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RESUMEN

Este documento presenta el diseño basado en FPGA para la compresión de señales ECG utilizando la 
Transformada Wavelet Discreta y un método de codificación sin pérdida de información. A diferencia 
de los trabajos clásicos para modo off-line, el trabajo actual permite la compresión en tiempo real de 
la señal ECG por medio de la reducción de la información redundante. Se propone un modelo para el 
esquema de convolución en formato punto fijo, el cual tiene buen desempeño en relación a la tasa de 
salida, la latencia del sistema, la máxima frecuencia de operación y la calidad de la señal comprimida. 
La arquitectura propuesta, la cuantización utilizada y el método de codificación proporcionan un PRD 
que es apto para el análisis clínico.

Palabras clave: Señal ECG, transformada Wavelet Discreta, relación de compresión, esquema de convolución 
eficiente, codificación sin pérdida de información.

ABSTRACT 

This paper presents FPGA design of ECG compression by using the Discrete Wavelet Transform (DWT) and 
one lossless encoding method. Unlike the classical works based on off-line mode, the current work allows 
the real-time processing of the ECG signal to reduce the redundant information. A model is developed 
for a fixed-point convolution scheme which has a good performance in relation to the throughput, the 
latency, the maximum frequency of operation and the quality of the compressed signal. The quantization 
of the coefficients of the filters and the selected fixed-threshold give a low error in relation to clinical 
applications.

Keywords: ECG signal, Discrete Wavelet Transform, compression ratio, efficient convolution scheme, 
quality score.

1	 Telecommunications Engineering Department. University Militar Nueva Granada. Kra. 11 No. 101-80. Bogota, Colombia. 
E-mail: dora.ballesteros@unimilitar.edu.co; diana.moreno.enciso@gmail.com

2	 Electronic Engineering Department. University Distrital Francisco Jose de Caldas. Carrera 7 No. 40-53. Bogota, Colombia. 
E-mail: aegaona@udistrital.edu.co

INTRODUCTION

Discrete Wavelet Transform (DWT) has been used in 
the last years in applications of signal processing like 
denoising, compression and coding. Methods for both 
offline and online mode have been proposed. In the 
first, the information is processed frame-by-frame; 
in the second, it is processed sample-by-sample.

In denoising and compression methods, the DWT is 
accompanied by a thresholding stage to reduce the 
redundant information [1]. The threshold controls 
the compression ratio (CR) of the system. The 
threshold higher, the compression ratio higher. 
The limit of the threshold is related to the desired 
Percent-Root-Mean-Square-Difference (PRD) of 
the compressed (or filtered) signal [2]. When the 



Ballesteros, Moreno and Gaona: FPGA compression of ECG signals by using modified convolution scheme of the Discrete…

9

input is a biomedical signal such as the ECG signal, 
the PRD should be lower than 4% to guarantee that 
clinical useful information is kept [3]. The selection 
of the threshold can be due to the energy packing 
efficiency [4], fixed percentage [5], [6] or universal 
threshold [7]. 

In off-line mode, the algorithms can reach 
compression ratio up to 20:1 with a PRD lower 
than 10% [8]-[10]. However these methods are 
not suitable for real-time implantation neither for 
stand-alone applications.

Because in portable devices it is desirable the 
real-time processing, the design of new methods 
or the adaptation of the known methods allows 
the transmission or storage of the input signal, 
sample-by-sample. The problem is design a real-
time architecture for the compression of ECG signal 
with low latency, low error of quantization, low 
losing of information and high compression ratio.

For the hardware realization of the DWT, the classical 
schemes are the based on the convolution and the 
lifting scheme [11]-[13]. The convolution scheme 
demands massive operations, which implies hardware 
consumption, and it is not efficient because the half of 
data is eliminated in the subsampling process; while 
the lifting scheme reduces the operations in three 
steps: split, prediction and update. The disadvantage 
of the lifting scheme is that the lifting coefficients are 
not integer; therefore, the scheme requires float-point 
multipliers and float point adders [14]. Although some 
modifications have been proposed, the use of float-point 
modules are necessary in most of the schemes based 
on the lifting design. To overcome this restriction, we 
propose a scheme which takes advantage of both the 
convolution and lifting schemes. The output of the 
each filter is calculated by a convolution process, but, 
a split step is added in our proposal. In our scheme, 
the modules (adder, multiplier) work in integer format 
and the system only calculates the outputs that are not 
eliminated in the subsampling process. Summarizing, 
we propose an integer-to-integer wavelet transform 
scheme which reduces the hardware resources of 
the convolution one and it does not use float-point 
modules such as the lifting scheme. 

Finally, one lossless encoding method is added to 
the architecture of compression of the ECG signal. 
According to [15], Huffman encoding and Run-
length (RL) encoding provides similar results of 

CR and PRD, but RL is more suitable for real-time 
applications. Because it is a lossless encoding method, 
the PRD is only due to the quantization error and 
the thresholding process. If an adequate threshold 
is selected and a low error of quantization is used, 
the compressed signal should be closer to the ECG.

ARCHITECTURE OF THE DISCRETE 
WAVELET TRANSFORM

The two classical schemes to perform the Discrete 
Wavelet Transform are the convolution (or filter 
bank) and lifting scheme.

Convolution scheme
It is based on two FIR filters and one subsampling 
process. The detail and coarse coefficients for one 
level of decomposition are obtained according to 
Figure 1.

h1
d1

c1
h0 2

x[n]
2

Figure 1. 	 Convolution scheme of DWT.

In the above Figure, h1 and h0 are the impulse 
response of the high pass filter and low pass filter, 
respectively; x[n] is the input signal; d1 and c1 are 
the detail and coarse coefficients of the first level. 
The symbol 2  means subsampling by 2, dropping 
sampling with odd indexes [16]. In other words, 
after the convolution process between x[n] and [h1 
h0], the odd samples of the outputs are eliminated. 
In this scheme, half of all operations are wasted, 
because only the halves of the data are used.

Lifting scheme
This scheme is based on three processes: split the 
input data, prediction and updating. The block 
diagram is presented in Figure 2.

even

odd

C1

d1

Split P U
x[n]

Figure 2. 	 Lifting scheme of DWT.

The input data are split in two parts, even and odd 
samples; the prediction step produces the detail 
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coefficients and the update step generates the coarse 
representation of the input signal. This scheme 
has been used with biorthogonal filters like 9/7 
DWT. In that case, six constants are included in 
the architecture: a, b, g, d, k, 1/k. The disadvantage 
is that the constants are not integer and they are 
represented by 18 bits in fixed-point format, 2 for 
the integer part and 16 for the right side of the point 
[14]; or by 10 bits in fixed-point format, 8 for the 
right side of the point [17]. Then, the arithmetic 
operations are in float point.

Efficient convolution scheme
The aims of this scheme are reducing the operations 
of the classical convolution scheme and avoiding 
operations with float-point format of the lifting 
scheme. Unlike the lifting scheme which splits 
the input data, our scheme splits the clock signal 
and the filtering is calculated in alternate clock 
cycles. The coarse (c1) and detail (d1) coefficients 
are calculated according to:

for n= 0,2,4,…

∑ [ ] [ ][ ] = −
=

−
c n h k x n k.

k

M

1 0
0

1

(1)

for n= 1,3,5,…

∑ [ ] [ ][ ] = − −+

=

−
d n h k x n k. 1

k

M

1 1
0

1

(2)

Where M is the length of the FIR filters, [h1 h0] are 
the impulse response of the low and high pass filters, 
respectively; and x[n] is the input signal. According 
to eq. (1), (2), the coarse coefficients are calculated 
in the even cycles of the clock signal; while the 
detail coefficients in the odd cycles. Since the detail 
coefficients are obtained one cycle after of the even 
positions, it is necessary to include an additional 
delay in its mathematic formula. Then, the even 
values of the detail coefficients are obtained by:

for n= 0,2,4,…

d n d n 11 1 [ ][ ] = ++
(3)

With this approach, only the halves of the operations 
are calculated and the throughput of the system is 
the double of the classical convolution scheme. On 
the other hand, all of the hardware modules (adder, 

multiplier) can operate with integer data if [h0 h1] 
are encoded in an integer binary format.

HARDWARE IMPLEMENTATION

We implemented an 8-bit integer-to-integer efficient 
convolution scheme of the DWT, family sym4, 
using a FPGA of Xilinx. The dwt block includes 
the following modules: div_2, bank of register, 
coefficients and multiplier/adder. Additionally, 
the thresholding and encoding process are added 
to the compression scheme of the ECG signal. The 
high level description is written in VHDL code and 
it is simulated on ModelSim. Finally, the code is 
synthetized using a Spartan3E-100, and validated 
with real ECG signals. The general architecture is 
illustrated in Figure 3.

Figure 3. 	 Architecture of the proposed scheme.

Div_2: this block divides the frequency of the clock 
signal by 2. The output has the half of the frequency 
of the clock signal.

clk

div_2

Figure 4. 	 clk & div_2.

Bank of register: it calculates the eight delays of 
the input signal by flip-flops D-type. The output is 
updated each cycle of the clock signal.

Coefficients: according to the value of div_2, the 
coefficients of the low pass filter or the high pass 



Ballesteros, Moreno and Gaona: FPGA compression of ECG signals by using modified convolution scheme of the Discrete…

11

filter are selected. If div_2=’1’ it selects h0, but if 
div_2=’0’ it selects h1. The binary representation 
of h0 is presented in Table 1.

Table 1. 	 Binary representation of sym4.

Coeff. Value
Unsigned 
Integer =

Value*125

Binary 
value

h0(0) 0.0758 9 0001001

h0(1) 0.0296 3 0000011

ho(2) 0.4976 62 0111110

h0(3) 0.8037 100 1100100

h0(4) 0.2979 37 0100101

h0(5) 0.0992 12 0001100

h0(6) 0.0126 1 0000001

h0(7) 0.0322 4 0000100

In a similar way, the coefficients of the high pass 
filter are encoded with 7-bits.

Multiplier/Adder: this block computes the 
convolution between x[n] and the impulse response 
of the FIR filters. If div_2=’1’then it works as a low 
pass filter; while if div_2=’0’ it works as a high pass 
filter. Because [h0 h1] are unsigned, the equations 
(1) and (2) are transformed, for the case of sym4, as:
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Since x[n] is encoded with 8 bits and [h0 h1] is 
encoded with 7 bits, the output of the convolution 
is represented by 16 bits. The coefficients c1 and 
d1 correspond to the 8 most significant bits of 
the output (the 8 LSBs are ignored); it means the 
output is divided by 256. The circuit of this block 
is presented in Figure 5.

Figure 5. 	 Multiplier/adder block.

Thresholding: it sets to zero the coefficients that 
are lower in magnitude than the threshold. It follows 
the hard rule, defined as:

f x
sign y y th y th

y th

.

0

( )( )
( ) =

− >

≤






(6)

Where y is the input (c1 or d1), th is the threshold 
and f(y) is the thresholded coefficient. The threshold 
uses in this work is the proposed in [15].

According to the thresholding-encoding scheme 
presented in [18], three flags are calculated: b1, 
b2 and b3. The meaning is presented in Table 2.

Table 2. 	 Thresholding flags.

Flag Value Meaning

b1
0 The current f(x) is not zero

1 The current f(x) is zero

b2

0 The current f(x) is not the first zero

1 The current f(x) is the first zero

b3
0 The previous f(x) is not zero

1 The previous f(x) is the last zero

Encoding: it is based on the run-length encoding 
method. The run-length is a lossless encoding method 
that takes advantage of the consecutive repetitions 
of a specific number [19]. Because the thresholding 
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step sets to zero a large number of coefficients, the 
run-length scheme represents the data by the zero 
follows by the total of repetitions. If the coefficient 
is different to zero, the encoded data is equal to the 
wavelet coefficient. In our architecture, the output 
of the system is data and row; data is the encoded 
wavelet coefficient and row is the position into the 
run-length code. According to the value of the flags 
b1, b2, b3, the row is updated. (Table 3).

Table 3. 	 Output of the encoding block.

b1 b2 b3
New 

data?
Data Row

1 1 0/1 yes 0
update
row=row+1

1 0 x not
not 

applied 
no 
update

0 0/1 1 yes
[count 
f(x)]

update
row=row+2

0 0/1 0 yes f(x)
update
row=row+1

Every time that f(x)=0and b3=’1’, the counter 
increases its value; its mean the flag count account 
the total of consecutive zeros. When a new data 
different of zero appear, the last value of the count 
is written in the run-length code, follows by the 
new data, f(x). 

RESULTS

In this section we present some results related to 
performance of the proposed model. The quality 
of the hardware architecture and the compression 
algorithm are measured. First, the work is analyzed 
in terms of the metrics of hardware. Second, the 
CR and PRD are measured.

Performance of the Hardware Architecture: the 
FPGA Spartan3E-100 (BASYS2 board) of Xilinx is 
programmed with the VHDL code. Additionally an 
A/D and D/A blocks are connected to the FPGA for 
the hardware validation of the compression scheme. 
Four works of hardware realizations of the DWT 
have been selected with the purpose of comparing 
the performance of the algorithm. Two of them 
correspond to convolution scheme and the others 
to lifting scheme. In Table 4, the metrics are shown.

In Table 4, Scheme corresponds to the based 
on convolution (conv), lifting (lif) or modified 

convolution (mc); Mode is off-line if the data 
is processed frame-by-frame or real-time if it is 
processed sample-by-sample; Base corresponds to 
biorthogonal (Bior) or Orthogonal (Orth); Format 
of quantized data is fixed-point (F-P) or Integer 
(Int); Error of quantization is the produced by the 
quantization of the coefficients of the FIR filters (it 
is measured for an input signal equal to a constant); 
Maximum Delay is the time that the DWT block 
takes to calculate the detail and approximation 
coefficient (it is obtained from the synthesized tool); 
while Latency is the times of cycles of the clock 
signal to obtain the output from a specific input (it 
is tested by the simulation on ModelSim). 

According to Table 4, our design has the lowest 
error of quantization, which is desirable to obtain 
a low value of PRD. On the other hand, the latency 
of our work allows that the answer of the system 
will be faster than the answer of the other works. 
Finally, the proposed model can work with signals 
with higher bandwidth (such as the speech signals) 
than the signals in the convolution scheme, because 
the maximum delay is lower. 

Unlike some works whose eliminated completely 
the detail coefficients, our work kept the coefficients 
higher than a fixed-threshold. In Figures 6 and 7, 
we present an example of one ECG signal from the 
Fluke PS420 Multiparameter Patient Simulator as 
the input of the system. It was configured with 60 
beats per minute (bpm). Additionally, the coarse 
and detail coefficients are calculated.

Table 4. 	 Comparison to related works: hardware 
metrics of the DWT block.

Parameter
[20]
[21]

[22] [23] [24] Our

Scheme conv conv lif lif mc

Mode
Off -
line

Real-
time

Off-
line

Real-
time

Real-
time

Base
Bior
9/7

Bior
9/7

Bior
9/7

Bior
9/7

Orth
Sym4

Format F-P F-P F-P Int Int

Error
Quantization
(%)

1.86 7.54 5.88 1.46 1.29

Maximum
Delay (ns)

17 12.5 5.3 9.5 7 

Latency
(clocks)

15 15 5 5 1
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Figure 6. 	 Example of ECG signal (channel 1) and 
its coarse coefficients (channel 2).

Figure 7. 	 Example of ECG signal (channel 1) and 
its detail coefficients (channel 2).

According to Figure 6, the highest amplitude 
of the coarse coefficients is the quarter of the 
highest of the ECG signal, for two reasons: first, 
the filters [h0 h1] were multiplied by 125 but their 
outputs were divided by 256; it implies the half 
of the amplitude; second, while the input signal is 
8-bits in unsigned format, the wavelet coefficients 
[c1 d1] are in 8-bits signed format (7-bits for the 
amplitude). Additionally, it is notice that not all the 
detail coefficients are set to zero. The results are in 
agreement with theoretical results.

Performance of the Compression Model: the second 
group of metrics is related to the CR and the PRD. 
The compression ratio measures the quantity of 
wavelet coefficients of the input versus the quantity 
of the encoded wavelet coefficients, according to 
the following equation:

CR
size c size d

size encoded c size encoded d

1 1

1 1( ) ( )
( ) ( )

( ) ( )=
+

+ (7)

Where ( ) ( ) encoded c encoded d1 1  are the encoded 
coarse and detail coefficients, respectively. This 
value is strongly related to the value of the fixed-
threshold. In Figure 8, the compression ratio & the 
value of the threshold (Th) is presented, for the levels 
of decomposition, N=1, 2, 3, 4. Because the binary 
amplitude of the coarse and detail coefficients is 
[–63 63], the highest threshold (10) corresponds 
approximately to the 15% of the highest wavelet 
coefficient. 

CR

Th
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5

4

3

2

1

0
1 2 3 4 5 6 7 8 9 10

N=1

N=2

N=3

N=4

Figure 8. 	 CR & Th.

The data are obtained from the hardware results 
using the Fluke PS420 Multiparameter Patient 
Simulator with bpm=60, 90, 120. The average is 
plotted in each case.

The quality of the compressed signal is measured 
with the Percent-Root-Mean-Square-Difference 
(PRD), according to:

�

PRD

x x

x

i i
i

L

i
i

L

2

1

2

1

∑

∑

( )

( )
=

−
=

=

(8)

Where xi is the original signal from the ECG record, 
xi is the compressed signal and L is the length of 
the signals. In Figure 9, the performance of the 
compression model related to the PRD is presented.

According to the Figures 8 and 9, the compression 
ratio of the proposed system is up to 8 for a threshold 
of 10. It could be slightly better if the PRD is in the 
limit of 4%. Nevertheless it is evident that if PRD 
increases, then CR increases too.
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Figure 9. 	 PRD & Th.

Because the PRD in the entire works is not ever in 
the same range, a parameter that helps to compare 
the tradeoff between the CR and the PRD is the 
Quality Score (QS) [25]. This is the relation between 
the CR and the PRD, represented as:

QS
CR

PRD
= (9)

The higher QS, the hiquer relationship between the 
CR and the PRD. In Figure 10, the QS for the four 
levels of decomposition is presented.

QS

Th

25

20

15

10

5

0
1 2 3 4 5 6 7 8 9 10

N=1

N=2

N=3

N=4

Figure 10. QS & Th.

Now, we compare our work to others algorithms 
of compression of the ECG signals. The results are 
presented in Table 5.

According to Table 5, our systems has better 
CR than [26], [28], but lower than the others. 
Nevertheless, our proposal can be work in real-time 
without units of pre-processing or post-processing. 
The works that used Huffman encoding are not 
suitable for sample-by-sample mode, because 
they need a prior knowledge of the data. This is 

the main difference between our proposal and 
those in the literature.

CONCLUSIONS

This paper describes a modified scheme of the 
convolution one which has the same throughput of 
the lifting scheme, because only the even wavelet 
coefficients are calculated. The maximum frequency 
of operation is higher than in the convolution scheme 
and is similar than in the lifting scheme. Because 
our architecture not needs external memories, the 
system works in sample-by-sample mode. The low 
error of quantization helps to keep the quality of the 
signal, because the experimental values (wavelet 
coefficients) are similar than the theoretical values.
Comparing to others compression models, our 
proposal has similar results in relation to the 
compression ratio, but the QS could be better. 
Nevertheless, the PRD satisfied the requirements of 
clinical applications. This work may improvement 
with a variable quantization of the wavelet 
coefficients.
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