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Abstract With security and surveillance, there is an

increasing need to process image data efficiently and effec-

tively either at source or in a large data network. Whilst

a Field-Programmable Gate Array has been seen as a key

technology for enabling this, the design process has been

viewed as problematic in terms of the time and effort needed

for implementation and verification. The work here pro-

poses a different approach of using optimized FPGA-based

soft-core processors which allows the user to exploit the task

and data level parallelism to achieve the quality of dedicated

FPGA implementations whilst reducing design time. The

paper also reports some preliminary progress on the design
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flow to program the structure. An implementation for a His-

togram of Gradients algorithm is also reported which shows

that a performance of 328 fps can be achieved with this

design approach, whilst avoiding the long design time, ver-

ification and debugging steps associated with conventional

FPGA implementations.

Keywords Image processing · FPGAs · Heterogeneous

multi-core architecture

1 Introduction

The emerging need for processing big data-sets of

high-resolution image processing applications demands

faster, configurable, high throughput systems with better

energy efficiency [8, 17]. Field-Programmable Gate Arrays

(FPGAs) can play an important role as they can provide

configurability, scalability and concurrency to match the

required throughput rates of the application under consid-

eration [27]. They have the potential for distributing image

processing to a computing platform which is located as

close as possible to the image source. This distributed pro-

cessing can act to reduce the need for bandwidth and power

on a large scale, which in turn reduces the communication

overhead and the amount of data needed to be stored.

Typically FPGAs work well with the applications

which require concurrency, high bandwidth and re-

programmability. However, FPGA design and verification

is time-consuming and requires that designers create system

implementations using Hardware Description Languages

(HDLs) such as VHDL and Verilog [6]. The HDL approach

allows a digital circuit to be precisely described, and with

timing constraints met, the design tools can then synthe-

sise, map, place and route the HDL design accordingly. The
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major issue is that this design process involves numerous

verification and debugging steps, which increases the time

to market from weeks to months, depending on the com-

plexity of the algorithm of interest [10]. In order to reduce

the required design time and effort, the two biggest FPGA

vendors, Xilinx and Altera, have created new High Level

Synthesis (HLS) tools which allow the designer to use high

level languages such as C [11] or OpenCL [25] to cre-

ate algorithmic representations for FPGA implementation.

There are also other high level synthesis routes reported in

open literature.

All of the HLS design tools, however, still rely on the

HDL synthesis route to produce the programming files,

so a synthesis and implementation route still has to be

performed for the targeted technology which can take up

to several hours. Moreover, every time a design change

is performed, this process has to be repeated. This paper

proposes an alternative approach based on developing a

highly efficient, RISC (Reduced Instruction Set Comput-

ing) processor called Image Processing PROcessor (IPPro)

[24]. The bespoke designed soft processors have guaranteed

performance and resource usage; they are also easily repro-

grammable and even allow potential support for run-time

reconfigurability. The proposed approach uses the CAL

dataflow language approach [14], providing a design route

to allow the user to decompose their design into a series of

small actors which allow the user to exploit task and data

parallelism existing in the algorithm [2, 3] and which can

then be compiled to IPPro architectures.

The novel contributions of the paper are:

– Overview of the IPPro processor which has been opti-

mised to match both the image processing algorithms

requirements and FPGA resources and which avoids the

need for long place and route implementation;

– Creation of a multi-core architecture with an inter pro-

cessor communication network which is targeted for

complex image processing systems;

– Development of a dataflow system based on the CAL

language which provides a route for users to produce

code for the processors;

– Profiling and implementation of a complex image pro-

cessing application namely, the Histogram of Oriented

Gradients (HOG) algorithm.

The paper is organized as follows. Section 2 reviews

related background work in the area of existing soft-core

processors and some information on dataflow languages

and tools, in particular, the RVC-CAL language. Section 3

briefly outlines our proposed, many-core, heterogeneous

architecture for implementing image processing applica-

tions. Section 4 describes the proposed dataflow framework

and how the programming paradigm is achieved. Section 5

presents a detailed case study for a HOG design example

implemented using the design framework and using soft-

processor architecture, for which a performance comparison

is also made. Section 6 concludes and reviews the proposed

approach.

2 Background

The reprogrammable design methodology proposed in this

paper removes the requirement for HDL entry, synthesis,

and place and route processes. The approach replaces the

reconfigurability property of FPGAs by a reprogrammable

model. In order to do this, an intermediate fine-grained

reprogrammable architecture is proposed which involves

programmable, multi-core processors and an associated

communication network. The proposed system consists of

RISC architectures which support Single Instruction Mul-

tiple Data (SIMD) operations, and various inter-processor

communication methodologies, to provide the required flex-

ibility and programmability. This reprogrammable archiec-

ture has been designed to be as compact as possible to

increase the efficiency of the use of the available FPGA

logic whilst also achieving high performance [24].

In this concept, if every single processor can be thought

of as an actor and between the actors data is fired through

the First In, First Out (FIFO) structures, the overall sys-

tem would suit the application domain and would be highly

applicable to model and program through a dataflow lan-

guage and framework. Dataflow languages in general have

the ability to express the parallelism, and also make it

easy to identify and resolve data dependencies to exploit

concurrency as much as possible. However, since an FPGA-

based platform is targeted with given limitations such as

restricted memory, a dataflow language-based framework

should consider these issues.

2.1 Soft-Core Processors

There are a number of state-of-the-art, soft-core processors

based on FPGA architectures. These include FlexGrip [1],

IDEA [7], and DSP48E-based MIMO (Multiple Input Mul-

tiple Output) processor [9]. FlexGrip maps pre-compiled

CUDA kernels on soft-core processors which are pro-

grammable, flexible and scalable and which can operate

at 100 MHz. The IDEA processor and MIMO processor

have a similar structure to our IPPro core discussed here,

as both use the Xilinx DSP48E1 processing unit as their

Arithmetic Logic Unit (ALU). The IDEA processor uses an

8-stage pipeline to achieve 407 MHz clocking frequency,

and MIMO processor supports a very specific instruction set

for Multiple Input Multiple Output (MIMO) communication
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Figure 1 IPPro architecture.

systems and is able to work at a clock frequency of 265

MHz.

Given the starting point of using a high-level, dataflow

language, there are a number of challenges behind creating

an efficient implementation. These include the control of

memory size, throughput and bottleneck analysis. The main

advantage for using an FPGA as a target implementation

platform is the high bandwidth, low latency memory access

which increases the throughput of the applications of inter-

est. On the other hand, whilst the availability of multiple

memories is attractive from an image processing implemen-

tation perspective, the overall memory is limited particularly

when compared to competing technologies such as GPUs.

The IPPro is our hand-coded RISC soft-core processor.

By using the Xilinx DSP48E1 primitive as an ALU and min-

imizing supporting logic, synthesis results show that it is

capable of running at 526 MHz on Xilinx SoCs using an

XC7Z020-3 [24]. It uses one DSP48E1, one BRAM and 330

Slice Registers (excluding input/output FIFOs) per proces-

sor. IPPro outperforms all other current FPGA based soft-

core solutions as it has been optimised for modern FPGA

technologies and provides a good balance between process-

ing elements and memory. It supports various instructions

and memory accesses and is capable of processing signed

16-bit operations. The IPPro processor architecture uses a

5-stage balanced pipelining and supports streaming mode

operation where the input and output data is read and written

back to FIFO structures, as shown in Fig. 1. This processor

is designed to be compact, reprogrammable, and scalable

to achieve high throughput rates which are comparable to

custom-made HDL designs.

IPPro keeps the balance between programmability and

the need to maintain the FPGA performance. Overall, it has

the following addressing modes:

– Local Memory – Local Memory (LM-LM)

– Local Memory – FIFO (LM-FIFO)

– Kernel Memory – FIFO (KM-FIFO)

The local memory is composed of general-purpose registers

used mainly for storing operands of instructions or pixels.

This memory currently contains 32 16-bit registers. A FIFO

is a single internal register of IPPro where the input and

output streams from/to an external FIFO are stored. Ker-

nel memory is a specialized location for coefficient storage

in windowing and filtering operations with 32 of 16-bit

registers.

An example of the supported instructions can be seen in

Table 1. This table shows the IPPro LM-FIFO addressing

mode instructions and some miscellaneous ones among oth-

ers. The IPPro instruction set is capable of processing basic

arithmetic and logical operations for different addressing

modes. In addition to the unary and binary instructions, it

also has support for trinary expressions such as MULADD,

MULSUB, MULACC and others. Given the limited instruc-

tion support and requirements from the application domain,

a coprocessor is added to provide better support for more

complex processes such as division and square root. A

more detailed description of the IPPro is given in references

[18, 24].

2.2 Dataflow Languages and Tools

The dataflow representation concept was introduced by

Sutherland [26] as a way to describe arithmetic opera-

tions. The graphical representation of the arithmetic oper-

ations makes it easier to distinguish the temporary vari-

ables, dependencies and input and output variables, and

Table 1 Example IPPro instructions.

LM-FIFO Misc

ADD LOR JMP GET

SUB LNOR BNEQ PUSH

MUL LNOT BEQ NOP

MULADD LNAND BZ BYPASS

MULSUB LAND BNZ

MULACC LSL BS

LXOR LSR BNS

LXNR MIN BNGT

MAX BGT
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most importantly here, data transfer rate between the pro-

cessing elements, i.e. actors. Dennis et al. [13] formally

described the concept of directed graphs with the flow of

data between edges of actors. A dataflow program consists

of actors and its firing rules, where every actor describes

the required arithmetic/mathematical operation to process

the input streams before passing the result(s) to the output

streams. The representation of actors in dataflow program-

ming models are given by directed graphs where the nodes

represent computations and in general, the arcs represent the

movement of data.

The main principles behind the dataflow design method-

ology are the concurrency, scalability, modularity and data-

driven properties. The term data-driven is used to express

the execution control of dataflow with the availability of the

data itself. In this context, an actor is a standalone entity

which defines an execution procedure. Actors communicate

with other actors by passing data tokens, and the execution

is done through the token passing. The combination of a set

of actors with a set of connections between actors constructs

a network. Within the defined networks, communication is

made using infinite size FIFO components.

In summary, a dataflow program is defined as a directed

graph of computational elements communicating through

ports. Since Sutherland’s proposition, dataflow program-

ming has been studied in detail and various languages have

been proposed for different target applications. Lustre [16]

is a synchronous dataflow language developed for program-

ming real-time systems and is used within an industrial

embedded software toolset called SCADE. Signal [19] is a

synchronous dataflow language and its compiler is devel-

oped for safe real-time system applications. Its semantics

are defined for multiple-clocked flows of data and events.

The MAPS framework concentrates on mapping multiple

dataflow applications onto heterogeneous MPSoCs using

design constraints for performance estimation and map-

ping. Ptolemy II is an open source dataflow system design

environment based on an actor-oriented design. It supports

process networks (PN), discrete-events (DE), synchronous

dataflow (SDF), synchronous/reactive (SR), rendezvous-

based models, 3-D visualization, and continuous-time mod-

els. CAL [14] has been developed for image processing

and used for FPGAs, hence it seemed a highly appropriate

choice for the approach proposed here and is described in

detail next.

2.3 RVC-CAL Dataflow Language

CAL [14] was developed by Eker and Janneck as a part

of the Ptolemy II project and is a high-level program-

ming language for writing actors where within these actors,

input streams are transformed to output streams. CAL offers

the necessary constructs for expressing parallel or sequen-

tial coding, bitwise types, a consistent memory model,

and communication between parallel tasks through queues.

The CAL computation model enables the programmer to

express applications as network processes making it an ideal

candidate to be used as a behavioural description for mod-

eling software and hardware processing elements. A subset

of CAL language is called Reconfigurable Video Coding

CAL or RVC-CAL where type limitations are applied and

advance features of CAL language are prohibited; it is the

language used in Orcc which is an open source dataflow

development environment and compiler framework, that

allows the transcompilation of actors and generates equiva-

lent codes depending on the chosen back-ends [28].

The RVC framework is a standard originally developed

for MPEG in order to provide a unified, high-level specifica-

tion of current and future MPEG video coding technologies

using dataflow models. In this framework, a decoder is

generated by configuring video coding modules which are

standard MPEG toolbox or propriety libraries. RVC-CAL is

used to write the reference software of library elements. A

decoder configuration is defined in the XML language by

connecting a set of RVC-CAL modules.

In general, an RVC-CAL based design is composed of

several files. The file types and their contents are as follows.

– Dataflow network (.xdf file): this is a textual descrip-

tion coded in .xml format constructing the network

of actors of the design and the flow of data between

them.

– Actors (.cal files): an actor processes a stream of

tokens received through its input ports and sends the

processed tokens through its output ports. A design can

have multiple actors connected to each other as speci-

fied in the dataflow network file. The basic structure of

an actor includes the input/output ports and one or more

actions. An action will be executed, i.e. fired, if all the

following activation conditions are met:

– All required input tokens are available;

– The guard expression holds true;

– No other action with higher priority can be

activated at this time;

– The action can be fired based on the action

schedule.

– Data file (.cal file): this is a special kind of .cal file

to define constants. These constants can be imported

into and used by any actor in the design.

A typical structure of an actor code containing two

actions is shown in the following.
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3 Many-Core Heterogeneous Architecture

This section describes the proposed heterogeneous archi-

tecture for the implementation of data-intensive, streaming-

based applications. This design has been focused initially

towards the All Programmable System on Chip (AP SoC)

devices, in particular, the Xilinx Zynq-7000 AP SoC. These

devices integrate a Processing System (PS) and a Pro-

grammable Logic (PL) portion in a single device. This work

makes use of both the PS and PL portions; some control-

ling applications and potentially some actors (depending on

the decision on software/hardware partitioning, as will be

described later) execute on PS, and the compute-intensive

actors are realised on a network of multi soft-cores imple-

mented on PL.

3.1 Inter Processor Communication Network

In programmable multi-core architectures, the data com-

munication architecture chosen to exchange data among

different cores is important, and the design choices made

can significantly impact system performance. With the use

of an inter processor communication network, the range

and complexity of the targeted applications will increase.

In most cases, adaptive algorithms running on multi-core

systems need to communicate with other cores to fulfill the

required memory and execution semantics.

From a hardware perspective, it provides flexibility, scal-

ability and bandwidth whereas from the software perspec-

tive, it defines what applications could efficiently map and

schedule on the underlying architecture [4]. In the case of

programmable architectures, the mapping and scheduling of

the application is realised during decomposition and com-

pilation which means that the underlying architecture has

direct implications on the framework development.

Image processing applications exhibit structures for dif-

ferent execution and memory access patterns [4, 22, 23],

some of which are classified in Table 2. These are mainly

algorithmic characteristics, and hence are platform indepen-

dent and equally valid for different computing platforms

CPU, GPU, FPGA etc.. These patterns can give an idea

about the level of connectivity, memory, scheduling and

mapping requirements of an application. If a certain type is

supported by the underlying architecture, it would be able

to run most of the algorithms that are similar within the

respective class.

The ideal architecture is one that could support map-

ping and scheduling of the mentioned patterns in order to

allow the ultimate goal of the IPPro architecture which

looks to accelerate a wide range of image processing

applications. These patterns have been implemented using

the stream- and dataflow-based computing paradigm. The

design choices have been driven from both sides of the

project flow, i.e. top to bottom (starting from high-level

description) and bottom to top (starting from physical

resources placement). This drives the development as

follows:

– Multiple to multiple core level connectivity;

– Area utilisation in terms of underlying FPGA logic;

– Maintenance of the balance between memory and

bandwidth;

– Maintenance of the critical path length to ensure high

performance.

The proposed multi-core processing network is currently

implemented as an array of 4 × C soft cores, where the

number of columns (C) is decided based on the available

resources of the target device. This architecture has evolved

Table 2 Execution and

memory access patterns [22]. Type Memory Pattern Execution Pattern

Pixel-Pixel (P2P) Pipelined One-one

Neighbour-Pixel (N2P) Coalesced Tree

Reduction to Scalar (R2S) Recursive Coalesced Reduction Tree

Reduction to Vector (R2V) Recursive Non-Coalesced Large Tree Reduction
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Figure 2 Interconnection

network of an array of cores.

from a detailed analysis of mapping a series of algorithms

onto a multi-core architecture. Figure 2 shows a simplified

basic unit of a network constructed as the interconnection of

4 × 2 cores. The larger network can be formed by extend-

ing and replicating this unit from either side. Every core

can control one multiplexer (mux) and one demultiplexer

(demux). The mux is connected to the input port of the core

where one of the four FIFOs can be selected to pass its

tokens to the core. Each FIFO is connected to every core

of the previous layer hence providing full connectivity. The

core is also in control of a demux connected to its output

port. Through this selection, it could send the partially-

processed tokens to any of the four cores located in the

following layer of the network.

The basic streaming-based operations for a core in such

a network is as follows:

1. An action in RVC-CAL will be fired only if all the

required tokens are available. The core will wait until

all these tokens are received from the expected source

cores through the input port.

2. With all the tokens available, the core will process the

tokens.

3. Every processed token will be sent through its out-

put port and shifted in the connected FIFO of the

destination core which expects this token.

4. This process will be repeated as long as the streaming-

based application keeps running.

For the above network to run, selection lines of muxes

and demuxes should be set correctly by the cores and

access to the FIFOs should be coordinated. Also the order

of the tokens passed through FIFOs should be preserved.

Such settings allow the architecture to be optimised from

an application specific perspective and then not changed.

This requires extra information about the connectivity of the

streaming based network, and orderly passing of the tokens.

These issues are dealt with during the compilation process

of a specific application, as will be explained later.

3.2 System-Level Design

Our initial implementation target technology for streaming-

based video processing applications is the Zynq-7000 AP

SoC. This device integrates the software programmability

of a dual-core ARM Cortex-A9 based PS and the hard-

ware programmability of PL. In general, our design involves

mapping the data flow control onto the PS (ARM cores), and

image-processing application on the multi-core processing

data path realised on PL to achieve real-time processing of

compute-intensive applications. It might be the case that the

full image-processing application is not realised on PL as

less computational demanding functions often only require

memory re-organisation. Implementing such functionality

at the PS level could be the most efficient method as it

could avoid passing large volumes of data between PL and

the ARM cores, thereby avoiding costly transport delays.

In general, the streaming pipeline architecture is designed

as represented in Fig. 3; the PL implements a video design

that consists of a capture pipeline, a multi-core processing

network, and a display pipeline.

A part of the system-level block diagram of this design,

which uses Xilinx proprietary IPs available for Zynq SoC

Figure 3 Streaming pipeline architecture.
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Figure 4 A portion of

system-level block diagram of

PL and PS of the design.

devices, is illustrated in Fig. 4. The capture pipeline includes

a VDMA with one write channel and is connected to the

HP0 write port. The VDMA writes the incoming video

frames through an HDMI receiver into buffers inside the

memory. The multi-core processing network is connected to

the HP2 read/write ports. A VDMA (with one read and one

write channel) reads pixels from memory and sends them to

the multi-core network for processing. The VDMA writes

the processed data back into memory through its write chan-

nel. The display pipeline is connected to HP0 read port. This

pipeline consists of the logiCVC display controller which

has an integrated DMA engine to read buffers from memory

and send the data to the monitor over HDMI.

4 Dataflow Framework

This section describes the proposed tool flow, concepts

and techniques for the implementation of image processing

applications, described in RVC-CAL dataflow language, on

AP SoC devices.

Our developed tool flow for the implementation of image

processing applications is shown in Fig. 5. The input to

the framework by the user is the behavioural descrip-

tion of an image-processing algorithm coded in the RVC-

CAL dataflow language. This behavioural implementation

is expected to be composed of multiple actors along with an

xdf dataflow network description. Some of these actors are

selected to execute in soft-cores (one actor per core) hence

providing concurrent execution of these actors, and the rest

to run in the host CPUs. By analysing the behavioural

description of the algorithm, the software/hardware parti-

tioning of the design is determined. The metrics involved in

this decision-making will be discussed later.

Once the actors are split based on their target execution

platform, the original xdf file no longer represents the net-

work topology of either of the two sets. Each set of actors

should be redesigned separately and their input/output ports

Figure 5 Simplified design

flow of a hardware and software

heterogeneous system.
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fixed and each set’s xdf dataflow network description

file generated. This can easily be done using the Orcc

Development Environment.

The actors to run on the host CPUs are compiled from

RVC-CAL to C using the C backend of Orcc Development

Environment. The actors to be accelerated using the pro-

posed IPPro-based multi-core network are first analysed for

decomposition and/or SIMD application, and then passed

through a compiler framework. Both of these important

steps will be discussed later. The compilation flow is com-

posed of three distinctive steps. The first step investigates

the xdf dataflow network file and assigns the actors to the

processors on the network and keeps a record of the settings

for each actor to communicate with the other ones to estab-

lish the data streams. The second step of the compilation

is the conversion of each actor’s RVC-CAL code to IPPro

assembly code. The final step is the generation of control

register values, mainly for AXI Lite Registers, and parame-

ters required by the developed C-APIs running on the host

CPUs.

While the interconnects and input/output ports ‘between’

the FPGA-targeted actors are handled by the compiler,

receiving image data by the first-level actors and sending the

results from the final-level actors back requires some devel-

opment work and creation of settings. Multiple controllers

(programmable by the host CPUs) are designed to provide

the interface to transfer the image data to the accelerators

and gather the results and transfer back to the host. This

part of the design is currently custom-designed or manually

handled in our implementation. The fully-programmable

implementation is a subject for future work.

With the host CPUs running part of the design and set-

ting control registers and C control functions parameters,

the IPPro binary codes of the other actors loaded to the

proper cores on the accelerator, and the interface between

the software/hardware sections set accordingly, the system

implementation is in place and ready to run.

4.1 Software/Hardware Partitioning and Decomposition

of the SIMD Application

An initial version of a performance analysis tool or pro-

filer has been developed and embedded in the partitioning

and decomposition tools in order to evaluate how well the

decomposed actors will perform on the new architecture.

Various static and dynamic profiling tools and techniques

exist in open literature, such as that in Simone et al. [5]

who proposed a very beneficial design space framework

for profiling and optimising algorithms which also works

with the Orcc development environment. This profiler is

built to work with HLS-based designs and is not applica-

ble to our processor-based approach. To develop a profiler

for our framework, a cost model i.e. a set of metrics has

been created as a means of quantifying the effectiveness of

the decomposition and mapping of actors to the IPPro net-

work architecture. To realise the cost model, architectural

parameters/constraints which should be satisfied to achieve

high-performance and area-efficient implementations need

to be identified and a method needs to be determined which

can quantify the identified metrics for performance/area

measurements by a profiler.

For a many-core heterogeneous architecture, the met-

rics/constraints which are the deciding factors in the

partitioning/decomposition process can be categorised

as ‘performance-based’ and ‘area-based’. The important

performance-based metrics are implemented and discussed

here. The area-based metrics are a subject for future work

and will be briefly discussed later. The three performance

factors to be considered are:

– Actor execution time which is the main factor affect-

ing performance and can be estimated from the actor’s

code. To find the exact execution time of an actor, it

needs to be compiled first and its instructions counted.

The actors with the longest delays which are parallelis-

able are suitable for acceleration.

– Overheads incurred in transferring the image data

to/from the accelerator also affect acceleration per-

formance. If an actor requires the entire image to be

available for processing or it produces large amount

of data to be transferred to the host CPUs, the perfor-

mance will probably improve by executing it in the host

CPUs.

– Average waiting time is that needed to receive the input

tokens and send the produced tokens to another actor,

although this could be included in the actor’s execution

time.

Given a dataflow network of a design such as the one

shown in Fig. 6 where actors’ execution times are reflected

in their shapes, the performance can be analysed by con-

sidering its pipeline execution structure. This design has a

total of 10 actors arranged in 6 columns where the number

of cores in every column varies between 1 and 4. A section

of the pipeline of this design is shown in Fig. 7. The three

communication overheads considered are:

– Overhead to transfer data from host CPUs to the accel-

erator and then distribute among cores (OH1);

– Overhead to transfer data between actors through FIFOs

(OH2) and;

– Overhead to collect the processed data and transfer it

back to the host CPUs (OH3).

Using this diagram, a main image processing per-

formance metric, frames/s (fps), can be approximated
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Figure 6 Dataflow block

diagram of an example design

consisting of 10 actors organised

in 6 columns. The width of

every actor is representative of

its execution time.

considering the following features (along with the abbrevi-

ation of each feature):

– D: the worst case delay (execution clock cycles) of all

the stages (columns);

– P: number of pixels in a frame;

– C: number of pixels consumed on every pass;

– F: hardware clock rate.

fps ≈

F

D ×
P
C

(1)

In this calculation, the average overhead of the longest

actor is included in its execution time. This overhead can

usually be ignored since the actor with the longest delay

should have its input tokens ready by the shorter actors

which are quicker. Considering Eq. 1, it can be concluded

that to improve the fps, we need to:

– Increase SIMD operations, by generating multiple

instances of the original design, using the same instruc-

tion memory for the corresponding instances and pro-

viding appropriate data distribution and collection con-

trollers. This will decrease P
C

.

– Decrease the execution times of cores by decompos-

ing them; this will increase the number of columns

in the design and hence the degree of parallelism will

increase. In the equation, this will result in decrease of

D. In Figs. 6 and 7, the decomposition of the actor with

the worst-case delay in 2nd column will improve the

performance.

The host CPU could be considered as one stage of the

dataflow and since its clock rate is higher than that of FPGA,

the assigned actor’s execution clock cycles could be higher

to run in parallel with the shorter actors executing on FPGA.

If multiple short actors (compared to the average execu-

tion time expected to satisfy the required performance) are

sequentially placed in the dataflow, they can be merged to

reduce the overhead of token transfer through FIFOs and

also reduce area utilisation as less cores will be used up by

the design. If these short actors are placed at the start or end

of the flow, they are the best candidates to be partitioned for

execution in the host CPU. The three final short actors in

Fig. 6 are merged and running in the host CPU, as indicated

in Fig. 7. If placed in the middle of the dataflow, the cost of

transmission to host CPU and then back to the FPGA will

typically be high and it would be better to accelerate it.

The behavioural description of an algorithm could be

coded in different formats:

– No explicit balanced actors or actions are provided by

the user.

– The actors include actions which are balanced without

depending on each other, e.g. no global variables in an

actor is updated by one action and then used by the

other ones. These actions need to be decomposed into

separate actors.

– The actors are explicitly balanced and only need to be

partitioned into software/hardware execution.

There are two different types of decomposition: ‘row-wise’

and ‘column-wise’. In row-wise decomposition, there is

no dependence among newly-generated actors while in

column-wise decomposition, the new actors are dependent

on each other. The first case mentioned above will most

likely result in column-wise decomposition and the second

one in row-wise. The row-wise implementation is pre-

ferred over column-wise, as in row-wise no overhead of

Figure 7 A section of the pipeline showing the impact of actor execu-

tion times on the performance of the design of Fig. 6. The three types

of overhead for data transfer/distribution to accelerator, data transfer

between cores in the accelerator, and data collection/transfer from

accelerator are represented respectively by OH1, OH2, and OH3.



148 J Sign Process Syst (2017) 87:139–156

token transmission is incurred compared to the column-wise

where this overhead could be a limiting factor in the decom-

position process. A combination of these two can also be

implemented in certain conditions.

If the actors or actions are not balanced, a number of steps

should be taken to decompose it. The main step is to find

the basic blocks of the code. A basic block is a sequence

of instructions without branches, except possibly at the end,

and without branch targets or branch labels, except possibly

at the beginning. The first phase of decomposition is break-

ing the program into basic blocks. Some examples of basic

blocks in RVC-CAL are: If statement, while statement,

foreach statement, and assignments. Then the ‘balance

points’ of the actor should be found. The balance points

divide the actor into multiple sets of basic blocks such that

if each set is placed in a new actor, the overhead of trans-

ferring tokens among the sets will not create a bottleneck

and the performance requirements of the algorithm will be

satisfied. There could be more than one balance point avail-

able for grouping basic blocks in which the one with lower

overhead should be used.

Figure 8 shows an example actor ActorMain.cal

which does not meet the required performance and should

be decomposed. The basic blocks of the actor are high-

lighted in this code. There are two balance points which

satisfy the performance requirements; since either of them

divides the code into two sets of basic blocks where

the second one is dependent on the first one, this is a

Figure 9 Decomposition impact on the input/output ports of the

example shown in Fig. 8.

column-wise decomposition. A balance point should be

chosen which reduces the token transmission through

FIFOs; balance point 1 requires one extra token (LocVar1)

compared to balance point 2. Therefore balance point 2 is

the better choice.

A disadvantage of column-wise decomposition is that

the required unprocessed tokens by an actor should pass

through the preceding actors (for example Out4 :=

In3; assignment in Actor1.cal of Fig. 8), and the pro-

cessed output tokens produced by first-layer actors should

be passed through the following actors (for example Out1

:= In1; assignment in Actor2.cal of Fig. 8). This

adds to the token transmission overhead of the design.

Column-wise decomposition, however does not need any

changes to be made to the ports of surrounding actors. The

communication overhead for the example of Fig. 8 is shown

in Fig. 9.

Figure 8 An example column-wise decomposition process where ActorMain.cal is decomposed into Actor1.cal and Actor2.cal.

This example is only for demonstration purposes. The basic blocks are shown in dashed boxes and the changes are highlighted in colour.
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Figure 10 An example row-wise decomposition process where ActorMain.cal is decomposed into Actor1.cal and Actor2.cal. This

example is only for demonstration purposes. The basic blocks are shown in dashed boxes and the changes are highlighted in colour.

If an actor includes actions which are balanced and

independent of each other (with a linear scheduling), or

equivalently, the basic block sets inside ‘one’ action are

independent of each other around the balance point, the row-

wise decomposition can be applied. In the example shown

in Fig. 10, ActorMain.cal has two independent sets

of basic blocks around the balance point, hence row-wise

decomposition can be applied. This type of decomposition

does not increase the token transfer overhead when com-

pared against the original actor; it only changes the ports

through which the tokens are communicated with the adja-

cent actors in the dataflow graph; the connecting ports of

the neighbouring actors should change to fit the new struc-

ture. Figure 11 shows the decomposition impact on the port

declarations of this example.

4.1.1 Metrics

As mentioned earlier, the classification of metrics involved

in partitioning/decomposition is performance-based or

Figure 11 Decomposition impact on the input/output ports of the

example shown in Fig. 10.

area-based. In our implementation, we have considered the

main system-level performance-based features, however,

there are more metrics involved and the important ones are

reviewed in this section. Some of these metrics are currently

manually checked in our design, and automatic application

of them will be in our future work. For a many-core het-

erogeneous architecture, the metrics/constraints involved in

the partitioning/decomposition process can be categorised

as core-level, network-level, and system-level ones. The

important metrics of each level are discussed in the fol-

lowing and summarised in Table 3. To simplify the design

process and multi-core network, every decomposed actor is

limited to containing one action and being mapped to one

soft-core.

The important core-level metrics are as follows.

– Actor’s number of instructions: a decomposed actor

should have a functionality which can be described in

1000 instructions (limited by a single BRAM capacity).

– Actor’s average execution time: this is a measure of

average time needed to compute output tokens after

reading input tokens. The reciprocal of actor execution

time is its throughput which is a measure of the actual

flow of tokens into a core in terms of bits per second.

– Core code efficiency: this is a measure of code effi-

ciency in terms of the ratio of ALU instructions to non-

ALU instructions. Non-ALU instructions are mainly

token read and write from/to external FIFOs and NOP

instructions.

– Peak register usage: this is a measurement of the max-

imum number of registers of local memory used by an
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Table 3 Important metrics

used in decomposition phase Level Metric Max Changes will mainly affect:

Core Actor’s no. of instructions 1000 Peak register usage

Actor’s average execution time — Token prod./cons. rate

Core code efficiency <100 % Average degree of concurrency

Peak register usage 32 Actor’s no. of instructions

Core bandwidth — Core code efficiency

Network Core utilisation 100 % —

Token prod./cons. rate — Actor’s average execution time

Level of convergence 4 —

Level of divergence 4 —

Average degree of concurrency — Token prod./cons. rate

System Frame per second (fps) — —

actor including input, intermediate and output variables

in a single iteration. The current architecture register

limit is 32.

– Core bandwidth: the theoretical maximum data rate

achieved by a core which is directly proportional to the

ratio of the number of input tokens required by the core

to the number of instructions.

The important network-level metrics are as follows.

– Core utilisation: multi-core processor array is made up

of 4 × C interconnected IPPro cores, where C is the

number of columns. Each column is locally connected

to the next in the PL before passing its results back up

to the host (ARM) via the AXI bus. Mapping may not

utilise all 4 cores in each column of the data-path.

– Token production/consumption rate: this factor defines

the dynamics of memory requirements on the inter-

connect and workload division between actors and is

dependent on how the high level algorithm has been

decomposed. This is the rate at which tokens are pro-

duced or consumed by an actor over a period of

time.

– Level of convergence: this is a measure of the maximum

number of cores outputs that are connected to a single

consumer input through the interconnect. Consider-

ing the current interconnect, the consuming core can

only receive data from a maximum of four producing

cores.

– Level of divergence: this is similar to level of conver-

gence but is a measure of the maximum number of

consuming cores that are connected to a single core

output through the interconnect.

– Average degree of concurrency: this is a measure of

average number of actors running ALU operations con-

currently. Since the soft-cores run their code sequen-

tially similar to the conventional CPUs, the real per-

formance improvement of this design is the parallel

execution of multiple sequential runs.

The important system-level metric is as follows.

– Frame per second (fps): a high level analysis will report

on this for a particular algorithm and includes esti-

mated delays associated with the controllers and host

CPU management software. If a system cannot meet the

required fps, it will be deemed as a failure. As discussed

earlier, Eq. 1 gives an estimation of its value to be used

in partitioning/decomposition processes.

4.2 Compiler Infrastructure

Our developed compiler infrastructure stage of dataflow

framework, shown in Fig. 5, is composed of three major

steps. The first step investigates the xdf dataflow network

file generated in the decomposition/SIMD application stage

and assigns the actors to the processors on the network and

keeps a record of the settings for each actor to communi-

cate with the other ones to establish the data streams. Also

an actor should send the tokens in a predefined order to

the target actors. The target actors also expect the tokens in

that order. This issue is resolved in this first step of com-

pilation process. The second step of the compilation is the

conversion of each actor’s RVC-CAL code to IPPro assem-

bly code. Target specific optimisations are also carried out at

this level. For instance, the IPPro is able to process MUL and

ADD operations in a single clock cycle. The compiler will

replace consecutive MUL and ADD operations with a single

MULADD operation.

As will be explained later, a Zynq device has been used

as a target in our project. The compiler is responsible to

generate the settings for the AXI Lite Registers based on

the algorithm, in order to help the controllers distribute the

tokens among the cores and gather the produced results.

Also some C control functions have been developed which

depending on the algorithm, manage the implementation of

the design. The parameters required by these functions are

also generated by this compiler.
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Figure 12 Our high level

system architecture.

5 Case Study: Histogram of Oriented Gradients

Algorithm (HOG)

This section presents the implementation of an applica-

tion use case, namely HOG, in order to evaluate the pro-

posed multi-core IPPro architecture as a programmable

acceleration solution. The development board chosen for

the HOG implementation is ZedBoard which features a

XC7Z020 Zynq device and contains a number of peripheral

interfaces. Industry standard AXI interfaces provide high

bandwidth, low latency connections between the two parts

of the device. The XC7Z020 Zynq is one of the smaller

devices in the Zynq-7000 range, and it is based on the Artix-

7 logic fabric, with a capacity of 13,300 logic slices, 220

DSP48E1s, and 140 Block RAMs (BRAMS). Additionally,

the Zynq device interfaces to a 256Mbit flash memory and

512MB DDR3 memory, both of which are found on the

board. There are two oscillator clock sources, one operating

at 100MHz, and the other at 33.33MHz.

Our generic high level system architecture for the pro-

posed solution is shown in Fig. 12. A desktop computer

is used for testing purposes. This computer can send com-

mands to the PS using the UART connection, which gives

console access to the Linux operating system. The Ethernet

connection can be used for larger data transfers to/from the

Zedboard such as image data.

The data communication between the PS and the PL is

provided by the HP ports since this gives a much higher

throughput than the GP ports. The GP ports are also used,

but only to provide read/write access to the AXI Lite Regis-

ter space inside the DMA Engine. This register space con-

tains registers which store the address and size of the current

data transfer, which allows the ARM processors to start a

data transfer between the PL and the Off Chip Memory

(OCM) by writing to these registers. The IPPro controller

also contains an AXI Lite Register space which allows the

ARM processors to control the function performed by the

controller among others.

To transfer the image data from the PS to the PL, the

OCM is mapped by the ARM processors allowing the image

to be copied across. This data can now be accessed by both

sections of the Zynq; the PS accesses the RAM through

the memory controller, which also gives the DMA Engine

access to the RAM through the HP ports. On the PL side

of the DMA Engine, the AXI-Streaming (AXIS) interface

is used; this is a unidirectional interface standard between

two points, so to provide access back to the OCM, a second

AXIS port is used. It is necessary to insert FIFO buffers onto

the AXIS data path to allow the DMA Engine to operate

at a higher throughput. An IPPro controller will receive the

data on one of these AXIS ports and output the processed

image on the other port. A Linux based operating system is

running on the ARM processors.

AXI Lite Registers in the IPPro controller allow the ARM

processors to control which operation is performed by the

controller. This allows a program running on the ARM pro-

cessor to read/write to registers inside the controller, which

means it can choose which operation to perform by writing

Figure 13 Input/output

controllers.
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Figure 14 HOG data

dependencies [18].

a control word into a register, or check the status of the

controller by reading from a different address. The AXI

Lite Registers currently implemented in the controller are as

follows:

– Control: allows the program to set the size of the image

and control which operation to be performed; in our cur-

rent implementation, the controller performs some lim-

ited operations such as a 3x3 or 5x5 kernel application

on a colour or gray-scale image (Read/Write).

– Status: allows the program to read whether the con-

troller is currently running or there has been an error

with the command (Read Only).

– Go: allows the program to start an operation defined by

the current value in the control register (Write Only).

The IPPro controller controls a channel controller and

a gather module, each having their own state machine and

receiving signals from the top level controller for proper

operation. Figure 13 shows a simplified hardware architec-

ture for the input and output controllers.

Channel controller is used to control the operations of a

network of 4 × 4 array of cores, where multiple channel

controllers are used when implementing SIMD operations.

At the top level, the IPPro controller dispatches the input

data to one or more channel controllers for SIMD imple-

mentation. For each of these channel controllers, the input

data could be a 16-bit value, which allows 16-bit grayscale

values to be used, or for RGB images, the data will only

be 8-bit. In our current implementation, the channel con-

trollers contain five row buffers to store the input data so

that the required window can be presented to the correct

IPPro; this supports maximum of 5-row windows. Dispatch-

ing this input data to the appropriate IPPro is handled by a

state machine.

Because the output data is coming from multiple IPPros,

a gather module is required to receive data from the proces-

sors in turn and send this data to the output port. In order

to achieve the required functionality, the gather module uses

a state machine to control the operations. It contains two

counts to control which channel controller, and which IPPro

within the channel controller the data is coming from.

Most of the design units explained in this paper have been

fully implemented and the initial version of the others are

available. The partitioning/decomposition unit is planned

and an early version is currently working. The compiler

from RVC-CAL to IPPro assembly has been fully devel-

oped and an initial version of the PS/PL implementation also

works. A case study was used then to validate the operation

and to demonstrate the applicability of our approach.

The case study presented is the HOG algorithm which is

a well known algorithm used for human detection by util-

ising the gradient orientation [12]. Details of the design are

given in [18] but this section concentrates on how it is imple-

mented and explored using our design flow. The application

of the main steps to HOG are discussed next.

5.1 Partitioning and Decomposition

As mentioned in Section 4.1, the behavioural code is parti-

tioned/decomposed into units such that the data dependency

between units is kept low and the required performance

is met. The common small image processing functions are

often the best candidates to be detected as individual actors.

The high-level behavioural description of the HOG algo-

rithm includes the six functional units shown in Fig. 14.

The decomposition tool detects these explicit functions and

breaks the code into these units in order to exploit the low

data dependency between them.

The HOG algorithm converts the pixel intensity infor-

mation to the gradient information, where gradients consist

of magnitude and direction as per the first two stages of

Fig. 14. Each of the detection windows is divided into cells

which are translated into histograms representing the gra-

dients in the cell as per the third stage. The histograms

from multiple cells are then normalised with each other

to generate a vector as shown in the fourth stage. Colla-

tion of the normalised vectors over the detection window in

stage five produces the HOG descriptor. In the final stage, a

Figure 15 Instruction profile

for a single detection

window [18].
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Figure 16 120 IPPro core

architecture generating HOG

descriptors from a stream of

gamma corrected pixels -

performance quoted per HD

frame generated [18].

pre-trained off-line Support Vector Machine (SVM)

receives the vectors and multiplies with its set weights to

achieve the human detection chain.

Three of the six functional blocks, ‘Compute gradients’,

‘Weighted vote into spatial and orientation cells, and Nor-

malise over overlapping spatial blocks’ were targetted to be

accelerated using the PL. The software/hardware partition-

ing tool offloads the non-native IPPro functions to the Zynq

ARM cores as they mostly require memory re-organisation.

As mentioned earlier, doing this at the host level is the most

efficient method as it avoids passing large volumes of data

between PL and the PS, thereby avoiding costly transport

delays.

The instruction profile and cumulative number of instruc-

tions to generate the HOG descriptors required for a single

detection window is shown in Fig. 15. To generate HOG

descriptors for one HD frame at single scaling and no over-

lapping, 270 detection windows are needed in this imple-

mentation. Input data in this instance is 8-bit grey-scale. The

number of instructions in this table are the total instructions

required to achieve a detection window HOG descriptor for

each stage. The total instructions for each function is mea-

sured by considering the number of instructions in every

actor of that function and the number of actors’ iterations

per detection window.

The IPPro architecture used here has a local memory size

of 64 × 16-bit and includes the division instruction in its

ISA. We implement the division as a parallel coprocessor in

order to provide a speed up while allowing the IPPro core to

continue its operation [18].

With the task-level parallelism of the three func-

tional units, data-level parallelism is also achieved by the

Table 4 The metrics used in

decomposition phase of HOG

algorithm.

Level Metric Max HOG

Core Actor’s no. of instructions 1000 Grads: 338

Binning: 295

Normalise: 2344

Actor’s average execution time — Grads: 64 µs

Binning: 56 µs

Normalise: 4.4 µs

Core code efficiency <100 % Grads: 46 %

Binning: 78 %

Normalise: 84 %

Peak register usage 64 Grads: 60

Binning: 60

Normalise: 36

Core bandwidth (Gbs−1) 4.2 Grads: 1.5

Binning: 1.58

Normalise: 0.13

Network Core utilisation 100 % —

Token prod./cons. rate — —

Level of convergence — —

Level of divergence — —

Average degree of concurrency — —

System Frame per second (fps) — 329 (for single scale)



154 J Sign Process Syst (2017) 87:139–156

Table 5 Resources usage of

120 core IPPro design and

recent FPGA

implementations [18].

Ref Device Clock LUTs DSPs BRAMs Resolution fps

Our XC7Z020 530 MHz 47,720 120 120 1920 × 1080 328

[15] XC5VFX200T 270 MHz 3,924 12 26 1920 × 1080 64

[20] XC6VLX760 150 MHz 92,477 191 95 640 × 480 68

[21] XC5VLX50 44.85 MHz 17,383 no data 36 640 × 480 112

decomposition tool by creating core instances with the same

instruction code each handling a different window of the

frame. With 120 total number of the IPPro cores, organ-

ised as illustrated in Fig. 16, the core-level constraints are

satisfied. For this specific design, the network-level con-

straints were not applied as the core-level and system-level

measurements were the main focus. These measurements

are reported in Table 4. The HOG figures in this table are

from the 64 × 16-bit register file, optimised input window

aspect ratio and division coprocessor included. The ‘Nor-

malise’ function is a special case as it violates the constraint

of the number of instructions and is handled through manual

methods to demonstrate the principles and the concept.

5.2 Compilation from RVC-CAL to IPPro Instructions

The xdf dataflow network file generated in decomposition

stage along with each actor’s RVC-CAL code are processed

by the compilation tool to generate IPPro instructions. The

xdf file processing maps the actors onto cores and allows

the actors to configure the network properly. Depending on

the algorithm, the compiler also generates the settings for

the AXI Lite Registers and the parameters required by C

control functions running on ARM.

5.3 Implementation

This design maps data flow control and three functional

units onto an ARM core. The other three compute-intensive

functional units discussed above are mapped on multi-core

processing data path realised on PL. The design implemen-

tation approves the system fps metric determined in the

decomposition stage.

The resource usage and performance metrics for this

design with comparison to other recent implementations are

shown in Table 5. A performance of 328 fps can be achieved

by this design approach.

Two versions of the functional blocks were explored,

a hand-coded VHDL description which took 40 days to

code and which was validated using VHDL-based tools and

the other, an IPPro implementation. The IPPro design was

implemented before the compiler was implemented and it

took 10 days to generate the code and test. With the com-

piler, it was implemented in less than a day and iterated in

a matter of minutes. The design time savings are a result of

the deterministic coding and behaviour of the IPPro which

allow the user to compile the design quickly and accurately

calculate the functionality on a cycle by cycle basis. Whilst

this is not scientific, it gives some indication of design time

saving.

6 Conclusion

This paper presents a high level dataflow framework for

soft-core processors on FPGA for image processing appli-

cations. We have demonstrated the potential of replacing

the conventional hardware design route for FPGAs with

the use of custom designed soft-core processors and pro-

gramming these processors with a dataflow-based design

approach. The idea of decomposing and translating dataflow

programs written in RVC-CAL to IPPro assembly is pre-

sented through a case study, the HOG algorithm and it is

shown how the design approach reduces design time and

effort.

The overall design framework with limited optimisations

and limited memory access is currently operating and many

target based optimisations and profiling are done to improve

the mapping of future designs and thus improve efficiency,

allowing us to get near the same performance of any hand-

crafted design. Another important aspect of the design of the

processors and the framework is the programmable inter-

connect which will increase the flexibility and also the

capability to map more complex algorithm onto the plat-

form. However more flexible hardware will introduce new

challenges to the framework to reflect and optimise the use

of resources.
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