in low frequency, the output of DCT

result in most of the block energy being stored in the lower

spatial frequencies. Higher frequencies will have values equal

to or close to zero so they can be ignored without have

significant loss in image quality.

The input data to be processed is a two-dimensional 8x8 block,

therefore we need a two-dimensional version of the discrete

cosine transformation. Since each dimension can be handled

separately, the two-dimensional DCT follows straightforward

form the one dimensional DCT. A one-dimensional DCT is

performed along the rows and then along the columns, or vice

versa.

Y Y Y Y Cb Cr

Fig. 4. 4:2:0 MCU

JPEG uses a zero-shift in the input samples to convert 8-bit

image data from the range 0 to 255 to the range of -128 to +127.

This is done by subtracting 128 before DCT is calculated. DCT

is defined in equation (1) and IDCT is defined in equation (2)

FDCT:
16

)12(
cos

16

)12(
cos

4

1 7

0

7

0

 vyux
sCCS yx

yx

vuvu

 (1)

IDCT:

16

)12(
cos

16

)12(
cos

4

1 7

0

7

0

 vyux
SCCs vuvu

vu

yx

 (2)

2
1, vu CC for u,v = 0 1, vu CC otherwise

The “Quantization” is a key step in the compression process
since less important information is discarded.

The advantage of the representation in the frequency domain

is that, unlike in spatial domain before the DCT, not every

 International Journal of Electrical & Computer Sciences IJECS-IJENS Vol:09 No:09 16

 1916091-IJECS-IJENS © October 2009 IJENS
I J E N S

dimension has the same importance for the visual quality of the

image. Removing the higher frequencies components will

reduce the level of detail but the overall structure remains,

since it is dominated by the lower frequency components .

The 64 values of a 8x8 block will be divided according to the 64

values of an 8x8 matrix called the quantization table. There is

no information lost in the division of the coefficients itself, but

the result is then rounded to the next integer afterwards. The

higher the divisor, the more information about the coefficient

will be positioned after the decimal point hence lost in the

rounding operation.

The two dimensional order of the DCT coefficients refers to the

two dimensions that the 8x8 block has in spatial domain. After

the quantization step most of the coefficients towards the

lower right corner are zero. The Zigzag-Mapping - as shown in

Fig. 5(d) - rearranges the coefficients in a one dimensional

order, so that most of the zeroes will be placed at the end. This

array with many consecutive zeroes at the end is now

optimized to achieve high compression in entropy encoding.

496 -42 33 17 -20 43 44 -20

160 26 29 7 54 7 12 -18

25 49 -15 32 48 -28 44 20

41 27 -35 20 3 12 -16 9

-39 11 30 -31 26 -9 15 -24

23 -23 23 -9 13 26 12 11

15 17 -13 10 5 -34 5 43

-10 12 8 -22 6 38 -46 8

17 18 24 47 99 99 99 99

18 21 26 66 99 99 99 99

24 26 26 99 99 99 99 99

47 66 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

29 -2 1 0 0 0 0 0

3 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

29 -2 3 1 1 1 0 0 0 1 0 0 0 ...

(a) (b)

(c) (d)

(e)
 Fig. 5.

The final step is a combination of three techniques: run length

encoding, variable length encoding, and Huffman encoding.

The first coefficient is called “DC”(#0) all other coefficients are
called “AC” (#1 till #63).

The first coefficient (DC) is the mean value of the original 8x8

block. There is a correlation between the DC coefficients of

neighboring blocks.

It is very likely that the first coefficient has the largest value.

This is the most significant coefficient and therefore usually

the least reduced one in the quantization step.

Most zero coefficients appear at the end. The chance to find

some consecutive zeroes followed by a non-zero component is

good as well. Most non-zero coefficients have very small

values.

The DC coefficient will be decoded slightly different than the

AC coefficients. Respecting the correlation to the neighboring

blocks, just for the first block the whole DC coefficient is

processed. Later blocks will only encode the difference to the

preceding block‟s DC component; this applies for each
component separately. AC and DC coefficients have different

Huffman tables.

Let‟s look at an example block of coefficients (the one from Fig.

5(e)):

29,-2, 3, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, . . .

Let‟s assume that the previously decoded block of the same
component had the DC coefficient 22, therefore we decode the

difference 29 - 22 = 7.

7,-2, 3, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, . . .

So now we take care of the zeroes using run length encoding.

The tailing zeroes will be combined in one code, called “EOB”.
To each non-zero code we will stick the information about

preceding zeroes, so we can remove the rest of the zeroes. For

the DC coefficient there will be no preceding zeroes, however,

unlike for the AC coefficients, “zero” is still a valid value that
has to be concerned.

The remaining coefficients will probably be very small so that

variable lengths approach seams feasible. Therefore we switch

to binary representation and add the minimum number of bits

needed to represent the coefficients value to the information

part. Negative values will be represented by negating every bit

(one‟s complement). This can be done because we have the
information about the length, so that every positive value

starts with a 1.

[EOB] is coded as [0 0], [ZRL] as [15 0]; there is no other code

with the structure [X 0].

Since the coefficients are usually very small there is not much

gain in compressing them further. However we have not

thought about the information we attached to the coefficients

yet. We use 4 bits for the preceding zeroes and 4 bits for the

number of bits used to store the value. These 8 bits are

compressed using a Huffman table which maps the frequently

occurring values to shorter bit strings and the rarely occurring

values to longer bit strings. How to choose the table is left to

the encoder.

Let‟s assume we have built the Huffman table and find the
following tables:

 International Journal of Electrical & Computer Sciences IJECS-IJENS Vol:09 No:09 17

 1916091-IJECS-IJENS © October 2009 IJENS
I J E N S

Now we can construct the final bit stream:

The final bit stream:

11011110 00110011 01101101 11111110 100

So we compressed the 64 bytes of input data down to less than

five bytes.

IV. JPEG STREAM
JPEG standard has many parts, only parts which are

compliance with applicable parts of DCF [2], Exif [4] and JFIF

[3] are implemented. The resulting stream is shown in Fig. 6.

The variables and parameters are defined in JPEG [1].

III. HARDWARE IMPLEMENTATION
The system is consists of different blocks as shown in the

block diagram in Fig. 8. The interface of the JPEG decoder is

shown in Fig. 7. The design features are
Efficient Design.

Minimum clock speed of 100 Mhz.

Target Independent design.

Synchronous design

SOFn Lf P Y X Nf Ci Hi Vi Tqi

SOS Ls Ns CSi Td Ta Ss Se Ah Al

DQT Lq Pq Tq Q0 Q1 Q2 Q63

DHT Lh Tc Th L1 L2 L16 V1,1 V1,2 V16,16

DRI Lr Ri

i=1 to Nf

i=1 to Ns

Multiple (N times)

Multiple (N times)

SOI

Start of Image Marker

APPn

Application Segments

DRI
Restart interval Marker

SOF

Start of Frame Marker

DHT

Huffman Table define Marker

DQT

Qunatization Table define Marker

SOS

Sart of scan Marker

< ECS >

Entropy coded data segment

EOI

End of Image Marker

Fig. 6. JPEG Stream

The system works on 8-bit data input. When the start signal is

asserted parser start to read data. If first two bytes are not Start

of Image Marker parser generates the error. Otherwise it starts

searching for the next marker.

JPEG stream parser, parse the input stream. Huffman tables,

quantization tables and other information of the image is

extracted and stored in the memory by this module. At the start

of the entropy coded segment the control of the JPEG decoder

is transferred from parser to Huffman decoder controller.

jpeg_ decoder.vhd

reset_n

clk

start

d_in_ena

restart

d_in

start_block

d_out_ena

subsampling

d_in_ ready

done

error

downscalling

d_out

width_ height

d_out_ ready

Fig. 7. JPEG decoder top VHDL Interface

Parser

Huffmandecoder_top
De-Quantizer

ZZ -1
FIFO

Huffman Table creator

Huffman Tables

Quantizer Tables

IDCT

Downscale by 8

MUX

 Fig. 6. Block Diagram of the VHDL blocks

Huff_decoder_controller

ecs_filter

Combition logic Value wrapper

Huffman
Streamer

Compare Block 00

Compare Block 01

Decision Maker

Compare Block 10

Compare Block 11

FSM

Huffman Decoder

 Fig. 7. Huffman decoder

Dequantization is one process where we lose information, this

loss can be reduced by using other techniques [26, 27, 28, 29,

31], but these implementations are not the part of this project.

Dequantization and inverse-zigzag is done by one block.

Inverse-zigzag was implemented by us ing simple lookup table.

Dequantization was done by multiplying the value with the

quantization table.

There are few efficient Huffman decoder architectures [24, 25,

30]. We have implemented our own architecture. Our Huffman

decoder decodes the JPEG stream and generates the value in

11-bit. The input of the Huffman decoder is a 8-bit data,

Huffman codes from Huffman memories block and image

parameters from parser. The controller is inside the Huffman

decoder top. Therefore, no extra controller is needed. Inside

 International Journal of Electrical & Computer Sciences IJECS-IJENS Vol:09 No:09 18

 1916091-IJECS-IJENS © October 2009 IJENS
I J E N S

Huffman decoder top there are 4 sub blocks

Huffman_decoder_controller , ecs_filter , value_wrapper and

huffmandecoder. Huffmandecoder has more blocks including

huffmanstreamer, decisionmaker and compareblock as shown

in Fig. 9.

FIFO stores the decoded codes from the Huffman decoder

before it is dequantized and inverse zigzagged. JPEG decoder

can also downscale image in size by the factor of 8 in both

vertical and horizontal direction. Therefore in downscale by 8

mode the IDCT is bypassed. Bypassing IDCT increases the

throughput of the decoder.

The 2D DCT/IDCT is based on the 1D fast DCT algorithm first

described by Vetterli and Ligtenberg [5]. The input is 8x8

blocks of data in frequency domain and output is 8x8 block of

data in time domain.

V. RESULTS/SYNTHESIS REPORT

Synthesis report of JPEG decoder is shown in Table IV and V.

T ABLE I

SYNTHESIS REPORT (ALTERA)

Parameter Value

Device Altera cyclone II

EP2C8T144C6

Synth/P&

R Tool

Altera Quartus II v8.1

Synth/P&

R settings

Timing constraint 100

MHz

Fmax 102.45

LEs 3996

Memory 15

Hard

Multipliers

3

Clocks 1

T ABLE II

SYNTHESIS REPORT (XILINX)

Parameter Value

Device Xilinx Spartan-3E xc3s500e-

5-vq100

Synth/P&R

Tool

Xilinx ISE v10.1

Synth/P&R

settings

Time performance with

physical synthesis

Fmax 101.8 MHz

Slices 3187

Memory 7 Block RAMs

Hard

Multipliers

2

Clocks 1

 VI. CONCLUSIONS
The goal of this project was to design an efficient JPEG

decoder. The design was generic so it can be implemented on

any FPGA. The project has four major modules: Parser,

Huffman decoder, dequantizer/inv-zig-zag, IDCT. During the

project it was noticed that the bottleneck for the throughput is

IDCT. Therefore more efficient design of IDCT can increase the

throughput. However in downscaling by “8” mode, IDCT is

bypassed and throughput increases but in this case Huffman

decoder or inverse zig-ziag block can be possible bottlenecks.

Efficient design and pipelined implementation resulted in 100

MHz operating frequency and small size on silicon. The

decoder can decode 6 mega pixel image in 200 msec to 600

msec depending upon image.

VII. ACKNOWLEDGEMENT

We are thankful to BitSim AB, Stockholm Sweden and Iqra

University, Karachi Pakistan, for providing us a research

environment and development facilities.

 REFERENCES
[1] Digital Compression and coding of Continuous-Tone still images

requirements and guidelines. T .81 (09/92), ITU-T.

[2] Design rules for Camera File system, DCF Version 2.0, 2003 Draft,

Technical Standardization Committee on AV & IT storage systems

and Equipments.

[3] JPEG File Interchange Format, Version 1.02, September 1, 1992,

Eric Hamilton, C-Cube Microsystems.

[4] Exchangeable Image file format for digital still cameras, Exif

Version 2.2, Technical Standardization Committee on AV & IT

storage systems and Equipments.

[5] M. Vetterli and A. Ligtenberg, “A discrete Fourier-cosine transform

chip”, IEEE Journal on Selected Areas in Communications, Special
Issue on VLSI in Telecommunications, Vol. 4, Nr. 1, pp. 49-61,

1986

[6] Studio encoding parameters of digital television for standard 4:3

and wide screen 16:9 aspect ratios. CCIR Rec.601 (BT.601-6

(01/07)) , ITU-T.

[7] GIF89a: Graphics Interchange Format Specification. Columbus,

OH: CompuServe, Inc.

[8] C. W. Brown and B. J. Shepherd. Graphic File Formats; reference

and guide. Manning Publications Co., 1995.

[9] T. Boutell and T . Lane. PNG (Portable Network Graphics)

Specification, version 1.0.

ftp://ftp.uu.net/graphics/png/documents/png-1.0-w3c.ps.gz.

[10] JPEG 2000 image coding system: Core coding system, ISO/IEC

15444-1:2004, JPEG Committee, 2004.

[11] ISO 12369. Tag image file format for image technology (TIFF).

[12] Shizhen Huang and T ianyi Zheng, "Hardware design for

accelerating PNG decode" , IEEE International Conference on

Electron Devices and Solid-State Circuits, December 8-10,Hong

Kong, 2008.

[13] Zulkalnain Mohd Yusof, Zulfakar Aspar, Ishak Suleiman, "Field

Programmable Gate Array (FPGA) Based Baseline JPEG Decoder"

IEEE TENCON, 24-27 September 2000, Kuala Lumpur, Malaysia.

[14] R. P. Jacobi et al, “JPEG Decoding in an Electronic Voting

Machine”, 13th Symposium on Integrated Circuits and Systems
Design, 18-24 September 2000, Manaus, Brazil.

 International Journal of Electrical & Computer Sciences IJECS-IJENS Vol:09 No:09 19

 1916091-IJECS-IJENS © October 2009 IJENS
I J E N S

[15] MARIO KOVAC AND N. RANGANATHAN, “JAGUAR: A Fully
Pipelined VLSI Architecture for JPEG Image Compression

Standard”, Proceedings of the IEEE Volume 83, Issue 2, Feb. 1995

Page(s):247 – 258.

[16] Mohammed Elbadri et al, “HARDWARE SUPPORT OF JPEG”
Canadian Conference on Electrical and Computer Engineering, 1 -4

May 2005, Saskatoon, Sask.

[17] Gregory K. Wallace, “THE JPEG STILL PICTURE

COMPRESSION STANDARD” , IEEE Transactions on Consumer
Electronics, Vol. 38, No. 1, FEBRUARY 1992.

[18] En-hui Yang, Longji Wang, “Joint Optimization of Run -Length

Coding, Huffman Coding, and Quantization Table With Complete

Baseline JPEG Decoder Compatibility” IEEE TRANSACTIONS
ON IMAGE PROCESSING, VOL. 18, NO. 1, JANUARY 2009.

[19] Kyeong-Yuk Min, Jong-Wha Chong, “A Real-T ime JPEG Encoder

for 1.3 Mega Pixel CMOS Image Sensor SoC”, The 30th Annual
Conference of the IEEE Industrial Electronics Society, November

2-6, 2004, Busan, Korea.

[20] Zulkalnain MohdYusof, et al, “Real T ime Implementation Of
Baseline JPEG Decoder Using Floating Point DSP TMS320C31”
IEEE TENCON, 24-27 September 2000, Kuala Lumpur, Malaysia.

[21] Hiroki Mizosoe, Kazuhiro Maeda, Yuuichi Kubo, Yasutaka Tsuru,

Kenichiro Kuroki, “An Advanced Multimedia Processing LSI
Suitable For HDTV Applications”, IEEE Transactions on
Consumer Electronics, Vol. 47, No. 3, August 2001.

[22] SUNG-HSIEN SUN AND SHIE-JUE LEE, “A JPEG Chip for
Image Compression and Decompression” Journal of VLSI Signal

Processing 35, 43–60, 2003

[23] Markos E. Papadonikolakis, et al, “Efficient high -performance

implementation of JPEG-LS encoder”, Journal Real-T ime Image

Processing, 2008.

[24] S Lei, M Sun, “An Entropy Coding System for Digital HDTV
Applications,” IEEE TRANSACTION ON CIRCUITS AND
SYSTEMS FOR VIDEO TECHNOLOGY, no. 1, pp. 147 -154,

March, 1991

[25] Gopal Lakhani, “Modified JPEG Huffman Coding” IEEE
TRANSACTIONS ON IMAGE PROCESSING, VOL. 12, NO. 2,

FEBRUARY 2003

[26] Gopal Lakhani, “Adjustments for JPEG De-quantization

Coefficients” Data Compression Conference, DCC 1998, March
30- April 1, 1998, Snowbird, Utah, USA. IEEE Computer Society,

1998.

[27] Giancarlo Calvagno, Gian Antonio Mian, Roberto Rinaldo, and

Walter Trabucco, “Two-Dimensional Separable Filters for Optimal

Reconstruction of JPEG-Coded Images” , IEEE TRANSACTIONS
ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,

VOL. 11, NO. 7, JULY 2001.

[28] [28] A.A. Zaidee, Member IEEE, S. Fazdliana, Member IEEE, B.J.

Adznan, “Content Access Control for JPEG Images using CRND

Zigzag Scanning and QBP”, The Sixth IEEE International
Conference on Computer and Information Technology, September

20-22, 2006, Seoul, Korea.

[29] Hanli Wang, Sam Kwong, “Novel Variance Based Approach to
Improving JPEG Decoding” ICIT 2005. IEEE International

Conference on Industrial Technology, Hong Kong, 14-17 Dec.

2005.

[30] Shanq-Jang Ruan and Wei-Te Lin, "Bipartition Architecture for

Low Power JPEG Huffman Decoder," The 12th Asia-Pacific

Computer Systems Architecture Conference, Korea, pp. 235-243,

23-25 Aug. 2007.

[31] Chin-Chen Chang, Yung-Chen Chou, Jau-Ji Shen, “Improving
Image Quality for JPEG CompressionF” 9th International
Conference Knowledge-Based Intelligent Information and

Engineering Systems, September 14-16, 2005, Melbourne,

Australia.

[32] Markos Papadonikolakis, Vasilleios Pantazis and Athanasios P.

Kakarountas "Efficient High-Performance ASIC Implementation

of JPEG-LS Encoder", Journal of Real-T ime Image Processing,

Volume 3, Number 4 / December, 2008.

[33] Charles A. Poynton . Digital Video and HDTV: Algorit hms and

Interfaces. Morgan Kaufmann. ISBN 1558607927.

[34] N. Ahmed, T . Natarajan, and K. R. Rao, "Discrete Cosine

Transform", IEEE Trans. Computers, 90-93, Jan 19.

