

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript

The version presented in WRAP is the author’s accepted manuscript and may differ from the

published version or Version of Record.

Persistent WRAP URL:

http://wrap.warwick.ac.uk/100301

How to cite:

Please refer to published version for the most recent bibliographic citation information.

If a published version is known of, the repository item page linked to above, will contain

details on accessing it.

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the

University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the

individual author(s) and/or other copyright owners. To the extent reasonable and

practicable the material made available in WRAP has been checked for eligibility before

being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit

purposes without prior permission or charge. Provided that the authors, title and full

bibliographic details are credited, a hyperlink and/or URL is given for the original metadata

page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further

information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/100301
mailto:wrap@warwick.ac.uk

1

FPGA Dynamic and Partial Reconfiguration: A Survey of

Architectures, Methods, and Applications

KIZHEPPATT VIPIN, Nazarbayev University, Kazakhstan

SUHAIB A. FAHMY, University of Warwick, United Kingdom

Dynamic and partial recon�guration are key di�erentiating capabilities of �eld programmable gate arrays
(FPGAs). While they have been studied extensively in academic literature, they �nd limited use in deployed
systems. We review FPGA recon�guration, looking at architectures built for the purpose, and the properties
of modern commercial architectures. We then investigate design �ows, and identify the key challenges in
making recon�gurable FPGA systems easier to design. Finally, we look at applications where recon�guration
has found use, as well as proposing new areas where this capability places FPGAs in a unique position for
adoption.

CCS Concepts: • Computer systems organization → Recon�gurable computing; Embedded systems; •
Hardware → Recon�gurable logic and FPGAs; Recon�gurable logic applications; Methodologies for EDA;

Additional Key Words and Phrases: Field programmable gate arrays, partial recon�guration, dynamic recon-

�guration

ACM Reference Format:

KIZHEPPATT VIPIN and SUHAIB A. FAHMY. 2017. FPGA Dynamic and Partial Recon�guration: A Survey
of Architectures, Methods, and Applications. ACM Comput. Surv. 1, 1, Article 1 (January 2017), 39 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Field programmable gate arrays (FPGAs) have gone from being chips for implementing glue-logic to
platforms for implementing advanced mixed software-hardware systems-on-chip (SOCs). As their
capabilities and sizes have increased, FPGAs have found use in a wide range of domains, where
their reprogrammability o�ers a distinct advantage over �xed application speci�c integrated circuit
(ASIC) implementations. This capability allows hardware designs to be upgraded or re-purposed
after deployment. An even more di�erentiating feature of FPGAs is their dynamic programmability,
whereby their function is changed at runtime in response to application requirements. FPGAs have
also supported partial recon�guration, where only parts of the hardware are modi�ed at runtime,
for over a decade. However, though the recon�gurable computing community has demonstrated
the e�ectiveness of these features, they have failed to �nd favour with a more general audience,
due to a combination of architectural, design, and implementation challenges.
While there have been a number of surveys on recon�gurable computing generally [Compton

and Hauck 2002; Todman et al. 2005], dynamic and partial recon�guration are only touched upon
brie�y. Some previous work discuss tools for partial recon�guration developed by speci�c research
groups [Koch et al. 2012; Platzner et al. 2010], but does not survey the large body of work in this
area. This survey is an attempt to bring together the wide body of work in the speci�c area of
dynamic and partial recon�guration from the perspectives of architectures, tools, and applications,
with a detailed discussion of e�orts to date, and key research challenges standing in the way of
widespread adoption. A detailed survey on these topics serves as a valuable foundation for further

Authors’ addresses: KIZHEPPATT VIPIN, School of Engineering, Nazarbayev University, Astana, Kazakhstan, vipin.
kizheppatt@nu.edu.kz; SUHAIB A. FAHMY, School of Engineering, University of Warwick, United Kingdom, s.fahmy@
warwick.ac.uk.

2017. 0360-0300/2017/1-ART1 $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2017.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1:2 K. Vipin and S. A. Fahmy

research in this area, as the �rst examples of general use in the design approach taken by modern
accelerator platforms emerge.

1.1 Background and Motivation

Conceptually all FPGA devices can be considered as being composed of two distinct layers: the
con�guration memory layer and the hardware logic layer [Becker et al. 2007], as shown in Fig. 1(a).
FPGAs achieve their unique re-programmability and �exibility due to this composition. The hard-
ware logic layer contains the computational hardware resources, including lookup tables (LUTs),
�ip-�ops, digital signal processing (DSP) blocks, memory blocks, transceivers, and others. This
layer also contains the routing resources and switch boxes that allow components to be connected
to form a circuit.

The con�guration memory layer stores the FPGA con�guration information through a binary �le
called a con�guration �le or bitstream. This binary �le contains all the information that determines
the implemented circuit, such as the values stored in the LUTs, initial set and reset status of �ip-�ops,
initialisation values for memories, voltage standards of the input and output pins, and routing
information for the programmable interconnect to enable the resources to form the described
circuit. The function implemented by the hardware logic layer is thus wholly determined by the
values stored in the con�guration memory.

Most modern devices have SRAM based con�guration memory and are hence volatile. To change
the circuit implemented in the FPGA, a user modi�es the contents of the con�guration memory by
loading a new bitstream. This operation is called FPGA con�guration/recon�guration and is generally
performed through external FPGA interfaces such as JTAG, or SelectMap (on Xilinx devices) [Peattie
2009]. The entire con�guration memory is reloaded and the FPGA remains inactive/inaccessible
during this period. FPGAs built using non volatile technologies are not designed to support such
dynamic loading of the con�guration memory.

Partial recon�guration (PR) refers to the modi�cation of one or more portions of the FPGA logic
while the remaining portions are not altered. Although the terms dynamic recon�guration and
partial recon�guration have been frequently used interchangeably in the literature, they can be
di�erent. The PR operation can be static or dynamic, meaning that the recon�guration operation
can occur while the FPGA logic is in a reset state (static) or running (dynamic). It is also not
necessary that all dynamic recon�gurations are partial in nature. For example in context switching

FPGAs, the whole con�guration is changed during recon�guration, but the operation is dynamic.
PR is supported through external FPGA interfaces as well as special internal interfaces such as the
Internal Con�guration Access Port (ICAP) on Xilinx devices [Xilinx Inc. 2010].

1.2 Advantages of Partial Reconfiguration

PR can bring several advantages to FPGA designs. First, the e�ective logic density of the chip can
be increased by time-multiplexing hardware resources between mutually exclusive computations,
thereby allowing a larger application to be contained on a smaller chip. PR also has the bene�t
of reduced recon�guration time compared to a full recon�guration, since this time is directly
proportional to the size of the con�guration �le which in turn is proportional to the area of the
chip being recon�gured. This means recon�guration can be applied in systems with time-critical
requirements. PR is bene�cial in adaptive hardware systems, as they can adapt computation to a
changing environment while continuing to process data.
PR is also useful in scenarios where an interface is required to persist while functionality

changes. Consider an FPGA system interfaced with a host computer via PCI Express (PCIe). A full
recon�guration of the FPGA breaks the communication link, which may even require a host reboot
to re-establish. PR allows the link to be maintained by keeping the interface circuitry active while

ACM Computing Surveys

FPGA Dynamic and Partial Reconfiguration: A Survey 1:3

LUT

LUT

FF

FF

CONFIGURATION MEMORY

HARDWARE LAYER

ROUTING RESOURCES

LOGIC RESOURCES

(a)

Virtual Hardware

Library

Inputs Outputs

Active content

On-chip content

(b)

Fig. 1. (a) Typical FPGA architecture composed of configuration memory and hardware logic layer. (b)

Multi-Context FPGAs increase e�ective logic capacity by using more than one configuration memory plane.

the accelerator portion undergoes recon�guration. PR also has the bene�t of reduced external
memory footprint for con�guration �les since partial con�guration �les are smaller than full
con�guration �les. This can be especially bene�cial for embedded systems with constraints on size,
cost, and power consumption.

1.3 Desired Features of a PR Platform

In considering the state of research in dynamic and partial recon�guration, we set out a set of
desired features that would make the adoption of PR more widespread. These include aspects
of device architecture, design tool support, and run-time system management. An important
architectural property is the supported granularity for recon�guration. Designers may want
to dynamically modify portions from as small as a single LUT up to the entire chip. A large
granularity increases the overhead of the partially recon�gurable area on the chip, while a �ne
granularity supports �exbility, but may entail signi�cant architectural cost. Another bene�cial
feature is support for run-time relocation. This allows the same bitstream to be used to con�gure
a circuit in di�erent locations on the FPGA, much like the virtual to physical memory mapping in
software environments. Recon�guration time should be negligible for an ideal PR system. Long
recon�guration times can outweigh the other advantages provided by PR, since even if the rest of
the system is functioning, waiting for an accelerator to load limits the performance bene�t of the
accelerator. Faster recon�guration would allow accelerators to be loaded and unloaded as fast as
task switching in multi-core processors. The recon�guration operation should be transparent to
the application, such that the system continues with useful work, while recon�guration occurs,
and that code managing the recon�guration is not concerned with implementation details. It is
desirable to have a high-level design tool that automates the mapping of an adaptive application
description at the system level to a speci�c PR implementation, without the need for low level
architecture understanding.
In the subsequent sections we analyse the extent to which FPGA platforms and development

tools support these features as well as discuss applications that exploit the advantages of PR.

2 ARCHITECTURES

Dynamic recon�guration was initially proposed to increase e�ective logic capacity and reduce
recon�guration time. Early on, the limited resource availability in FPGAs was a major constraint
when implementing large designs. Fetching con�guration �les from external memory to recon�gure
over the (external) con�guration ports also resulted in slow recon�guration. Early dynamically
recon�gurable architectures overcame these issues by increasing the number of con�guration
contexts, allowing much faster recon�guration, and e�ectively increasing logic capacity, as shown

ACM Computing Surveys

1:4 K. Vipin and S. A. Fahmy

in Fig. 1(b). These devices were referred to as Context-Switching FPGAs or Multi-Context FPGAs
(MC-FPGAs) [Chong et al. 2005].

For modern FPGAs with multi-million gate logic capacity, lack of resources is no longer the
primary motivation for PR. New driving factors include sharing a single physical device among
multiple users, keeping communication links alive during system recon�guration, and adaptive
applications with varying computational requirements.

2.1 Academic and Non-Commercial Architectures

The development of dynamically recon�gurable architectures dates back to 1995, when Xilinx �led
a patent for an FPGA which can store multiple con�gurations simultaneously [Ong 1995]. In the
initial design, there were two con�guration memory arrays available in the FPGA which could
store di�erent con�guration data. During alternate halves of a clock cycle, switches at the output
of the con�guration memory cells would select the con�guration data stored in the �rst or second
half of the con�guration memory array and intermediate results would be stored in data latches.
At the end of every other cycle, the FPGA would output the results of its function.

This idea was further extended in 1997, with a time multiplexed FPGA based on the Xilinx
XC4000E product family [Trimberger et al. 1997]. Although combinational logic could bemultiplexed
through several con�guration contexts, state storage could not. This work used micro registers to
store the outputs of LUTs and �ip-�ops, with eight con�gurations supported. Recon�guration could
be performed in a single clock cycle, taking about 5 ns. An inactive con�guration plane could be
modi�ed at runtime by loading con�guration data from o�-chip storage. Through a special “RAM”
mode user designs could directly access con�guration memory, allowing self-modifying hardware.
Hence, MC-FPGAs supported dynamic recon�guration, but the granularity of recon�guration was
the entire device.
The main drawback of MC-FPGA architectures was their high power consumption. Due to the

large number of con�guration bits and high switching activity, the power consumption of these
devices was in the tens of Watts, making them unsuitable for many applications. Chong et al.
proposed the recon�gurable context memory (RCM) to tackle this issue [Chong et al. 2005]. RCM
exploits the redundancy and regularity in con�guration bits between di�erent contexts, based on a
previous study that showed that during context switching, less than 3% of the con�guration data
was modi�ed [Kennedy 2003]. Additionally, ferroelectric functional pass-gates are used in RCM to
achieve compactness and lower power. This design claimed to reduce FPGA area to 37% of other
MC-FPGAs and consume much less power.
Another major hurdle to the adoption of MC-FPGAs was the lack of design tools that could

e�ciently map to these platforms. Designs had to be manually partitioned into multiple segments
and mapped to di�erent contexts. Advances in EDA have renewed interest in MC-FPGAs recently
as discussed in Section 2.2.
Another early architecture proposed to support dynamic recon�guration was the Dynamically

Programmable Gate Array (DPGA) [Tau et al. 1995]. Its architecture closely resembles that of an
MC-FPGA but in this case, each LUT and interconnect cell had an associated 4-context memory
implemented using DRAM. The motivation was to overcome slow o�-chip con�guration loading
which would take several milliseconds to complete. DPGAs supported di�erent usage models
with multiple independent functions in di�erent con�gurations [DeHon 1996]. The prototypes
developed had limited logic capacity, low operating frequency, and a lack of tools. Using DRAM for
the con�guration memory also enforced a minimum operating frequency of 5MHz due to DRAM
refresh requirements.
More recently researchers have proposed a new architecture for FPGAs with a single con�gu-

ration plane that can support run-time relocation through PR [Huriaux et al. 2014]. Due to their

ACM Computing Surveys

FPGA Dynamic and Partial Reconfiguration: A Survey 1:5

Four 32-bit

data buses,

one 32-bit

address bus

Cache
MIPS

Crossbar

Configuration

arrays

Control blocks

(a)

User IOs

User IOs

U
ser IO

sU
se

r I
O

s

16 X 16 Tile

4 X 4 Block

Functional Cell

Functional Unit

(b)

Fig. 2. (a) GARP architecture with processor and reconfigurable fabric (b) Xilinx XC6200 architecture.

heterogeneous architecture, run-time circuit relocation is di�cult in modern FPGAs as discussed
in Section 2.2. In this proposed architecture, the hardware layer is logically partitioned into two
(but with a single con�guration plane). The �rst layer, called the homogeneous plane, contains
traditional logic elements such as LUTs and �ip-�ops and associated routing resources, while the
second layer, called the heterogeneous layer, contains heterogeneous resources such as memory
blocks and signal processing blocks and associated routing. Heterogeneous-only long lines are
connected to the homogeneous routing network through switch boxes at horizontal and vertical
channel intersections, allowing a circuit to be moved horizontally at run-time. The drawback of
this architecture is that it leads to an increase in horizontal delay for routing in the homogeneous
plane, and since the positioning of heterogeneous function blocks is not known at place and route
time, it is assumed that such a block is physically located in a position that can be routed to.
GARP was a dynamically recon�gurable architecture, that combined recon�gurable hardware

with a standard MIPS processor [Hauser and Wawrzynek 1997]. The recon�gurable fabric was a
slave compute unit located on the same die as the processor as shown in Fig. 2(a). Loading and
execution on the recon�gurable array was controlled by a programme running on the processor,
and the standard memory hierarchy of the processor was also accessible to the recon�gurable
fabric. Each recon�gurable array was divided into blocks with one block used as control block, and
the others as logic blocks. GARP allowed partial array con�guration down to individual blocks. A
physical implementation of GARP was never made available for practical use. In Section 2.2 we
discuss more recent devices that closely resemble GARP.

Researchers have also explored how novel nano architectures for interconnect and con�guration
memories could be combined with CMOS to o�er higher e�ciency and improved programmability
in next generation devices[DeHon and Wilson 2004; Snider and Williams 2007; Zhang et al. 2009],
though few of these have seen any fabrication.
Recently, work on FPGA overlay architectures has gained some attention in the academic

community. This consists of building a coarse grained architecture on top of an FPGA and targeting
that through design tools [Capalija and Abdelrahman 2013; Jain et al. 2016b]. The architecture is
designed to support a particular domain, and the interconnect can be tailored to the domain to
make it more e�cient [Jain et al. 2016a]. A key bene�t cited by researchers working on overlays
is signi�cantly reduced recon�guration time [Stitt and Coole 2011], since a small number of
registers controlling the coarse grained functional units and routing need to be set to modify the
computed function, rather than a PR bitstream that is setting con�gurations at the bit-level. The
main architectural limitation of overlays is that they can entail signi�cant area and timing overheads

ACM Computing Surveys

1:6 K. Vipin and S. A. Fahmy

and are not as �exible as using the �ne-grained FPGA architecture, though it has been suggested
that PR can be used to switch between a variety of di�erent overlays to overcome this [Coole and
Stitt 2015].

2.2 Commercial Devices Supporting PR

Presently the only two FPGA vendors commercially supporting PR are Xilinx and Altera (now part
of Intel).

2.2.1 Xilinx. Among the major vendors, Xilinx’s FPGAs have supported PR for two decades,
and are hence the most popular devices for these applications. The �rst Xilinx FPGA to support
dynamic partial recon�guration was the XC6200 series [Xilinx Inc. 1996]. This device contained
only a single con�gurable memory plane and had a tiled architecture with each tile divided
into a number of cells containing functional cells. The functional cells were composed of 2:1
multiplexers for combinational logic, a �ip-�op, and routing resources. Using a special interface,
an external processor could access any speci�c functional cell in the FPGA (Fig. 2(b)), and modify
its con�guration, with the con�guration SRAM mapped to the processor address space. Due to
a regular structure with every cell and its associated routing being similar, recon�guration was
simpler with these devices than for modern ones. Run-time circuit relocation was also possible
with such architectures.

PR became more popular with the introduction of the Virtex-II [Xilinx Inc. 2003] and Virtex-II
Pro [Xilinx Inc. 2011a] series of FPGAs from Xilinx. In these devices FPGA primitives are arranged
in a columnar fashion. These primitives include con�gurable logic blocks (CLBs), Block RAMs, and
multipliers. CLBs are the basic logic elements in Xilinx FPGAs, composed of LUTs and �ip-�ops in
two slices. The number of LUTs and �ip-�ops in a slice is device family dependent. A con�guration
binary �le (partial bitstream in Xilinx terminology) can be loaded externally using the SelectMap
or JTAG interfaces. In Virtex devices, Xilinx introduced a new con�guration interface called the
Internal Con�guration Access Port (ICAP). This made it possible to load bitstreams from within
the FPGA fabric. A soft-processor or a custom state machine could fetch con�guration information
from external memory and write to the con�guration memory through the ICAP, thereby allowing
a circuit implemented on the FPGA to modify itself autonomously.
In these devices, the con�guration memory is organised in frames which are 1-bit wide and

extend the whole height of the device – hence the size of a frame is device dependent [Xilinx Inc.
2004a] . A frame does not map to any single hardware resource, but it con�gures a narrow vertical
slice of many physical resources. Con�guration frames are grouped into six di�erent con�guration
columns depending upon their hardware-mapping, called IOB, IOI, CLB, GCLK, BlockRAM, and
BlockRAM Interconnect. IOB columns con�gure the voltage standard, internal pull-up, and other
options for the I/O interfaces. CLB columns program the con�gurable logic blocks, routing, and
most interconnect. BlockRAM columns program the small internal memory blocks.

For Virtex devices, it is necessary to designate at design time the portions of the FPGA that will
undergo PR. These regions are called partially recon�gurable regions (PRRs) and are composed of
several frames. There are several restrictions on the size and shape of PRRs: they must extend the
full height of the device and must align horizontally with a multiple of four slices. These restrictions
can make a design ine�cient in terms of hardware utilisation, but �oorplanning is relatively simple.
Since PRRs extend the full device height, �oorplanning is only concerned with the width of these
regions and so they are more like vertical slots as shown in Fig. 3(a). Runtime circuit relocation is
still relatively easy for such architectures as shown by the Erlangen Slot Machine [Majer et al. 2007].

Since a single PRR hosts multiple circuits at run-time in a time multiplexed manner, every circuit
targeted for the same PRR must have a similar interface to the static (non-PR) region. In order to �x

ACM Computing Surveys

FPGA Dynamic and Partial Reconfiguration: A Survey 1:7

PRR-1 PRR-2 PRR-3

FPGA

(a)

Module Boundary

Signal direction

4 Input CLB

Slices

4 Output CLB

Slices

Reconfigurable

Region

Static

Region

(b)

Fig. 3. (a) Floorplanning of Virtex-II device showing PR regions. (b) A bus macro showing the connectivity

between the static region and a reconfigurable region. The CLB slices to the le� of the module boundary are

implemented in the reconfigurable region and those to the right of are implemented in the static region.

the routing between the static and PR regions, special anchoring logic is necessary. Virtex-II and
Virtex-II Pro devices use internal tri-state bu�ers (TBUFs) to manage this connectivity. To support
run-time circuit relocation, the relative positions of these TBUFs must also match for di�erent PRRs.
The number of TBUFs available on these devices is restricted and their positions �xed, leading to
further restrictions on the size and positions of PRRs.
The Virtex-4 family of FPGAs [Xilinx Inc. 2008] incorporated architectural improvements over

the Virtex-II with better support for PR. TBUFs were replaced by bus macros [Lysaght et al. 2006],
which are constructed out of LUTs as shown in Fig. 3(b). Using LUTs instead of TBUFs for �xing
routing between regions was initially demonstrated by researchers on Virtex-II FPGAs [Huebner
et al. 2004]. Since these could be placed anywhere, as opposed to the �xed locations of TBUFs in
the Virtex-II, this allowed for a more �exible arrangement of connectivity. The size of frames was
also reduced in the Virtex-4 [Xilinx Inc. 2008]. Unlike the Virtex-II, where frame size is dependent
on device size, it is constant for all Virtex-4 devices. Each frame is 1 bit wide and 16 CLBs high and
contains forty-one 32-bit words (1312 bits). The recon�gurable region also no longer needs to span
the full height of the device, but rather must be a height that is a multiple of 16 CLBs. Because of this
modi�ed architecture, the �oorplanning problem is no longer one dimensional but two dimensional.
This has made run-time relocation more di�cult since relocation is possible only between two
PRRs with exactly the same dimensions and resource arrangement. The ICAP interface width was
also increased from 8 to 32 bits, considerably improving recon�guration throughput.

In the Virtex-5 architecture, the entire device is divided into several rows and columns as shown
in Fig. 4(a). A row essentially represents a clock region and device size determines how many there
are. The columns, called blocks, span the entire device height. Each block contains a single type of
FPGA primitive arranged in a columnar fashion. The FPGA is composed of several tiles where a
block and a row intersect: CLB tiles, DSP tiles, and BRAM tiles. Xilinx uses the term recon�gurable

frame to denote these tiles and these are the basic unit for PR. One CLB tile contains 20 CLBs, one
DSP tile contains 8 DSP slices, and one BRAM tile contains 4 Block RAMs. Virtex-6 FPGAs follow
the basic architecture of Virtex-5 FPGAs with a CLB tile containing 40 CLBs, a DSP tile containing 8
DSP slices, and a BRAM tile containing 8 18Kbit Block RAMs. Xilinx 7-series FPGAs (Artix, Kintex
and Virtex-7) also have a similar tile architecture with one CLB tile containing 50 CLBs, and DSP
and BRAM tiles containing 10 DSP slices and 10 18Kbits Block RAMs respectively.

These improved architecture features enable FPGAs to implement more complex circuits as well
as to reduce resource wastage. Designers are now able to de�ne multiple PRRs with varying sizes

ACM Computing Surveys

1:8 K. Vipin and S. A. Fahmy

CLB Tile

DSP Tile

BR Tile

One Frame

C
L
B
B
lo
c
k

D
S
P
B
lo
c
k

B
R
B
lo
c
k

ROW1 TOP

ROW0 TOP

ROW0 BOTTOM

ROW1 BOTTOM

(a)

Fi
xe

d
P

er
ip

he
ra

l C
on

tro
l

ARM
Dual Cortex-A9

On-Chip
Memory

PCAP

Programmable Logic (PL)

General purpose and
High Performance

AXI ports

DRAM Controller

Processing System (PS)

Bus
Interconnect

Flash Controller

(b)

Fig. 4. (a) Xilinx Virtex FPGA architecture (b) Zynq SoC Architecture

with di�erent kinds of resources. On the other hand, all these architectural improvements make
run-time circuit (bitstream) relocation almost impossible using vendor provided tools.

Xilinx supports PR on newer hybrid recon�gurable devices, such as the Xilinx Zynq-7000 SoC too.
The Zynq architecture [Xilinx Inc. 2013a] couples a powerful ARM Cortex A9 processor, standard
communication infrastructure, and an integrated recon�gurable fabric, as shown in Fig. 4(b).
The ARM processor communicates with on-chip memory, memory controllers, and peripheral
blocks through Advanced eXtensible Interface(AXI) interconnect. Together, these hardened blocks
constitute the Processor System (PS). The on-chip PS is attached to the Programmable Logic
(PL) through multiple AXI ports, o�ering high bandwidth between the two key components of
the architecture. The PS processor con�guration access port (PCAP) supports full and partial
(re)con�guration of the PL from the PS. The recon�gurable fabric of the Zynq uses the 7-series
FPGA architecture which can also be partially recon�gured through an ICAP interface within the
PL. Thus the Zynq architecture bears some similarity to the GARP architecture discussed earlier.
The latest Xilinx Ultrascale and Ultrascale+ families of FPGAs also support PR. The major

improvements in these devices are the capability to partially recon�gure resources such as PLLs,
input/output bu�ers, and high-speed transceivers, which was not possible previously [Xilinx Inc.
2016]. These devices introduce a new con�guration access port called the media con�guration
access port (MCAP), which is connected to one of the PCIe hardmacros [Xilinx Inc. 2015]. These
improvements come at the cost of additional recon�guration time overhead. For Ultrascale devices,
the recon�guration process is now composed of two stages. Before loading a new partial bitstream,
the corresponding PR region must be cleaned using a small bitstream. Each PRR requires a separate
cleaning partial bitstream, but the size of this is only about 10% of a normal partial bitstream.

2.2.2 Altera. Altera (now part of Intel) recently began supporting PR on their Stratix-V, Cyclone-
V and Arria-10 series FPGAs. Adaptive logic modules (ALMs) are the basic building blocks in Altera
FPGAs, containing a fracturable LUT with 8 inputs, 4 �ip-�ops (on the Stratix-V), and auxiliary
circuits such as adders and multiplexers. Multiple ALMs are combined to form logic array blocks
(LABs), which are arranged in a columnar fashion in the device. Columns of memory blocks
and variable precision DSP blocks are also present for e�cient circuit implementation. Partial
recon�guration is supported for logic elements, DSP slices, memory blocks, and routing resources.
Other primitives such as PLLs and transceivers support only dynamic con�guration (not using
recon�guration frames) through a special recon�guration port tied to these primitives.

The Stratix-V architecture is similar to that of the Xilinx Virtex FPGAs, with programming frames

being the unit of recon�guration [Altera 2013a]. Similar to the Xilinx Virtex-II, the FPGA is divided

ACM Computing Surveys

FPGA Dynamic and Partial Reconfiguration: A Survey 1:9

P
R
 R

e
g
io

n

Memory

blocks

(a)

Programming

Frame(s)

PRR-1

PRR-2

(b)

Fig. 5. (a) A reconfigurable region in a Stratix-V FPGA with PR region not extending the full FPGA height (b)

Two PR regions sharing the same programming frames

into multiple columns but only a single row. This results in additional restrictions when a PR region
does not span the full device height and contains memory blocks as shown in Fig. 5(a). During
a partial recon�guration operation, the contents of memory blocks outside the PR region but in
the same columns are also recon�gured. To avoid this issue, PR regions should span the entire
device height or memory blocks above and below the PR regions should not be used by static logic
or other PR regions. Altera also uses LUT-based proxy logic for preserving routing between PR
regions and the static region.

Two di�erent PR implementation schemes are possible, depending on the arrangement of recon-
�gurable regions. The SCRUB mode is used when programming frames are not shared between PR
regions. In this mode, the unchanged con�guration bits of the static region are scrubbed back to
their present values. All con�guration bits corresponding to PRRs are overwritten with new data
irrespective of what was previously contained in the region(s).
The two-pass AND/OR recon�guration scheme is used when con�guration frames are shared

among multiple PRRs as shown in Fig. 5(b). In the �rst pass, all the bits in the programming frame
for a column passing through a PRR are ANDed with 0s while those outside the region are ANDed
with 1s. In the second pass, for each frame, new data is ORed with the current value of 0 in the PR
region, and in the static region, bits are ORed with 0s. The main drawback is that the bitstream
size of a PR region using the AND/OR scheme can be twice the size of one using SCRUB mode
since each frame is written twice. Furthermore, to individually con�gure PRRs when regions share
programming frames, multiple variations of bitstreams equal to the Cartesian product of variants of
PR logic (called personas) are required. Since in Xilinx FPGAs, con�guration frames do not extend
the full device height, this limitation exists to a more limited extent as PR boundaries are drawn
along device rows. Since the Altera PR �ow is still new, we may see similar improvements to those
seen in the Xilinx �ow in the coming years.
The new Arria 10 and Arria 10 SoC devices also support PR. The Arria 10 SoC has a similar

architecture to the Xilinx Zynq SoC with an ARM processor system integrated with an FPGA fabric.
For these devices, the FPGA fabric architecture and implementation schemes supported are same
as for Stratix V FPGAs. Altera uses a special IP block called the Partial Recon�guration IP (PR-IP)
to send partial bitstream data into the con�guration memory from external hosts as well as from
the internal PR controller [Altera 2017]. This block supports data widths from 1 bit to 32 bits. It is
also possible to partially recon�gure these devices through a PCIe interface by interfacing a PR-IP
to the PCIe hard macro [Altera 2016a].
The recently announced Altera Stratix 10 architecture includes further architectural changes

that bene�t PR. The overall FPGA architecture is divided into multiple sectors, with each sector

ACM Computing Surveys

1:10 K. Vipin and S. A. Fahmy

having its own con�guration memory and recon�guration infrastructure [How and Atsatt 2016].
Recon�guration is managed through small processors in each sector called secure digital managers
(SDMs), and the bitstream format for each sector is identical. This presents an exciting development
as it opens the door to making bitstreams relocatable within an FPGA more easily, and also allows
for higher recon�guration bandwidth with the prospect of con�guration data being broadcast
across multiple sectors. However, these devices are yet to reach market, and the supported �ows
do not currently exploit these possibilities.

2.2.3 Other Vendors. Other FPGA vendors such as National Semiconductor, Lattice Semicon-
ductor, and Atmel previously supported PR on their FPGA devices. However, this is no longer the
case, partly due to the limited adoption of this technique for practical applications and partly due
to the challenge in providing a robust supported tool�ow. We will however explore how these
alternative architectures integrated PR.
Lattice Semiconductor produced the ORCA series of FPGAs to support PR [Lattice Corp. 2003].

These were coarse-grained FPGA with a grid of programmable logic cells (PLCs), programmable
I/Os, and embedded RAMs (EBRs). Each PLC consisted of a programmable functional unit (PFU),
system level interconnect (SLIC), and routing resources. PR was done by setting a bitstream option
in the previous con�guration sequence that would tell the FPGA not to reset all of the con�guration
RAM during a recon�guration. Then only the con�guration frames to be modi�ed would be
rewritten. Here the recon�guration was partial but static in nature.
The AT40K series of FPGAs from Atmel supported both partial as well as dynamic recon�gu-

ration [Atmel 2013] . The AT40K architecture was a symmetrical array of identical cells except
for bus repeaters spaced between every four cells. At the intersection of each repeater row and
column there was a 32×4 RAM block accessible by adjacent buses. The FPGA con�guration memory
was viewed as a simple memory-mapped address-space and the user had full read/write access to
it. These FPGAs were ideal for building adaptive �lters, variable coe�cient multipliers, etc., but
unsuitable for logic intensive applications due to limited logic capacity.
The National Semiconductor CLAy FPGA family contained a 56×56 array of �ne grained logic

cells [National 1993]. The CLAy logic cell (up to 3 inputs, 2 outputs) implemented a set of simple
logic functions like NOR, AND, NAND, OR, XOR, INV, MUX, Flip Flop and complex functions using
combinations of these [Gokhale and Gomersall 1997]. Each cell had 2 direct connections to each of
the four nearest neighbours, and connections to horizontal and vertical local buses, and each row
could be partially recon�gured using a host processor.
Tabula also produced programmable logic devices that used a technique they called Spacetime

technology [Tabula 2010], similar to the multi-context FPGAs discussed earlier. Logic, memory, and
interconnect resources were dynamically recon�gured up to eight times in each user cycle. The
Spacetime compiler automatically mapped, placed, and routed a user design into the device using
standard VHDL/Verilog inputs and �ows. A major limiting factor of previous context-switching
FPGAs was their power consumption. Tabula claimed to have overcome this through new manu-
facturing techniques, however, exact power consumption measurements for these devices were
never published. Tabula ceased operation in March 2015 [Lipsky 2015].

2.3 Summary

Table 1 compares the architectural features of some of the commercially available FPGAs supporting
PR. There remain several research opportunities related to FPGA architecture design for PR. In
modern commercial FPGAs, PR is an auxiliary feature rather than something around which the
architecture is designed. This means many aspects of PR design are tied to low-level architecture
details requiring signi�cant expertise. Limitations on how the con�guration memory is accessed

ACM Computing Surveys

FPGA Dynamic and Partial Reconfiguration: A Survey 1:11

Table 1. Architectural features of commercial FPGAs supporting PR.

Architecture PR Granularity Circuit Relocation PR Primitive

Xilinx Virtex-5/6/7 One clock region high Very di�cult ICAP

Xilinx Zynq One clock region high Very di�cult ICAP/PCAP

Xilinx Ultrascale One CLB Very di�cult ICAP/MCAP

Altera Stratix-V/Arria-10 One ALM Di�cult PR-IP

Altera Stratix-10 One sector Easy SDM

(e.g. only a single active port) limit recon�guration throughput and prevent parallel PR. Alternative
approaches to organising the recon�guration memory and how it is con�gured could make PR
more e�ective and easier to design for. A �ne con�guration granularity could lead to higher
recon�guration time and too coarse a granularity results in resource wastage. More advanced
architectural PR support could also o�er signi�cant power bene�ts through run time adaptation of
resource usage. The new Altera sector-based architecture could address a number of these issues if
access to its features is provided. Currently no commercial coarse grained FPGA architectures are
available which support PR. Commercial architectures have improved in their support of PR, and
coupled with more advanced tools, this can lead to wider adoption in the long term.

3 DESIGN, IMPLEMENTATION, AND SIMULATION TOOLS

In this section we review design, implementation, and simulation tools for PR systems. We discuss
the steps involved in converting a design speci�cation into a working hardware implementation.
Widespread adoption of PR will depend upon the existence of e�ective tool chains that o�er a high
level view to the designer, while incorporating low-level architecture understanding. We review
approaches from both industry and the research community.

3.1 Vendor PR Design Flows

The tool �ows o�ered by both vendors, Xilinx and Altera, are similar with slight di�erences due to
architectural variations; both require a designer who is pro�cient in low-level FPGA architecture.

3.1.1 Xilinx PlanAhead PR Flow. Xilinx initially o�ered a di�erence-based partial recon�gu-
ration �ow [Eto 2007]. This allowed minor changes, by editing an already placed and routed design
using the FPGA Editor software available as part of the Xilinx ISE software suite. Implementation
tools would then generate a partial bitstream containing only the di�erence between the new and
old designs. This �ow was not scalable to large circuit changes and is no longer supported.

Xilinx later supported PR through a hierarchical module-based design tool called PlanAhead [Xil-
inx Inc. 2013b], with the main steps required shown in Fig. 6(a). Each PR design is composed of a
number of modules, or functional units. All modules are described using a hardware description
language (HDL) or can be pre-synthesised netlists. The hardware design is composed of two parts,
the static region and one or more recon�gurable regions (PRRs). PRRs may contain LUTs, BRAMs,
and DSP slices but cannot contain clock modifying logic such as PLLs and clock bu�ers. The static
region is the portion of the design, which does not change its functionality during system operation.
This usually contains a processor running the recon�guration management software, internal con-
�guration interface, and memory interface modules. PRRs implement the recon�gurable modules,
and can be recon�gured at runtime. A single recon�gurable region can implement many modules

ACM Computing Surveys

1:12 K. Vipin and S. A. Fahmy

HDL HDL HDL HDL

Partitioning

Floorplanning

Place and Route

Bitstream Gen.

Synthesis

Any Editor

XST/Third party

PlanAhead

(a)

PR Design Planning

Identify the PR

design Blocks

RTL Design

Develop personas

Functional simulation

Verified?
No

Generate bitstreams

No

Yes

Yes

Debug the

timing failure

Designate partial blocks

as design partitions

Assign partitions to

LogicLock regions

Create revisions

and compile

Timing met?

(b)

Fig. 6. (a) Xilinx PlanAhead Partial Reconfiguration Flow, (b) Altera�artus Partial Reconfiguration Flow

in a time multiplexed fashion; all recon�gurable modules implemented in the same PRR constitute
a recon�gurable partition.
The �rst design step is to decide on the number of recon�gurable regions and corresponding

module allocation to them (partitioning). Each individual module is synthesised to generate a
corresponding netlist. Floorplanning must then be performed manually to specify the locations and
bounding boxes of PRRs in the FPGA fabric. These regions must be rectangular in shape and should
be aligned to clock region boundaries (tiles). Floorplanning details are stored in the user constraints
�le (UCF) for incorporation in the implementation stage. The designer must have expertise in
low-level architecture details to e�ciently implement the system.
The designer must then determine the valid combinations of modules assigned to the PRRs, to

make up the overall modes of the system; each valid combination is called a con�guration. During
implementation, the static region is implemented only once, with the �rst con�guration used as
a placeholder, and the �nal placement and routing of the static region are preserved for all other
con�gurations. Logic implemented in the static region can use the routing resources (but not LUTs
or �ip-�ops) available in the PRRs but not vice versa. If a recon�gurable module were to use routing
resources in the static region, that would cause glitches during recon�guration. Bus macros play
an important role here in interfacing the static region and PRRs as discussed in Section 2.2. The
tool automatically inserts them and designers have no control over their location.
Finally, the tool generates a full recon�guration bitstream (con�guration �le) as well as partial

bitstreams for each PRR, for each con�guration. This results in full bitstreams for each con�guration
and partial bitstreams corresponding to the Cartesian product of modules assigned to each region.
At run-time, the FPGA is initially con�gured using one of the full bitstreams and later any single
PRR can be recon�gured using a partial bitstream.

3.1.2 Xilinx Vivado PR Flow. From 7-series FPGAs onwards, Xilinx supports PR through the
Vivado Design Suite [Xilinx Inc. 2014]. This �ow is very similar to PlanAhead, but not yet fully
integrated with the GUI-based project �ow. The designs are implemented using the Vivado Tcl
based command �ow or using a combination of Tcl commands and the GUI.
The �rst step is again to synthesis the static and recon�gurable modules separately using

Xilinx tools or third-party synthesis tools. A recon�guration controller (ICAP controller) should
be included in the design if the target FPGA is not a hybrid device such as Zynq SoC. For SoC

ACM Computing Surveys

FPGA Dynamic and Partial Reconfiguration: A Survey 1:13

devices instantiating the ICAP is optional since PR is supported through the PCAP interface in
the processor system. Floorplanning restrictions are the same as for PlanAhead but the 7-series
FPGAs enforce an additional restriction that partition boundaries should not cross interconnect tiles.
Interconnect tiles are special resources that manage routing between di�erent resource columns.
One major improvement in Vivado is in the implementation of anchor logic. Unlike previous tools,
Vivado does not use LUT-based bus macros but rather directly uses interconnect tiles, which are
dedicated routing resources [Xilinx Inc. 2017c]. This helps improve routing e�ciency and thus
timing performance, but makes run-time bitstream relocation even more di�cult.
Since the Xilinx �ows allow static region wires to pass through PRRs, any minor modi�cation

of the static logic requires complete reimplementation of the static region and all PRRs.Using
routing resources in the PRRs can also cause routing congestion for subsequent con�guration
implementation. Meanwhile, restricting the static region from using PRR routing resources could
adversely a�ect overall system timing performance.

3.1.3 Altera PR Flow. The Altera PR �ow is supported through Quartus-II and the newer
Quartus Prime design software [Altera 2013b, 2016b]. This �ow is similar to the PlanAhead �ow
with di�erent nomenclature. Altera refers to con�guration frames as programming frames and calls
con�gurations revisions. Module variations implemented in the same PR region are called personas.

Altera partial recon�guration is based on the revision feature in the Quartus software. The initial
revision is the base revision, where the boundaries of the static region and PRRs are de�ned. From
the base revision, multiple revisions can be created. The PRR boundaries are �xed using LogicLock

assignments in Quartus. LUT-based anchor logic is automatically inserted by the tool to �x the
routing between the static and PR regions. Later the incremental compilation �ow technique is used
to preserve the static region across di�erent revisions. Unlike the Xilinx tool �ow, Quartus creates a
full con�guration �le only for the base revision, with only partial con�guration �les corresponding
to each PRR generated for other revisions. Hence, the FPGA can be initially con�gured only in the
base revision.

Altera FPGAs have a set of restrictions when the height of the region is less than the full FPGA
as discussed in Section 2.2. There are further restrictions when using LUTs in the PRRs to build
memory elements (called LUT-RAMs). LUT-RAMs inside PRRs cannot have an initialisation value
when used in AND/OR con�guration mode. When AND/OR mode is used for designs without
initialised LUT-RAMs, a logic 1 has to be written to all memory locations before recon�guring the
region. Otherwise it causes a con�guration error [Altera 2016b]. Altera also allows static routing
through PRRs , so any modi�cation to the static region requires complete reimplementation of the
static as well as all recon�gurable modules.

3.1.4 Partial Recon�guration Support inVendorOpenCLSoftwareTool-Chains. Newer
FPGA platforms from Intel and Xilinx support implementation of higher level designs using OpenCL
through their SDAccel and FPGA SDK for OpenCL tools [Intel 2017b; Xilinx Inc. 2017a]. Xilinx uses
PR as a way of implementing OpenCL kernels in the FPGA. The kernels use a prede�ned interface
for data communication, such as AXI4. The compiler compiles these kernels for implementation on
a pre-partitioned, pre-�oorplanned FPGA. At run-time, the kernels are loaded by programming
the FPGA over the PCIe interface (which is in the static region). The advantage of these tool �ows
are that they abstract the integration of user-designed accelerators with the host system. A single
PRR is used for kernel implementation, removing the complexity of �oorplanning multiple PRRs.
However, this restricts the granularity to a single monolithic “mode” for the system, limiting the
bene�ts of using PR in an adaptive system.

ACM Computing Surveys

1:14 K. Vipin and S. A. Fahmy

Planning:LStatic/PR,LPRLmoduleLdefinition

resourceLbudgeting,LinterfaceLspecification

Floorplanning

GUI GUI

VHDL
templates

UCF
constraints

XDL
Blockers

static.vhd

static.ucf

synthesis
v

Placement

static_map.ncd

blockerLmerging,Lrouting
bitstreamLassembly

static.ncd static.bit module.bit module.ncd

blockerLmerging,Lrouting
bitstreamLassembly

module_map.ncd

module.vhd

module.ucf

synthesis
v

Placement

VHDL
templates

UCF
constraints

XDL
Blockers

S
ta
ti
c

P
a
r
tia
l

(a)

Configurationb

Specification

Resourcebcalculation

Partitioning

Floorplanning

HardwarebIntegration

PARbandbBitGen

config.b

Manager

Softwarebintegration

Reconfig.b

Controller

Softwarebcompilation

Hardware Flow Software Flow

Adaptation

Specification

Bitstreams Softwarebexecutable

User

Vendorbtools

CoPR

Module

Library

Adaptation

APIs

(b)

Fig. 7. (a) GoAhead PR tool flow [Beckho� et al. 2012]. (b) CoPR for Zynq tool flow showing steps performed

by the user, vendor tools, and the CoPR framework.

3.2 Academic PR Development Tools

In this section we discuss some academic tools developed to support PR. Most of these tools
target Xilinx FPGAs and many use vendor tools for low-level device dependent operations such as
placement and routing and con�guration �le generation.

3.2.1 OpenPR Tool Flow. OpenPR is functionally close to the Xilinx PR design �ow [So-
hanghpurwala et al. 2011]. It relies upon the logic and wiring database and bitstream manipulation
capabilities provided by an open-source FPGA development tool called Torc [Steiner et al. 2011]. The
designer initially creates an XML project �le, specifying the design name, static design �le system
path, path to the constraints �le (UCF), target device name, etc. The Xilinx PlanAhead tool is then
used to manually �oorplan the recon�gurable regions. OpenPR then generates the static design by
generating placement constraints, generating blocker routes to prevent the static region from using
routing resources in the PR regions, and merges the blockers with the static design. Later, the clock
tree routing information from the static design is inserted into the recon�gurable modules. This is
done by manipulating the intermediate �les generated by the Xilinx implementation tools. Finally,
the partial bitstreams are generated with the help of the Xilinx bitstream generation tools.

The major attraction of OpenPR is its availability as an open source development environment.
Since it blocks the static region from using routing resources in the PRRs, it allows them to be
implemented separately, with changes in the static region not necessitating reimplementation of
all PR modules.

3.2.2 GoAhead Tool Flow. GoAhead [Beckho� et al. 2012] also attempts to overcome some of
the limitations of the Xilinx incremental PR design �ow. It also prevents routing resources in PRRs
from being used by the static region, with the aim of supporting module relocation between PRRs.
The overall GoAhead tool �ow is shown in Fig. 7(a). The static and recon�gurable modules are

implemented through independent design �ows. The designer makes an initial plan de�ning the
static parts of the design and the modules that will be recon�gured. Then the design is manually
�oorplanned using a GUI tool and bounding boxes are drawn around PR regions. GoAhead im-
plements the static portion of the design, while masking the PR regions with blocker macros that
occupy all wires inside the PR regions, thereby preventing static nets from crossing PR regions. The
recon�gurable modules are implemented in a similar fashion, where the blocker macros prevent

ACM Computing Surveys

FPGA Dynamic and Partial Reconfiguration: A Survey 1:15

wires crossing from PR regions into the static region. Finally vendor tools are used to generate
partial and full bitstreams from the routed design.
The primary di�erence between GoAhead and OpenPR is that GoAhead uses blocker macros to

control clock signals in the PR regions and uses vendor tools to generate the �nal clock tree. In
OpenPR, the tool adds the clock tree routing without using vendor tools. OpenPR and GoAhead can
help overcome some of the limitations of the vendor �ows, but do not address the high-level/abstract
design issues, and hence require FPGA design expertise. GoAhead has recently been supplemented
with a feature for automatic �oorplanning [Beckho� et al. 2013]. Both these tools manipulate Xilinx
Design Language (XDL) �les to manipulate the placement of blocker macros. Dependence on XDL
is a problem as it has been discontinued in the Vivado design �ow.

3.2.3 CoPR Tool Flow. CoPR is an automated PR tool�ow speci�cally targeting the Zynq
architecture [Vipin and Fahmy 2015], focused on raising the abstraction level for describing par-
tially recon�gurable applications. Many of the manual operations required in the vendor �ow are
automated and low-level FPGA architecture dependent details are abstracted from the designer. It
also abstracts the runtime management of the recon�guration process so that the system designer
need not be aware of the details of the hardware PR implementation. The overall �ow is shown in
Fig. 7(b).
The primary designer inputs to CoPR are the con�guration and adaptation speci�cations. The

con�guration speci�cation details the di�erent valid system con�gurations and the corresponding
library modules present in each con�guration in XML format. The adaptation speci�cation contains
software code for changing con�gurations at runtime. Neither of these references any low-level PR
features, making CoPR accessible to non-experts.
CoPR �rst uses the vendor synthesis tool (XST) to synthesise all modules for the target FPGA

to determine resource requirements. The partitioning step involves determining the number of
recon�gurable regions (PRRs) and allocating modules to them. Later a kernel tessellation approach
is used to generate a �oorplan, resulting in a user constraints �le (UCF) that speci�es the coordinates
of all PRRs. The PR design is then integrated with the ARM processor system in the Zynq with
the help of Xilinx XPS software. The low-level implementation and bitstream generation opera-
tions are performed using the Xilinx command line tools. The software for managing low-level
recon�guration operations is automatically generated by the tool in C programming language, and
later integrated with the high-level adaptation speci�cation using the Xilinx SDK tool-chain. The
ARM processor runs Xilinx’s Standalone operating system and manages recon�guration through a
custom recon�guration controller and an associated driver. The CoPR tool �ow integrates with
Xilinx ISE, XPS, and SDK tools for backend implementation, but is not supported with Vivado.

3.2.4 PaRAT Tool Flow. The Partial Recon�guration Amenability Test (PaRAT) �ow [Kumar
and Gordon-Ross 2015] attempts to bridge between high-level synthesis (HLS) descriptions and PR
implementation. The tool initially analyses Xilinx Vivado HLS code and extracts control and data
dependency information to generate a high-level model of the PR system using its PR modelling
language (PRML) [Kumar and Gordon-Ross 2013]. This is a directed acyclic graph representation of
the system, where nodes model algorithmic constructs and control while edges model control and
data dependency behaviour. The graphs are automatically partitioned to determine the number of
PRRs needed and the module assignment to them in the form of an XML �le. This information can
be then used with the Vivado PR tool�ow to implement the complete system.

3.2.5 OSSS+R Framework. OSSS+R is a SystemC based design methodology enabling algo-
rithmic speci�cation in C/C++, functional simulation, and automated synthesis [Schallenberg et al.
2010, 2009]. The approach uses object-oriented techniques as an abstraction mechanism for PR.

ACM Computing Surveys

1:16 K. Vipin and S. A. Fahmy

Recon�gurable components are modelled as polymorphic objects. A group of objects where each
member is rarely accessed at the same time as other members of the same group is considered
a good candidate for recon�guration. The designer identi�es potential candidates for dynamic
recon�guration, marks them, and observes the e�ects of combining them in a PRR through sim-
ulation. Recon�guration and context switch times are supported through annotations provided
by the designer. Once satis�ed with the simulation, the model can be fed into the Fossy synthesis
tool to generate VHDL for the PRRs. The designer is still required to creating wrapper modules for
each PRR and �oorplan the system manually. The output RTL code is then processed through the
vendor PR implementation tools to place and route and create the �nal bitstreams.

3.2.6 Other PR Supporting Frameworks. There have been other models, tools, and method-
ologies focused on speci�c aspects of PR system design. [Harkin et al. 2004; Luk et al. 1996]. Many
of these have not been publicly released, or rely on hypothetical architectures, and hence have not
gained widespread adoption.
Researchers have proposed the use of general purpose modelling languages such as Uni�ed

Modeling Language (UML) for high-level speci�cation of PR systems [Fuente et al. 2015]. In this
work, RTL speci�cations of hardware modules, testbenches, and implementation constraints (such
as �oorplanning constraints) can be directly interfaced with the model. It allows better design
space exploration, and supports the choice of an optimal partitioning of PR modules. However,
the wrapping of modules in each partition, and �oorplanning must still be done manually. Similar
to CoPR, this modelling supports easy integration of the PR infrastructure with a processor for
run-time management of the system.

The Caronte methodology [Donato et al. 2007] takes a �xed task-graph as input and determines
how to allocate tasks to the regions speci�ed by the designer in order to complete execution of the
application with dynamic loading of tasks. The designer is assumed to have determined how many
regions to use and to have �oorplanned them. Runtime management is done using an embedded
processor.
The GePaRD �ow [Boden et al. 2008] tries to enhance the Xilinx PR �ow with a high-level

synthesis framework. The �ow uses a high-level speci�cation of the PR system as input and
generates both a system model for simulation and a physically-aware architecture description as
input for implementation on the target device using the Xilinx PR design �ow. The design �ow
includes template abstraction, high-level synthesis, and temporal modularisation. The authors do
not specify how the output of the proposed framework can be integrated with the vendor tool�ow
to implement real systems. It targets a virtual architecture that adapts to the recon�guration
mechanisms of a dedicated target device, but this mapping is not explained.
The design framework in [Fahmy et al. 2009] de�nes an adaptive system with two planes. The

data plane implements the data processing, such as the signal processing in a radio, and can be
composed using a high-level tool that stitches together blocks from an IP library. The control
plane implements the management and control functionalities in software. The control plane
recon�gures the data plane as needed, from software code written by an adaptive system designer.
This framework only supports a single recon�gurable region and su�ers from moderate data
throughput due to the low-bandwidth interface between software and hardware.
In [Navas et al. 2013] the authors suggest a design approach where an IP block integrates a

recon�gurable partition along with the required communication and recon�guration infrastructure.
Using prede�ned communication interfaces enables PR regions to host any module whose resource
requirements are satis�ed. This idea is very similar to the Erlangen Slot Machine with the additional
suggestion of a uni�ed software and recon�guration interface to simplify design.

ACM Computing Surveys

FPGA Dynamic and Partial Reconfiguration: A Survey 1:17

PR Control Block

FSM

ready

error

sim_state
done

request

datasim_pr_id

(a)

Persona 1

Persona 2

Persona 3

inputs
Outputs

PR Activate

PR Sel
PR Region IF

PR Logic Wrapper

(b)

CLK

CSB
RDWRB

32
I

32 O

BUSY

ICAP_VIRTEX6
To Config. Memory

(c)

Fig. 8. (a) Altera Arria-10 PR control block [Intel 2017a] (b) Altera PR simulation through spatial multiplexing

of di�erent personas (c) Xilinx ICAP controller.

3.3 PR Simulation

Simulating PR systems is challenging. All vendor-supported simulators are capable of functional and
timing veri�cation of the designs for a particular con�guration (in Xilinx terminology) or revision
(in Altera terminology). But simulating the recon�guration operation itself is not possible as this is
a low-level device operation. Workarounds have been suggested by the vendors to overcome this.
One approach is to create a system that contains all the required modules and simulate di�erent
con�gurations by selecting between them. However, this does not o�er an accurate representation
of the recon�guration process.

3.3.1 Vendor PR Simulation Support. Among the vendors, Altera has better PR simulation
support. The simulation model of the hardware primitive (PR-IP) that loads con�gurations into
the FPGA is shown in Fig. 8(a). Each con�guration �le embeds a unique 32-bit identi�er that is
used to indicate the loaded bitstream on the sim_pr_id port during simulation, while sim_state

indicated whether the operation has completed. The designer creates wrappers for each PR region
by multiplexing di�erent modules (personas) implemented in that region as shown in Fig. 8(b).
The sim_state and sim_pr_id outputs from the PR-IP primitive control these multiplexers. During
simulation, a con�guration �le is injected into the PR-IP and while con�guration is occuring, the
testbanch sets all outputs from the PRR into an unknown state. When con�guration is complete,
the multiplexer control signals are driven by the testbench based on the sim_pr_id which selects
one of the modules speci�ed by the id number.

The hard-macro in traditional Xilinx FPGAs that serves the purpose of writing to the con�guration
memory is the ICAP. It is possible to send actual con�guration �les into the ICAP simulation model
and obtain con�guration status, but this does not simulate actual module switching. The Xilinx
tools do not o�er further support, though it is possible to multiplex modules assigned to the same
region, as in the Altera �ow, but this must all be managed manually.

3.3.2 Academic PR Simulation E�orts. There has been some limited work in the academic
community on simulating PR systems. Since PR is closely associated with the targeted FPGA
architecture, fully modelling it requires modelling of low-level architectural details, which would
be too slow. Another issue is with using the real con�guration �les for simulation. Con�guration
�les are generated as the �nal development step but functional simulation must be completed
before they are generated. The earlier multiplexing approach was proposed in [Luk et al. 1997].
An improved technique called dynamic circuit switching (DCS) was presented in [Lysaght and
Stockwood 1996]. In that work, a recon�guration scheduler oversees the PR operation. The tool
automatically inserts multiplexers at the outputs of mutually exclusive modules by modifying

ACM Computing Surveys

1:18 K. Vipin and S. A. Fahmy

Table 2. Comparison of features supported by di�erent PR tools. # : Operation is fully manual or not

supported. G# : Partial automation or support provided by the tool. Designer input is required to complete the

step, : The step is fully automated by the tool requiring no designer intervention.

Tool H
ig
h
-l
ev
el
sp
ec
.

P
ar
ti
ti
o
n
in
g

F
lo
o
rp
la
n
n
in
g

P
h
y
si
ca
l
im

p
l.

C
ir
cu
it
re
lo
ca
ti
o
n

R
u
n
-t
im

e
m
gm

t.

Xilinx PlanAhead # # G# # #

Xilinx Vivado # # G# G# #

Altera Quartus # # G# # #

Xilinx SDAccel # N/A N/A

Altera OpenCL # N/A N/A

OpenPR # # # G# #

CoPR G# G# # # G#

GoAhead # # G# G# #

Caronte G# G# # # G# #

GePaRD # # # # #

PaRAT # # # #

OSSS+R G# # # # G#

synthesised netlists. Isolation logic is also inserted, which simulates the behaviour or signals from
a PR region as it undergoes recon�guration. During simulation, the recon�guration scheduler
monitors signals from the modules and activates the required multiplexer controls to simulate the
PR operation.
In the above-mentioned approaches, the process of con�guration �les being transferred from

external memory never undergoes functional simulation. The isolation logic, which is inserted
between PRRs and the static region to isolate glitches between them during PR operation is also
not simulated. A more comprehensive approach is the ReSim library [Gong and Diessel 2011],
that proposes a simulation only model of the recon�guration controller (ICAP for Xilinx FPGAs)
and simulation only con�guration �le (SIMB). Like Altera’s work, the SIMB �le contains a unique
identi�er which indicates the circuit being recon�gured. The framework automatically inserts
multiplexers and controls them at run-time based on the outputs of the recon�guration controller. It
is also possible to inject errors during recon�guration to analyse system behaviour. The framework
is written in SystemVerilog, which makes it highly portable across di�erent simulators.

3.4 Summary

Table 2 summarises the features supported by the di�erent PR development and implementation
tools. It is clear that research has sought to address a range of challenges in PR system design,
however, there is no complete framework or tool�ow that addresses the high-level design of PR
systems abstracted away from low level details, and that can be mapped onto real commercial
architectures. In Section 5 we discuss some of the approaches taken to manage the PR process, some

ACM Computing Surveys

FPGA Dynamic and Partial Reconfiguration: A Survey 1:19

of which interact with speci�c tools in this section. The dependency of academic tools on vendor-
speci�c data �les remains a challenge as the tools become obsolete as vendors stop supporting those
�les. Most research work has focused on Xilinx FPGAs to date, though we expect Altera’s recent
support of PR to provide further opportunities. From the discussion in the previous two sections, it
is clear that advances in both FPGA architecture as well as design methodologies/modelling are
key to increasing design productivity for PR-based systems.

4 OVERHEAD REDUCTION TECHNIQUES

The two major overheads associated with PR are resource wastage and recon�guration time. FPGA
resources are wasted, especially in vendor supported tool-�ows, due to the constraints on the shape
and location of PR regions. Recon�guration time overhead corresponds to the time required to
programme the FPGA with one or more partial con�guration �les. Unlike multi-context FPGAs
where recon�guration can happen as fast as in a single clock cycle, modern FPGAs take several
milliseconds or even seconds depending on the con�guration interface, the size of the bitstreams, and
how these are stored and transferred [Xilinx Inc. 2017c]. A detailed analysis of factors in�uencing
recon�guration time and a corresponding cost model is presented in [Papadimitriou et al. 2011].
A major factor restricting the use of PR in online hardware adaptive systems is the runtime of
the vendor implementation tools. It may take hours or even days to implement a PR system from
synthesis through implementation and con�guration generation for the static region and all PRRs.
In addition the need to generate multiple con�guration �les per module for each di�erent possible
region compounds this issue in vendor �ows. In this section we review techniques proposed for
reducing these overheads.

4.1 Partitioning

Determining the number of PRRs to use in a design and how to allocate speci�c modules to
them constitutes the design partitioning phase. Choices made during partitioning can signi�cantly
impact both resource usage and recon�guration time. In vendor PR design �ows, the designer
must manually determine the number of PRRs and corresponding module allocation to them
and hence the granularity of recon�guration. A fundamental approach is that modules that are
mutually exclusive during system execution can be implemented in the same PRR since only one
of them needs to be active at any given time. Conversely, it must be possible to simultaneously
con�gure modules which need to be executed concurrently. It is to be noted whenever a module
is recon�gured, the entire region to which it is assigned must be recon�gured. Hence, while
combining modules into fewer regions can allow the tools to optimize resource usage, it is clear
that recon�guration time can increase dramatically as illustrated in Fig. 9. Furthermore, having
more modules in a region means that region is likely to be con�gured more often.
Much of the work on automated partitioning tries to schedule a graph of dependent tasks

onto a �xed number of regions, minimising runtime [Ayadi et al. 2014; Charitopoulos et al. 2015;
Purgato et al. 2016]. They assume that multiple FPGA regions are used similar to a multi-processor
system with each region processing an independent task. Such assumptions completely ignore the
communication between PR regions which simpli�es implementation but with limited practical
applications. The work in [Ganesan and Vemuri 2000] describes a recon�gurable processor system
with two recon�gurable regions for execution speed up, achieved by overlapping the task execution
in one region with the recon�guration of the other. The task graph is partitioned in such a way
that recon�guration and execution can be carried out concurrently without mutual dependency.

In [Rana et al. 2009], the authors present a method for minimising recon�guration time based on
analysing communication graphs. The algorithm tries to groupmodules which require simultaneous
recon�guration into the same PRR. However, the number of PRRs must be determined by the

ACM Computing Surveys

1:20 K. Vipin and S. A. Fahmy

A1

A2

B1

B

2

A1
B

2

R1 R2

A1

A2

B1

B

2

A1
B

2

R1

> <

conf 1

conf 2

conf 3

Fig. 9. When assigningmodules to separate regions, if some combinations (configurations in Xilinx terminology

or revisions in Altera terminology) do not exist, combining modules into a single region can save area. But

when modules are reconfigured, the entire region to which they are assigned has to be reconfigured. For

example, changing from conf 2 to conf 3 when using two regions requires reconfiguring a small region (R1),

but using a single region requires reconfiguring a much larger area.

designer. In [Jara-Berrocal and Gordon-Ross 2009], the authors assume the number of recon�gurable
regions is �xed and resources are considered to be homogeneous. The number and size of the
regions must be determined by the designer. Simulated annealing is used to assign hardware
modules to the regions while minimising recon�guration time. The number of modules required to
execute a task is assumed to be equal to the number of regions and if any region is unoccupied, an
empty module is assigned to it. Modern FPGAs have a heterogeneous architecture with distributed
DSP and memory blocks, which breaks the homogeneous resource assumption.
The work in [Montone et al. 2010] explores partitioning in more detail. The authors describe a

simulated annealing based algorithm for determining the allocation of modules to regions based
on minimisation of area variance at di�erent time instances. This work considers the latest FPGA
architectures as well as PR requirements. However, it also makes use of �xed task graphs for the
optimisation. Furthermore, the impact on recon�guration time is not accounted for in their method.

In [Vipin and Fahmy 2011], the authors use integer linear programming (ILP) to �nd the optimal
number of PRRs and corresponding module allocation to them. The formulation can be tuned
to either minimise recon�guration time or resource utilisation. Although it provides an optimal
solution, as the number of modules to be allocated increases, run-time and complexity becomes
excessive. A heuristic algorithm based on connectivity graphs, where modules with the highest
probability of concurrent execution are grouped into the same PRRs, was presented in [Vipin and
Fahmy 2013].

4.2 Floorplanning

Floorplanning involves physical partitioning of the FPGA fabric for the optimal placement of
PRRs in order to improve routability, timing, or density. For standard non-PR based FPGA designs,
�oorplanning is generally of less interest and is only used by expert designers to achieve high area
optimisation or timing performance. For static FPGA designs, vendor tools perform timing driven
placement and routing, while �tting the design within the available resources. Further manual
tweaking can help improve performance to meet particularly stringent timing constraints.
Vendor PR tools do not support automatic �oorplanning, and require manual input from the

designer. This requires the designer to have knowledge about low-level physical architecture as well
as the run-time costs associated with PR. Manual �oorplanning based on these factors consumes
a large amount of design time and is cumbersome, often leading to sub-optimal results. This has
contributed to making PR less attractive to system designers, since most FPGA designers never

ACM Computing Surveys

FPGA Dynamic and Partial Reconfiguration: A Survey 1:21

deal with �oorplans for static designs. An intelligent arrangement and allocation of PR regions
can result in reduced area and hence allow designs to �t on smaller devices. It is also important to
note that the implementation tools cannot perform logic optimisation across PRR boundaries, and
hence their locations are important in achieving timing closure.

Although a number of approaches to FPGA �oorplanning have been published, work related to
�oorplanning for PR is less abundant. Traditionally, FPGA �oorplanning is considered as a �xed-
outline �oorplanning problem, as introduced in [Adya and Markov 2001] and further extended
in [Feng and Mehta 2006]. The authors present a resource-aware �xed-outline simulated-annealing
and constrained �oorplanning technique, but the resulting �oorplans may contain irregular shapes,
which are not allowed in supported PR �ows. A study in [Yuan et al. 2005] presents an algorithm
called “Less Flexible First (LFF)”. In order to perform placement, the authors de�ne the �exibility of
the placement space as in a cost function and a greedy algorithm is used to place modules. The
generated �oorplan has only rectangular shapes, but the approach is unsuitable for recent FPGAs
due to their heterogeneous resource layout.
The approach in [Banerjee et al. 2011] is based on slicing trees, and can ensure that a �oorplan

contains only rectangular shapes. Here, the authors assume that the entire FPGA fabric is composed
of a repeating basic tile, which contains all types of Xilinx FPGA resources including CLBs, Block
RAMs and DSP slices. Again, this assumption does not hold for modern FPGAs.
In [Montone et al. 2010], the authors present a recon�guration-aware “�oorplacer”. Their algo-

rithm is based on the more recent Virtex-5 FPGA architecture. The algorithm initially divides a
design into recon�guration regions based on the minimisation of temporal variance of resource
requirements. The �oorplacer tries to minimise area slack using simulated-annealing. In [Singhal
and Bozorgzadeh 2007], a �oorplanning method based on sequence pairs is presented. In this work,
the authors showed how sequence pairs can be used to represent multiple designs together. An
objective function tries to maximise the common areas between designs and simulated-annealing
is used for optimisation.

In [Vipin and Fahmy 2012a], a greedy algorithm called columnar kernel tessellationwas presented.
This technique de�nes kernels, which are basic units for �oorplanning composed of di�erent
resource tiles discussed in section 2.2. Kernels containing di�erent resources types(CLB, CLB-DSP,
CLB-BRAM, etc.) are prede�ned and stored in a library for di�erent FPGA families. These kernels
are replicated vertically to create the required PRRs. This works since the Xilinx FPGA architecture
is uniform in the vertical direction. However, with a greedy algorithm, the quality of the �nal
�oorplan depends upon the initial placements of PRRs.

More recently an optimal �oorplanner based on mixed-integer linear programming (MILP) was
proposed to solve the PR �oorplanning problem [Rabozzi et al. 2014]. Although this technique can
provide improved results, a solution takes several hours for reasonably sized problems and the
search space increases exponentially with the number of regions. The authors propose that the
designer provide an initial solution, which can then be re�ned using heuristics.

4.3 Runtime Placement and Configuration File Manipulations

Researchers have tried to overcome long PR tool chain runtime by enabling runtime placement and
routing and bitstream manipulation techniques to make the implemented logic relocatable. Practi-
cally these techniques have had limited success due to the heterogeneous architecture of modern
FPGAs and limited processing power of embedded processors, which are generally employed for
these online manipulations.
The work in [Bazargan et al. 2000] considered online relocation as an on-line bin-packing

problem . Later, [Lu et al. 2008] introduced an algorithm for online task placement. Both these
approaches assume FPGAs to have a homogeneous architecture, allowing modules to be freely

ACM Computing Surveys

1:22 K. Vipin and S. A. Fahmy

placed in any location. Practically this is not true and connectivity between the modules must
somehow be preserved while relocating them. Due to the complex routing architecture of FPGAs,
this is infeasible.

Another method for online placement and removal of modules on Virtex-II FPGAs was presented
in [Raaijmakers and Wong 2007]. The approach performs the necessary routing to disconnect and
connect modules to others already present in the fabric. Before assigning a new module to a region,
the interface of the previous module is unrouted to prevent any damage. However, this work only
considered designs exclusively using CLBs.
In [Koester et al. 2009], a method is proposed for increasing the placeability of recon�gurable

modules. The authors consider regions consisting of recon�gurable tiles, supporting heterogeneous
resources such as BRAMs and DSP blocks. The algorithm de�nes the set of feasible positions for PR
modules and optimises the regions to minimise the degree of overlap with other regions. Another
method for improving placeability is described in [Becker et al. 2007], targeting Virtex-4 FPGAs.
The technique utilises a compatible subset of resources in non-identical regions, making it possible
to place modules in non-identical regions.
Several tools have been developed for online module placement targeting di�erent FPGAs.

PARBIT (PARtial BIt�le Transformer) was a widely used tool targeting Virtex-E FPGAs [Horta and
Lockwood 2001]. Modules could be relocated by manipulating the contents of a partial con�guration
�le. To generate a new placement, PARBIT read the con�guration frames from the original �le
and copied to the new �le only the con�guration bits related to the new area. It then generated
new values for the con�guration address registers. REPLICA (RElocation Per onLIne Con�guration
Alteration) [Kalte et al. 2005] was another tool targeting Virtex-E FPGAs. It was implemented on
the FPGA itself and performed address manipulation for relocation at run-time. Replica2Pro [Kalte
and Porrmann 2006] was an advanced version supporting Virtex-II and Virtex-II Pro FPGAs. It also
supported relocation of BRAMs and multiplier blocks.
The major disadvantage of online place-and-route tools is their lack of portability. Due to

architectural variations, the tools must be modi�ed for each device, even for di�erent FPGAs in the
same device family. The released low-level details of con�guration frame contents available from
Xilinx has also considerably decreased since the Virtex-5, meaning signi�cant reverse engineering
would be required. Even for earlier FPGAs, researchers used trial and error to �nd the detailed
mapping of individual con�guration bits. Hence, most of these tools support very few FPGAs
belonging to the same family. Support tools such as JBits [Guccione et al. 2004], which provided
JAVA based APIs for bitstream manipulations, are no longer endorsed by Xilinx. When relocating
modules, it is di�cult to ensure the communication infrastructure remains intact. Vendor tools do
not directly support explicit positioning of the bus macros used to �x the communication between
PR and static regions, so even two PRRs with identical sizes and resources may have di�erent
routing to the static region depending on their relative positions. Academic tools such as GoAhead
can be helpful in this regard.

Another possible way to support run-time relocation is to consider it as a requirement at design
time. If multiple regions with the exact same shape and resources are identi�ed at design time,
run time relocation involves only manipulating the frame address �elds in the partial bitstreams.
In [Backasch et al. 2014] an algorithm to identify multiple identical regions in an FPGA with a given
mix of resource requirements is proposed. The ILP-based �oorplanner discussed in Section 4.2
([Rabozzi et al. 2014]) was later extended to provide similar support [Rabozzi et al. 2015]. Here the
�oorplanner reserves multiple PRRs for the same set of PR modules grouped as a single partition.

ACM Computing Surveys

FPGA Dynamic and Partial Reconfiguration: A Survey 1:23

4.4 Configuration File Compression

Con�guration �le (bitstream) compression is a widely used technique for reducing recon�guration
time. In [Pan et al. 2004], the authors exploit redundancies both within a con�guration bitstream
as well as bitstreams of di�erent con�gurations. Their analysis shows that frames con�guring
CLBs have a high degree of mutual similarity. Hu�man encoding is also used to compress the
bitstreams. [Hauck et al. 1998] and [Hauck et al. 1999] present an algorithm to compress bitstreams
for Xilinx XC6200 FPGAs, reducing con�guration time by a factor of 4. The algorithm generates a
new con�guration �le from the original, with fewer con�guration writes by using the wildcard
registers present in FPGAs. These enable con�guration of multiple frames with a single write by
only modifying the frame addresses. [Li and Hauck 2001] and [Haiyun and Shurong 2008] present
algorithms for bitstream compression for Virtex FPGAs using di�erent compression techniques
such as Hu�man coding, Arithmetic coding, and LZ coding, among others.
Bitstream compression is useful in reducing con�guration time when bitstream transfer time

from external memory to the FPGA is considerably higher than the time taken to send the bitstream
to the con�guration memory. Otherwise, since the compressed bitstream must be decompressed
before �nal recon�guration, the e�ective recon�guration time may increase. Presently, bitstreams
are typically stored in high-speed external memory such as DRAM which o�ers higher throughput
than the maximum recon�guration throughput (400MB/s), and hence, bitstream compression
has limited practical application. A better solution for this problem is to increase the speed at
which data is written to the con�guration memory. It is worth noting that FPGA vendors support
custom bitstream compression techniques, which do not require separate decompression before
recon�guration [Xilinx Inc. 2017b]. For example, Xilinx tools use a special register in the ICAP
called the multiple frame write register (MFWR) to con�gure repeating frame data in the bitstream
to di�erent con�guration memory locations. To enable this a special �ag is set during bitstream
generation.

A compression technique speci�cally targeting run-time module relocation is presented in [Beck-
ho� et al. 2014]. Recall that circuits targeted for di�erent PRRs with the same shape and resources
may vary only in frame addresses (see Section 4.3). In this case for each module, only the bitstream
targeted for the �rst PRR is stored in external memory in an uncompressed format. Bitstreams
targeted for other PRRs contain only the di�erence data with reference to the reference bitstream,
and a special reference command indicates where the data is the same. At runtime, the con�guration
controller analyses the bitstream and fetches the con�guration data accordingly. This is bene�cial
when bitstreams are stored in slow external memory such as �ash memories.

4.5 High-Speed Reconfiguration Controllers

One way to reduce recon�guration time is to improve the speed of recon�guration itself. Most
e�orts in this direction have targeted Xilinx FPGAs. The hard-macro in traditional Xilinx FPGAs
that serves the purpose of writing to the con�guration memory is the Internal Con�guration
Access Port (ICAP) as depicted in Fig. 8(c). The ICAP works the same way as the SelectMAP
external con�guration interface but has separate read/write buses [Xilinx Inc. 2011b]. The ICAP
data interface can be set to one of three data widths: 8, 16, or 32 bits. The maximum recommended
frequency of operation for the ICAP is 100 MHz.

The low-level hardware module which is responsible for delivering bitstreams to the ICAP macro
in the required format is called a recon�guration controller. Maximising ICAP throughput has a
signi�cant e�ect on minimising con�guration time. Traditionally, the recon�guration operation
is controlled by a processor, through a vendor-provided recon�guration controller such as the
OPBHWICAP or XPSHWICAP, connected as a slave device to the processor bus [Xilinx Inc.

ACM Computing Surveys

1:24 K. Vipin and S. A. Fahmy

2006, 2010]. Using these vendor-provided controllers gives low throughput in the region of 4.6-
10.1MB/s [Claus et al. 2007a; Liu et al. 2009a]. The ICAP hard macro itself, however, supports
speeds of up to 400MB/s (32 bits at 100 MHz).

In [Gohringer et al. 2010], the authors propose connecting the ICAP controller to the fast simplex
link (FSL) bus of a Microblaze soft processor. The drawback is that the processor becomes consumed
with the task of requesting con�guration data from external memory and sending it over the FSL
bus. The resulting throughput of under 30MB/s remains well below the theoretical limit of the
ICAP.

Using DMA to transfer partial bitstreams from external memory to ICAP has been shown to be
e�ective in increasing throughput [Liu et al. 2009b; Vipin and Fahmy 2012b, 2014b]. Elsewhere,
some have tried to achieve better performance by over-clocking the ICAP primitive [Hansen
et al. 2011]. Since the maximum frequency at which the controller can operate depends upon
manufacturing variability and speci�c placement and routing, this would need to be determined on
a device-by-device basis, which is cumbersome.
Some work on optimised ICAP controllers has often made unrealistic assumptions, such as the

complete con�guration bitstream being stored in FPGA Block RAMs [Liu et al. 2009a]. This is
not practical, as FPGAs have limited memory that is often insu�cient for even a small number
of bitstreams, and these memories are often required for system implementation. Researchers
have also proposed directly streaming partial bitstreams from a host computer through high-speed
communication channels such as PCIe [Vipin and Fahmy 2014a]. This technique is capable of
achieving near theoretical maximum performance and practically unlimited memory for storing
partial bitstreams, since they are not stored in limited on-board memory. The drawback is dedicating
a PCIe controller for just recon�guration if the system has no other need for it, or eating into
valuable PCIe bandwidth if it is used for data transfer aside from PR.

Currently the only custom recon�guration controller for Altera (Stratix V) FPGAs is discussed
in [Xiao et al. 2016]. This controller also contains the logic for decompressing a pre-compressed
bitstream, which further helps to improve recon�guration throughput.

Table 3 summarises the resource consumption and performance of di�erent proposed recon�gu-
ration controllers. In all cases, the maximum theoretical recon�guration speed is 400 MB/s except
for [Xiao et al. 2016] where it is 200 MB/s.

4.6 Summary

Partitioning and �oorplanning for PR remain open to further research. Most existing work does not
perform partitioning in a manner that considers the runtime aspects of PR and does not consider
the latest FPGA architectures. They generally assume a scheduled graph as the input where each
task independently executes in a region. This may not be true for systems where the order in which
module execution happens is known only at run-time. Similarly automatic �oorplanning has yet
to be full tackled. The addition of new hardware macros such as hardened PCIe cores, Ethernet
controllers, and memory controllers, along with further restrictions on routing resources makes
this task more challenging on modern devices.
For lower-level architecture-dependent operations such as placement, and module relocation,

it is more productive to use vendor-provided tools and �nd ways to minimise the impact of their
limitations. Otherwise, the device speci�city of such work limits its appeal and longevity. From
Vivado 2016.1, Xilinx supports a hierarchical design �ow for PR regions, using which a PR module
can be placed and routed independent of the static region. The “stitching” between the PR regions
and the static region can be done at a later stage. Although this �ow does not support module
relocation, this could be an initial step towards it.

ACM Computing Surveys

FPGA Dynamic and Partial Reconfiguration: A Survey 1:25

Table 3. Performance comparison of configuration controllers.

Implementation Resource Utilisation Throughput

FFs LUTs BRAMs (MB/s)

[Liu et al. 2009a] 1083 918 2 235.20

[Claus et al. 2008] NA NA NA 295.40

[Manet et al. 2008] NA NA NA 353.20

[Liu et al. 2009b] 367 336 0 392.74

Xilinx (PLB) [Xilinx Inc. 2010] 746 799 1 8.48

Xilinx (AXI) [Xilinx Inc. 2011a] 477 502 1 9.10

DyRACT [Vipin and Fahmy 2014a] 672 586 8 399.80

PCAP [Vipin and Fahmy 2014b] 0 0 0 128

Xilinx ICAP for Zynq(non-DMA) [Vipin and Fahmy 2014b] 443 296 0 19

Xilinx ICAP for Zynq(with DMA) [Vipin and Fahmy 2014b] 443 296 0 67

ZyCAP [Vipin and Fahmy 2014b] 806 620 0 382

[Xiao et al. 2016] 6804 1701 0 200

The overhead reduction techniques discussed require further investigation for porting to newer
Xilinx and Altera (Intel) FPGAs. The relatively simpler architecture of Altera Stratix 10 and Arria
10 FPGAs may allow more e�ective automatic partitioning and �oorplanning.

5 RUN-TIME MANAGEMENT OF PR SYSTEMS

Another important aspect of PR-based systems is runtime management. This includes deciding
when recon�guration should happen, which regions should be recon�gured, how recon�guration
is achieved, and so on. This can be controlled entirely in software control, using a mix of software
and hardware, or entirely in hardware. The speci�c techniques used depend upon factors such as
required recon�guration performance, the presence or absence of a processor in the overall system
design, and a-priori knowledge of recon�guration sequence.

The vendor tool�ows expect the presence of a processor to manage the recon�guration operation.
They expect the software developer to be aware of the recon�guration process, and only provide
a low-level driver API for the recon�guration controller (such as ICAP, PCAP, etc.) [Xilinx Inc.
2004b]. These APIs are available in the standard header �les of the Vendor software development
suites such as the DevC header �les and associated API for Zynq SoCs). The software responsible
for runtime management (deciding when to recon�gure and how) should send the corresponding
partial bitstream data to the recon�guration controller, usually one word at a time. This process
is not only ine�cient, but also makes software development highly dependent on the hardware
details.

Both Xilinx and Altera o�er low-level con�guration controller macros (ICAP and PR-IP) that can
be interfaced with other hardware. This has allowed the development of custom recon�guration
controllers as discussed in Section 4.5. These controllers can be hardware-only implementations
or with associated software drivers. These custom drivers provide one level of abstraction to
the software developers, allowing them to specify the names of partial bitstreams required for
recon�guration and not their physical memory addresses or sizes. However, the developer must still
know which bitstreams correspond to each region and the combination of region con�gurations
required to achieve a speci�c system functionality (con�guration).

ACM Computing Surveys

1:26 K. Vipin and S. A. Fahmy

5.1 Management of Reconfigurable Tasks

In a large body of work, FPGAs are considered as general compute resources where hardware tasks
can be dynamically loaded and unloaded in a similar way to software tasks being scheduled on a
multi-processor system. A hardware task is a synthesized digital circuit that has been compiled
into a partial bitstream. Most early work in this area assumes FPGAs to be composed of several
homogeneous compute units which can be seamlessly combined together to implement tasks of
varying compute complexity [Lu et al. 2009]. This holds for coarse grained PR-supporting FPGAs
such as the Xilinx XC6200 and dynamic task scheduling has been successfully demonstrated on
them [Brebner 1996]. However, modern �ne grained FPGAs do not directly support relocation
of hardware due to their heterogeneous nature. Since tasks might have to be scheduled to run
in di�erent locations on the FPGA fabric, bitstream relocation capability discussed in Section 4.3
becomes a primary requirement for such systems. Another more practical solution is to �oorplan
the FPGA and generate bitstreams for all tasks at all possible PRRs and store them in a database.
The scheduler can then load the correct bitstream when a task is scheuled to a particular PRR [Char-
itopoulos et al. 2015]. This scheduling can be either online or o�ine and the scheduler can abide by
hard real-time requirements where present.

In [Steiger et al. 2004] a di�erent approach is taken. Here, all the PRRs extend the entire height of
the FPGA and have equal width. They are also arranged so they contain exactly the same number
and kind of resources and follow the same communication architecture. Each hardware task is
implemented using an integer multiple of these slots. Run-time bitstream manipulation is then
used to modify the addresses written to when a task is loaded. The online scheduler uses standard
scheduling algorithms such as �rst �t or best �t to schedule the task into available resource.

Con�guration caching is another run-time management technique suggested for reducing recon-
�guration time. The technique, described in [Li et al. 2000], tries to minimise recon�guration time
in the case of a task sequence that must be executed in a �xed number of PRRs. Simulated annealing
is used to determine the allocation that minimises recon�guration time, leading to reductions by a
factor of 5. Such techniques only apply in the case of using PR to switch tasks in �xed-sequence
applications. For dynamically adaptive systems, we do not know the transitions or recon�guration
sequence up front.

5.2 So�ware/Processor-Based Runtime Management

In these systems software running on a processor (either within the FPGA or in a host machine)
manages the recon�guration operation. At the highest abstraction, the run-time recon�guration
operation is completely transparent to the user. This is the technique used in OpenCL frameworks
where the software developer is completely unaware of the recon�guration operation. At the back-
end the software on the host system automatically loads a partial bitstream when a new kernel is
con�gured on the target FPGA. A similar approach is adopted in high-performance FPGA platforms
such as Maxeler Data�ow Engines [Ciobanu et al. 2013]. Switching between con�gurations is
implemented using conditional statements in software and loading new hardware is done through
an API call. Similar methods that rely on the software designer knowing which bitstream to load
are the most prevalent in the literature.

The CoPR �ow [Vipin and Fahmy 2015] discussed in Section 3.2.3 uses a two layer architecture
for runtime system management. The control plane is implemented in software and refers only
to the set of valid con�guration labels that are de�ned in the system speci�cation. Information
about how con�guration changes map to physical recon�gurations is automated and managed
by the con�guration manager seamlessly. By simply passing the required con�guration name to
the con�guration manager through the API, whatever PR operations are necessary are carried

ACM Computing Surveys

FPGA Dynamic and Partial Reconfiguration: A Survey 1:27

out automatically. This abstraction works well for adaptive systems where the designer is more
concerned about de�ning adaptive behaviour than the low-level details of how this is achieved.
There has been work on integrating run-time recon�guration into operating systems (OSs). In

[Santambrogio et al. 2008], GNU/Linux is extended to support run-time PR. A number of new
system calls, such as module_request, and module_release, are implemented to enable the OS to
manage hardware modules similar to software processes. They also propose di�erent caching and
allocation policies to decide how a PR region should be handled once the allocated module �nishes
execution and to map new module requests to available regions. For low-level recon�guration
operations, dedicated device drivers are integrated with these system calls and user libraries. OS
support provides better software abstraction and code reuse, but may cause signi�cant overhead
due to the multiple software layers involved during recon�guration.

In [Reis and Fröhlich 2009], the authors target OS support for systems implementing di�erence
based PR (discussed in Section 3.1.1). Here the FPGA implements a soft processor (such as a MIPS
processor) and a number of IP cores. The IP cores are controlled by the software running on the
soft processor. The entire FPGA acts as a co-processor to the main processor running in the EPOS
framework [Fohlich and Wanner 2008]. To change the co-processor, the di�erence-based partial
bitstream is sent to the FPGA and the corresponding IP core drivers are loaded. The recon�guration
process is fast since the size of the partial bitstream is relatively small. The challenge is that such
recon�guration changes the position of the soft-processor in the FPGA hence software status is lost.
To overcome this, before recon�guration the MIPS status is saved to the main processor memory
and after recon�guration, the software state is restored by sending this saved information back
to the FPGA. This system is an example of static partial recon�guration, since the FPGA cannot
perform any processing during the recon�guration operation.
A custom FPGA architecture and a custom OS supporting PR is presented in [Wang and Jean

2012]. The OS has standard features such as a scheduler, placer, and deadlock detector. The proposed
FPGA architecture supports dynamic module placement and routing and appears similar to an
overlay on an existing FPGA architecture. In this case the recon�guration is more like a virtual
recon�guration, which involves controlling MUXes for enabling dynamic routing. However, the
proposed system is not mapped to a real architecture.
Another popular operating system developed for PR is ReconOS [Agne et al. 2014], which

o�ers uni�ed operating system services for functions executing in software and hardware and
a standardized interface for integrating custom hardware accelerators. In ReconOS, the target
application is partitioned into threads, which can be either blocks of sequential software or parallel
hardware modules (hardware thread). Each hardware thread is a PR module currently con�gured
in a PRR. Threads can communicate and synchronize using one or more of the established OS
techniques such as message queues or mailboxes, barriers or semaphores, or through mutually
exclusive locks (mutexes). ReconOS thus extends a host operating systemwith support for hardware
threads.

5.3 Custom Hardware Based Runtime Management

In these systems the recon�guration control is completely implemented in hardware through
custom state-machines and recon�guration controllers. Most controllers discussed in Section 4.5
follow this approach. The recon�guration schedule is either pre-stored in internal memory or
dynamically decided by the state machines by observing the surroundings through sensors. The
main advantage of these systems are they can achieve high recon�guration throughput since many
of these controllers support DMA transfer of bitstreams from external memory to the con�guration
interface. But they do not o�er much �exibility as they generally use simple adaptation algorithms
due to the di�culty and resource requirements of implementing complex algorithms in hardware.

ACM Computing Surveys

1:28 K. Vipin and S. A. Fahmy

Hence, the more promising approach has been to interface these low-level hardware management
blocks for low level recon�guration management with higher layer software to abstract these
operations.

5.4 Summary

Further opportunities exist in the area of run-time abstraction for PR systems, including improved
abstraction at the application level, and OS policies and mechanisms for improved e�ciency of the
recon�guration process. The OS frameworks su�er because they are so general, and the overheads
can be signi�cant. A more application centric approach, such as being tied to the requirements of
adaptive systems can allow a lean management approach that still retains a high level of abstraction.
Presently, the research community is exploring how to manage the recon�guration process in the
context of virtualised cloud accelerators, and this is likely to borrow some ideas from existing OS
approaches and integrate these with the speci�c aspects of general cloud frameworks.

6 APPLICATIONS OF PARTIAL RECONFIGURATION

Some applications �t the concept of partial recon�guration well, while others bene�t from improved
e�ciency through the use of PR. A wide range of applications exploiting PR have been discussed
in the literature. These can be classi�ed based on the speci�c features of PR being exploited such as
adaptability, overhead reduction, reliability improvement, and hardware computing.

6.1 Dynamic System Adaptation

PR enables implementation of adaptive hardware systems that can modify their behaviour dynami-
cally at the hardware level to adapt to their surroundings (operating conditions). This is especially
important in applications where the high computational requirements exceed what software can
provide, but custom hardware would be too rigid. A popular application with such adaptability is
software de�ned radio (SDR) [Delahaye et al. 2007], where combining �exibility with hardware
performance makes PR attractive. Flexible implementations of speci�c radio blocks using PR, such
as adaptive �lters, have also been demonstrated [Choi and Lee 2006; Pham et al. 2017]. Cognitive
radios are more advanced SDRs that modify their own functionality at runtime in order to operate
more e�ectively in unknown environments [Delorme et al. 2008]. Adaptation of the modulation
scheme, coding, �lters, and other baseband features at runtime necessitates low power hardware
implementations that are also �exible. PR allows these to be adapted individually rather than have
separate basebands. A generic development frame-work for implementing PR-based cognitive
radios was presented in [Lotze et al. 2009], where the cognitive radio is decomposed into two parts.
The static region comprises the control plane, integrating a processor running Linux, while the
data plane implements baseband components with high computational requirements in a PR region.
This two layer architecture maps well to modern hybrid FPGAs like the Xilinx Zynq, the ARM
processor implements the control plane and the FPGA fabric implements the baseband [Shreejith
et al. 2015]. A multi-standard OFDM transceiver architecture is presented in [Pham et al. 2017]
where a mix of PR modules and parametrised modules is shown to o�er a signi�cant improvement
in recon�guration time compared to all-PR modules in a single PRR or multiple PRRs.
Another example is applications with adaptive data clustering (K-means clustering, support

vector machines (SVMs), etc.) where kernels are selectively modi�ed with multiple kernels hosted
in the same FPGA [Hussain et al. 2012, 2014]. Concurrent implementation of multiple classi�ers
improves overall system performance. PR allows individual classi�ers to be adapted, overcoming
the need for a large number of multiplexed classi�ers.
Researchers have shown the potential of PR in automotive applications, especially in driver

assistance systems [Claus et al. 2007b]. Since vehicles have a very long life, and frequent upgrades

ACM Computing Surveys

FPGA Dynamic and Partial Reconfiguration: A Survey 1:29

are not possible, and given the rapid development of approaches for driver assistance, PR on
FPGAs o�ers the bene�ts of real-time video processing with the �exibility to upgrade in future.
In [Claus et al. 2007c], the authors present a system that uses a PowerPC processor for control
and management, with di�erent image processing functional units implemented as co-processors,
loaded dynamically as needed.

A packet processing system called Field Programmable Port Extender (FPX) also uses PR [Lock-
wood et al. 2001] to dynamically reprogram hardware modules and route individual tra�c �ows in
network applications. The recon�gurable virtual network presented in [Yin et al. 2011] combines
software virtual routers with several partially-recon�gurable hardware virtual routers, that are
con�gured using dynamic recon�guration. Functions such as header veri�cation, checksum veri�-
cation, IP lookup, ARP lookup, and time to live updates, are implemented in PR regions and loaded
as needed. The forwarding table for the virtual router can also be updated via the PCI bus. Using
PR was shown to o�er better �exibility and forwarding performance compared to a �xed hardware
implementation.
Within space applications, [Osterloh et al. 2009] describes the implementation of the System-

on-Chip Wire (SoCWire) architecture on a partially recon�gurable Virtex-4 FPGA. SOCWire is a
well established network-on-Chip protocol in the space community, supporting link initialisation,
credit-based �ow control, detection of link errors, link error recovery, hot-plug ability, and more. In
this work, the SoCWire routing architecture is implemented in a static region and the processing
elements (PEs) are implemented in the PRRs, enabling dynamic loading and unloading of PEs based
on processing requirements.
PR has also been used extensively in high energy physics experiments. It was used in the

Compressed Baryonic Matter experiment conducted at the Facility for Antiproton and Ion Research
in Darmstadt, Germany [Gao et al. 2009]. This experiment used an Active Bu�er Board (ABB)
for receiving, bu�ering, and forwarding hit data. In a high energy physics experiment, since the
surrounding conditions can change, it is required that the ABB functionality change post-installation.
PR was also used in the ALICE (A Large Ion Collider Experiment) experiment conducted in the
CERN Large Hadron Collidor (LHC) [Papadimitriou et al. 2010]. Special photo-detectors were used
to monitor particles generated by the collisions in the LHC. A collection of 120 Xilinx Virtex-4
FX FPGAs with PR were used for �rst level processing and data reduction on the photo-detector
outputs.
Applications that deal with changing environments are ideal candidates for PR systems, as the

varying compute modules can be loaded as needed at runtime. Most of these applications have been
designed in an ad-hoc manner, rather than using a speci�c high-level �ow, but they demonstrate
the applicability of PR in a range of domains.

6.2 System Cost Reduction

PR can help reduce overall system cost by enabling time multiplexing of functionality on a smaller
chip instead of a larger FPGA. Since the energy consumption of smaller chips is generally lower, this
also helps reduce overall cost. PR has been demonstrated to be useful in audio and video processing
applications, such asMP3 decoding [Taghipour et al. 2008] and JPEG encoding [Bouchoux et al. 2004].
As the logic availability in older generation FPGAs was limited, these functions would be temporally
partitioned into smaller tasks to be performed sequentially using subsequent con�gurations of
the same PR region. In [Khraisha and Lee 2010], a PR based scalable H.264/AVC deblocking
�lter architecture is described. The �lter adapts to di�erent user requirements at runtime. A real-
time video processing system using PR is described in [Bhandari et al. 2009], where di�erent
image processing �lters are implemented in the same recon�gurable region to reduce resource
requirements and power consumption. In [Birla and Vikram 2008], the AdaBoost algorithm for

ACM Computing Surveys

1:30 K. Vipin and S. A. Fahmy

human detection is implemented on a Virtex-4 FPGA using PR. Two computationally intensive
tasks, integral image computation and feature extraction/decision, are alternately implemented in
a single PRR, saving signi�cant area.
Other such applications include using the same PR region to implement di�erent stages of

hardware cryptographic functions [Patterson 2000] and time multiplexing di�erent stages of
image/video processing [Bhandari et al. 2009; Krill et al. 2010]. In [Noguera and Kennedy 2007],
the authors propose a method for power saving in networks by changing the implementation
of the same function under di�erent conditions. By closely monitoring environmental changes
(number of users, time of day, distance from the central node, etc.) and adapting the implementation
accordingly, network power consumption was reduced, potentially also improving reliability due
to the lower thermal footprint.

6.3 Reliability

A hurdle in the use FPGAs in space applications is the e�ect of Single Event Upsets (SEUs) [Ceschia
et al. 2003], which are changes of state caused by ions or electro-magnetic radiation striking a
sensitive node in a micro-electronic device such as semiconductor memory. SRAM based FPGAs
are highly vulnerable to SEUs, which can lead to corruption in the con�guration memory and
serious system damage. PR has been proposed as a method for mitigating SEU e�ects on SRAM
based FPGAs since it provides an auxiliary path to the con�guration memory. In [Bolchini et al.
2007a,b], the authors partition the FPGA into a number of regions in order to isolate SEU errors,
then apply duplication with comparison to ensure correct computation. Once an error is detected,
that region is recon�gured. Another simple method to overcome SEUs using PR is con�guration
scrubbing [Heiner et al. 2009]. Here, the con�guration data is stored in a radiation hardened
memory and the con�guration controller recon�gures portions of the FPGA using this memory
periodically, called blind scrubbing. Since the con�guration operation is glitchless, this does not
impact continuing operation. In a more advanced method, the con�guration controller reads data
from the FPGA and detects the presence of an error and writes back con�guration data only if
an error is present. Advanced SEU mitigation using both PR as well as traditional triple modular
redundancy (TMR) methods have also been suggested [Carmichael 2000, 2006].
Researchers have also proposed enabling redundancy in automotive electronics through PR

to improve reliability [Shreejith et al. 2013]. Here redundant electronic control units (ECUs) are
implemented in PR regions, and whenever an error condition is detected, the corresponding region
is recon�gured to recover from the error, while a redundant ECU with reduced performance acts
as a backup. PR has also been proposed for improving the security of automotive systems at the
network controller level [Shreejith and Fahmy 2015]. In this work, the network controller is not
loaded onto a network node until the hardware and software checksums are con�rmed as being
valid, thereby ensuring that tampered with nodes cannot access the network.

6.4 Computing Systems

Perhaps the most generalised use of PR is as a mechanism for integrating accelerator hardware
within general purpose computing systems. PR here serves the purpose of integrating adaptable
hardware with �xed compute interfaces. The dynamic instruction set computer (DISC) [Wirthlin
and Hutchings 1995] supports demand-driven modi�cation of its instruction set. Each instruction
is implemented as an independent circuit module, and these are paged into hardware in real-time
as dictated by the application. Hardware limitations are eliminated by replacing unused instruction
modules with usable instructions at run-time. The concept of high-performance recon�gurable
computing has also been proposed [El-Araby et al. 2007]. Here, the FPGA takes on a signi�cant

ACM Computing Surveys

FPGA Dynamic and Partial Reconfiguration: A Survey 1:31

portion of a large scienti�c application, with PR allowing the fabric to be used by di�erent compu-
tational steps at runtime, as in the case of system cost reduction just discussed, but in this case, the
applications are too large to �t on a single FPGA.

In [Steiner 2008], autonomous computing systems were discussed, with placement and routing
implemented on the FPGA fabric itself, allowing the FPGA to create new circuit bitstreams, for
self-modifying hardware. The main challenge is the logic overhead of implementing these tools
and the slow speed of creating new bitstreams.
An emerging application of PR is in accelerated cloud computing [Byma et al. 2014]. Microsoft

has already presented a comprehensive demonstration of the bene�ts of FPGAs in the datacenter
applied to Bing search [Putnam et al. 2014], although published implementations do not use PR.
PR can extend this approach to allow integration of custom hardware accelerators that can be
dynamically changed at runtime. PR allows virtualisation of a single FPGA device into multiple
virtual FPGAs by hosting multiple accelerators concurrently in di�erent PR regions [Fahmy et al.
2015]. Here each PR region acts as a virtual FPGA (vFPGA) on a commercial FPGA development
board. The required drivers and the virtualisation environment (hypervisor) run on server machines
hosting the FPGA boards. Work in this area is gaining signi�cant attention. [Kachris and Soudris
2016] provides a comprehensive survey on FPGA based hardware accelerators for cloud computing.
FPGAs in general o�er high performance in neural network implementations as demonstrated

by Chinese search engine company, Baidu [Wirbel 2014]. But many of these applications require
adaptation of the inference computation to the task at hand. [Torresen et al. 2008] presents an on-
line evolvable pattern recognition system, where the classi�cation module is dynamically evolved
using PR. Here a processor con�gures a PR region with di�erent classi�cation modules to evaluate
the input pattern.

As discussed in Section 3.1.4, the OpenCL compute framework has been ported to FPGA platforms.
PR allows dynamic loading of compute kernels as needed into a single PR region at runtime.
Virtual accelerators for cloud computing and OpenCL integration are perhaps the most promising
applications for PR in the near future.

6.5 Summary

As evident from the discussion, PR has demonstrated its applicability across a range of application
domains. Many of these have been demonstrated in a research environment or only as prototype
models. As discussed in Sections 2 and 3, hardware expertise requirements, constraints due to
device architectures, and limited tool support have limited more widespread adoption in the past.
However, we are now seeing a renewed interest in hardware virtualisation, with the vendors

playing an important part in facilitating this with better architectures and tools [Intel 2017b; Xilinx
Inc. 2017a]. It remains the case, however, that these tools address the computing systems integration
aspect of PR, rather than the more general adaptive systems idea. Recent improvements such as the
direct interfacing between PCIe and recon�guration controller in Xilinx MCAP and the sector-based
architecture of the Altera Stratix 10 promise to improve support further. Further architectural
improvements will be necessary. These include more built-in hard macros (including memory
controllers), improving the relative positions of these hard macros (PCIe, Ethernet, etc.) to maximise
the area available for PRRs, and increasing the number of recon�guration controllers and their
recon�guration speed.

7 CONCLUSIONS AND FUTURE DIRECTIONS

PR has evolved signi�cantly over recent years, and found use in a diverse range of applications. The
design of PR systems remains di�cult, and hence, only accessible to FPGA experts. Many published
techniques for overcoming the limitations of vendor tools have slowly become obsolete, as a result

ACM Computing Surveys

1:32 K. Vipin and S. A. Fahmy

of the increasing heterogeneity of modern devices and less open access provided by vendors. Since
many techniques are also heavily tied to speci�c architectures, with their evolution, these tools
can become unusable. As a result of these di�culties, most systems that use PR at present must be
designed at a low level with detailed hardware design expertise required.

The emerging interest in using FPGAs in the datacenter represents the �rst widespread use of PR
in deployed systems, and there remain numerous challenges to fully virtualise FPGA resources using
PR. The trends towards more autonomous systems in areas such as automotive, communication,
and aerospace applications also presents an opportunity well-suited to PR system design. To truly
bring PR system design into the mainstream, we believe there are a number of research challenges
in need of attention:

• At the architecture level, how to better support the idea of multiple loadable accelerators
with easy relocation and recon�guration, particularly on commercial devices.
• In methods, how to bring together the strong body of research done to date to overcome the
limitations of existing �ows, and abstracting away the hardware aspects through automation
from high-level descriptions.
• In frameworks and applications, �nding better application-oriented ways of describing
adaptive systems that can be automatically mapped to PR implementations.
• At the management level, improved abstraction to allow loading and unloading of new
con�gurations similarly to dynamic loading and unloading of software modules.
• Exploring how autonomously self-adaptive systems can be built that combine recon�guration
capability with intelligence and the ability to adapt bitsream capabilities.

This article has thoroughly reviewed all aspects of dynamic and partial recon�guration in the
literature to present the reader with a structured overview of the research to date and pose a number
of challenges we believe stand in the way of more widespread adoption of PR. We are con�dent
that with renewed interest in this area, these challenges will be addressed by the community in a
way that �nally brings PR to the mainstream.

REFERENCES

S.N. Adya and I.L. Markov. 2001. Fixed-outline �oorplanning through better local search. In Proceedings of ACM/IEEE

International Conference on Computer Design. 328 – 334.
A. Agne, M. Happe, A. Keller, E. LÃĳbbers, B. Plattner, M. Platzner, and C. Plessl. 2014. ReconOS: An Operating System

Approach for Recon�gurable Computing. IEEE Micro 34, 1 (Jan 2014), 60–71.
Altera. 2013a. Design Planning for Partial Recon�guration. Altera.
Altera. 2013b. Quartus II Handbook Version 13.1. Altera.
Altera. 2016a. Arria 10 CvP Initialization and Partial Recon�guration over PCI Express User Guide.
Altera. 2016b. Quartus Prime Standard Edition Handbook. Altera.
Altera. 2017. ug-partrecon : Partial Recon�guration IP Core.
Atmel. 2013. AT40K05, AT40K10, AT40K20, AT40K40 Datasheet.
Ramzi Ayadi, Bouraoui Ouni, and Abdellatif Mtibaa. 2014. Integrated temporal partitioning and partial recon�guration

techniques for design latency improvement. Evolving Systems 5, 2 (01 Jun 2014), 133–141.
R. Backasch, G. Hempel, S. Werner, S. Groppe, and T. Pionteck. 2014. Identifying homogenous recon�gurable regions in

heterogeneous FPGAs for module relocation. In Proceedings of International Conference on ReConFigurable Computing

and FPGAs (ReConFig14). 1–6.
P. Banerjee, M. Sangtani, and S. Sur-Kolay. 2011. Floorplanning for partially recon�gurable FPGAs. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems (TCAD) 30, 1 (Jan. 2011), 8–17.
K. Bazargan, R. Kastner, and M. Sarrafzadeh. 2000. Fast Template Placement for Recon�gurable Computing Systems. IEEE

Design and Test of Computers 17, 1 (Jan 2000), 68–83.
T. Becker, W. Luk, and P.Y.K. Cheung. 2007. Enhancing Relocatability of Partial Bitstreams for Run-Time Recon�guration.

In Proceedings of IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM).
C. Beckho�, D. Koch, and J. Torresen. 2012. GoAhead: A Partial Recon�guration Framework. In Proceeding of IEEE

International Symposium on Field-Programmable Custom Computing Machines (FCCM). 37–44.

ACM Computing Surveys

FPGA Dynamic and Partial Reconfiguration: A Survey 1:33

C. Beckho�, D. Koch, and J. Torresen. 2014. Portable module relocation and bitstream compression for Xilinx FPGAs. In
Proceedings of International Conference on Field Programmable Logic and Applications (FPL).

C. Beckho�, D. Koch, and J. Torreson. 2013. Automatic �oorplanning and interface synthesis of island style recon�gurable
systems with GOAHEAD. In Proceedings of International Conference on Architecture of Computing Systems(ARCS). Springer
Berlin Heidelberg, 303–316.

S. U. Bhandari, S. Subbaraman, S. Pujari, and R. Mahajan. 2009. Real Time Video Processing on FPGA Using on the Fly
Partial Recon�guration. In Proceedings of International Conference on Signal Processing Systems (ICSPS). 244–247.

M. Birla and K.N. Vikram. 2008. Partial Run-time Recon�guration of FPGA for Computer Vision Applications. In Proceedings

of IEEE International Symposium on Parallel and Distributed Processing (IPDPS).
M. Boden, T. Fiebig, M. Reiband, and P. Reichel. 2008. GePaRD - A High-Level Generation Flow for Partially Recon�gurable

Designs. In Proceedings of IEEE Computer Society Annual Symposium on VLSI (ISVLSI).
C. Bolchini, A. Miele, and M. D. Santambrogio. 2007a. TMR and Partial Dynamic Recon�guration to mitigate SEU faults in

FPGAs. In Proceedings of IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT).
C. Bolchini, D. Quarta, and M. D. Santambrogio. 2007b. SEU Mitigation for SRAM-Based FPGAs through Dynamic Partial

Recon�guration. In Proceedings of ACM Great Lakes symposium on VLSI.
S. Bouchoux, E. Bourennane, and M. Paindavoine. 2004. Implementation of JPEG2000 arithmetic decoder using dynamic

recon�guration of FPGA . In Proceedings of International Conference on Image Processing (ICIP).
G. Brebner. 1996. A virtual hardware operating system for the Xilinx XC6200. Springer Berlin Heidelberg, Berlin, Heidelberg,

327–336.
S. Byma, J. G. Ste�an, H. Bannazadeh, A. Leon-Garcia, and P. Chow. 2014. FPGAs in the cloud: Booting virtualized

hardware accelerators with OpenStack. In Proceedings of the IEEE International Symposium on Field-Programmable Custom

Computing Machines (FCCM). 110–116.
D. Capalija and T. S. Abdelrahman. 2013. A high-performance overlay architecture for pipelined execution of data �ow

graphs. In Proceedings of the International Conference on Field Programmable Logic and Applications (FPL).
C. Carmichael. 2000. XAPP216: Correcting Single-Event Upsets Through Virtex Partial Con�guration. Xilinx Inc.
C. Carmichael. 2006. XAPP197: Triple Module Redundancy Design Techniques for Virtex FPGAs. Xilinx Inc.
M. Ceschia, M. Violante, M. Sonza Reorda, A. Paccagnella, P. Bernardi, M. Rebaudengo, D. Bortolato, M. Bellato, P. Zambolin,

and A. Candelori. 2003. Identi�cation and Classi�cation of Single-Event Upsets in the Con�guration Memory of
SRAM-Based FPGAs. IEEE Transactions on Nuclear Science 50, 6 (Dec. 2003), 2088–2094.

George Charitopoulos, Iosif Koidis, Kyprianos Papadimitriou, and Dionisios Pnevmatikatos. 2015. Hardware Task Scheduling
for Partially Recon�gurable FPGAs. Springer International Publishing, Cham, 487–498.

C.S. Choi and H. Lee. 2006. An Recon�gurable FIR Filter Design on a Partial Recon�guration Platform. In Proceedings of

Communications and Electronics (ICCE).
W. Chong, S. Ogata, M. Hariyama, and M. Kameyama. 2005. Architecture of a Multi-Context FPGA Using Recon�gurable

Context Memory. In Proceedings of IEEE International Parallel and Distributed Processing Symposium (IPDPS).
C. B. Ciobanu, D. N. Pnevmatikatos, K. D. Papadimitriou, and G. N. Gaydadjiev. 2013. FASTER Run-time Recon�guration

Management. In Proceedings of ACM International Conference on Supercomputing (ICS ’13). ACM, 463–464.
C. Claus, F. H. Muller, J. Zeppenfeld, and W. Stechele. 2007a. A new framework to accelerate Virtex-II Pro dynamic partial

self recon�guration. In Proceedings of IEEE International Symposium on Parallel & Distributed Processing, Workshops and

Phd Forum (IPDPSW).
C. Claus, W. Stechele, and A. Herkersdorf. 2007b. Autovision - A Run-time Recon�gurable MPSoC Architecture for Future

Driver Assistance Systems. Information Technology 49 (2007), 181–186.
C. Claus, J. Zeppenfeld, F. Muller, and W. Stechele. 2007c. Using Partial-Run-Time Recon�gurable Hardware to accelerate

Video Processing in Driver Assistance System. In Proceedings of Design, Automation & Test in Europe Conference &

Exhibition (DATE).
C. Claus, B. Zhang, W. Stechele, L. Braun, M. Hubner, and J. Becker. 2008. A multi-platform controller allowing for maximum

Dynamic Partial Recon�guration throughput. In Proceedings of International Conference on Field Programmable Logic and

Applications (FPL). 535 – 538.
K. Compton and S. Hauck. 2002. Recon�gurable computing: a survey of systems and software. ACM Computing Surveys

(CSUR) 34, 2 (June 2002), 171–210.
J. Coole and G. Stitt. 2015. Adjustable-cost overlays for runtime compilation. In Proceedings of the International Symposium

on Field-Programmable Custom Computing Machines (FCCM). 21–24.
A. DeHon. 1996. DPGA Utilization and Application. In Proceedings of ACM/SIGDA International Symposium on FPGAs.
A. DeHon and M. J Wilson. 2004. Nanowire-based sublithographic programmable logic arrays. In Proceedings of the

ACM/SIGDA International Symposium on Field Programmable Gate Arrays (FPGA). 123–132.
J.P. Delahaye, J. Palicot, C. Moy, and P. Leray. 2007. Partial Recon�guration of FPGAs for Dynamical Recon�guration of a

Software Radio Platform. In Proceedings of IST Mobile and Wireless Comms. Summit.

ACM Computing Surveys

1:34 K. Vipin and S. A. Fahmy

J. Delorme, J. Martin, A. Nafkha, C. Moy, F. Clermidy, P. Leray, and J. Palicot. 2008. A FPGA partial recon�guration design
approach for cognitive radio based on NoC architecture. In Proceedings of International IEEE Northeast Workshop on

Circuits and Systems and TAISA Conference. 355–358.
Alberto Donato, Fabrizio Ferrandi, Massimo Redaelli, MarcoDomenico Santambrogio, and Donatella Sciuto. 2007. Caronte:

A methodology for the Implementation of Partially dynamically Self-Recon�guring Systems on FPGA Platforms. In
VLSI-Soc: From Systems To Silicon. Vol. 240. Springer US, 87–109.

E. El-Araby, I. Gonzale, and T. El-Ghazawi. 2007. Performance bounds of partial run-time recon�guration in high-Performance
recon�gurable computing. In Proceedings of International Workshop on High-Performance Recon�gurable Computing

Technology and Applications (HPRCTA).
E. Eto. 2007. XAPP290: Di�erence-Based Partial Recon�guration. Technical Report. Xilinx Inc.
S.A. Fahmy, J. Lotze, J. Noguera, L. Doyle, and R. Esser. 2009. Generic Software Framework for Adaptive Applications on

FPGAs. In Proceedings of IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM). 55–62.
S.A. Fahmy, K. Vipin, and S. Shreejith. 2015. Virtualized FPGA Accelerators for E�cient Cloud Computing. In Proceedings of

IEEE International Conference on Cloud Computing Technology and Science, , Vancouver, Canada. 430–35.
Y. Feng and D.P. Mehta. 2006. Heterogeneous �oorplanning for FPGAs. In Proceedings of International Conference on VLSI

Design.
A.A. Fohlich and L. F. Wanner. 2008. Operating System Support for Wireless Sensor Networks. Journal of Computer Science

4, 4 (2008), 272–281.
D. De La Fuente, J. Barba, X. Pena, J. C. Lopez, P. Penil, and P. P. Sanchez. 2015. Building a dynamically recon�gurable

system through a high development �ow. In Proceedings of Forum on Speci�cation and Design Languages (FDL).
S. Ganesan and R. Vemuri. 2000. An integrated temporal partioning and partial recon�guration technique for design latency

improvement. In Proceedings of Design, Automation and Test in Europe (DATE). 320–325.
W. Gao, K. Kugel, R. Manner, N. Abel, N. Meier, and U. Kebschull. 2009. DPR in high energy physics. In Proceedings of

Design, Automation & Test in Europe Conference & Exhibition (DATE).
D. Gohringer, J. Noguera, and J. Becker. 2010. Fast dynamic and partial recon�guration data path with low hardware

overhead on Xilinx FPGAs. In Proceedings of IEEE International Symposium on Parallel & Distributed Processing, Workshops

and Phd Forum (IPDPSW).
M. Gokhale and D. Gomersall. 1997. High level compilation for �ne grained FPGAs. In Proceedings of IEEE Symposium on

Field-Programmable Custom Computing Machines (FCCM). 165 – 173.
L. Gong and O. Diessel. 2011. ReSim: A reusable library for RTL simulation of dynamic partial recon�guration. In Proceeding

of International Conference on Field-Programmable Technology. 1–8.
S. Guccione, D. Levi, and P. Sundararajan. 2004. JBits: Java based interface for recon�gurable computing. Technical Report.

Xilinx Inc.
G. Haiyun and C. Shurong. 2008. Partial Recon�guration Bitstream Compression for Virtex FPGAs. In Proceedings of

Congress on Image and Signal Processing (CISP).
S. Gimle Hansen, D. Koch, and J. Torresen. 2011. High Speed Partial Run-Time Recon�guration Using Enhanced ICAP Hard

Macro. In Proceedings of IEEE International Symposium on Parallel and Distributed Processing Workshops and Phd Forum.
J. Harkin, T.M. Mcginnity, and L.P. Maguire. 2004. Modeling and optimizing run-time recon�guration using evolutionary

computation. ACM Transactions on Embedded Computing Systems (TECS) 3, 4 (Nov. 2004), 661–685.
S. Hauck, Z. Li, and E. Schwabe. 1998. Con�guration Compression for the Xilinx XC6200 FPGA. In Proceedings of IEEE

Symposium on FPGAs for Custom Computing Machines (FCCM).
S. Hauck, Z. Li, and E. Schwabe. 1999. Con�guration compression for the Xilinx XC6200 FPGA. In Proceedings of IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems.
J.R. Hauser and J. Wawrzynek. 1997. Garp: a MIPS processor with a recon�gurable coprocessor. In Proceedings of IEEE

Symposium on Field-Programmable Custom Computing Machines (FCCM).
J. Heiner, B. Sellers, M. Wirthlin, and J. Kalb. 2009. FPGA Partial Recon�guration via Con�guration Scrubbing. In Proceedings

of International Conference on Field Programmable Logic and Applications ((FPL).
E.L. Horta and J.W. Lockwood. 2001. PARBIT: A Tool to Transform Bit�les to Implement Partial Recon�guration of FIeld

Programmable Gate Arrays (FPGA). Washington University.
D. How and S. Atsatt. 2016. Sectors: Divide & Conquer and Softwarization in the Design and Validation of the Stratix-10

FPGA. In Proceedings of IEEE International Symposium on Field-Programmable Custom Computing Machines (FCCM).
M. Huebner, T. Becker, and J. Becker. 2004. Real-time LUT-based network topologies for dynamic and partial FPGA

self-recon�guration. In Proceeding of Symposium on Integrated Circuits and Systems Design. 28–32.
C. Huriaux, O. Sentieys, and R. Tessier. 2014. FPGA Architecture Support for Heterogeneous, Relocatable Partial Bitstreams.

In Proceedings of International Conference on Field Programmable Logic and Applications (FPL).
H.M. Hussain, K. Benkrid, A. Ebrahim, A.T. Erdogan, and H. Seker. 2012. Novel Dynamic Partial Recon�guration Im-

plementation of K-means Clustering on FPGAs: Comparative Results with GPPs and GPUs. International Journal of

ACM Computing Surveys

FPGA Dynamic and Partial Reconfiguration: A Survey 1:35

Recon�gurable Computing (IJRC), Article 1 (Jan. 2012), 15 pages.
H. Hussain, K. Benkrid, and H.Seker. 2014. Novel dynamic partial recon�guration implementations of the support vector

machine classi�er on FPGA . Turkish Journal of Electrical Engineering & Computer Sciences (2014), 3371–3387. Issue 24.
Intel. 2017a. UG-20066 : Partial Recon�guration Solutions IP User Guide.
Intel. 2017b. UG-OCL002 Intel FPGA SDK for OpenCL: Programing Guide.
A. K. Jain, X. Li, P. Singhai, D. L. Maskell, and S. A. Fahmy. 2016a. DeCO: A DSP block based FPGA accelerator overlay with

low overhead interconnect. In Proceedings of the International Symposium on Field-Programmable Custom Computing

Machines (FCCM). 1–8.
A. K. Jain, D. L. Maskell, and S. A. Fahmy. 2016b. Throughput oriented FPGA overlays using DSP blocks. In Proceedings of

the Design, Automation and Test in Europe Conference(DATE). 1628–1633.
A. Jara-Berrocal and A. Gordon-Ross. 2009. Runtime Temporal Partitioning Assembly to Reduce FPGA Recon�guration

Time. In Proceedings of the International Conference on Recon�gurable Computing and FPGAs (ReConFig).
C. Kachris and D. Soudris. 2016. A survey on recon�gurable accelerators for cloud computing. In Proceedings of International

Conference on Field Programmable Logic and Applications (FPL). 1–10.
H. Kalte, G. Lee, M. Porrmann, and U. Rückert. 2005. REPLICA: A Bitstream Manipulation Filter for Module Relocation

in Partial Recon�gurable Systems. In Proceedings of IEEE International Parallel and Distributed Processing Symposium

(IPDPS).
H. Kalte and M. Porrmann. 2006. REPLICA2Pro: Task Relocation by Bitstream Manipulation in Virtex-II/Pro FPGAs. In

Proceedings of conference on Computing frontiers.
I. Kennedy. 2003. Exploiting redundancy to speedup recon�guration of an FPGA. In Proceedings of International Conference

on Field Programmable Logic and Applications (FPL). 262–271.
R. Khraisha and J. Lee. 2010. A scalable H.264/AVC Deblocking �lter architecture using dynamic partial recon�guration. In

Proceedings of IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP).
D. Koch, J. Torresen, C. Beckho�, D. Ziener, C. Dennl, V. Breuer, J. Teich, M. Feilen, and W. Stechele. 2012. Partial

recon�guration on FPGAs in practice; Tools and applications. In Proceedings of ARCS Workshops (ARCS). 1–12.
M. Koester, W. Luk, J. Hagemeyer, and M. Porrmann. 2009. Design optimizations to improve placeability of partial

recon�guration modules. In Proceedings of Design, Automation & Test in Europe Conference & Exhibition (DATE).
B. Krill, A. Amira, A. Ahmad, and H. Rabah. 2010. A new FPGA-based dynamic partial recon�guration design �ow and

environment for image processing applications. In Proceedings of European Workshop on Visual Information Processing

(EUVIP). 226–231.
R. Kumar and A. Gordon-Ross. 2013. PRML: A Modeling Language for Rapid Design Exploration of Partially Recon�gurable

FPGAs. In Proceedings of IEEE International Symposium on Field-Programmable Custom Computing Machines (FCCM).
117–120.

R. Kumar and A. Gordon-Ross. 2015. An Automated High-Level Design Framework for Partially Recon�gurable FPGAs. In
Proceedings of IEEE International Parallel and Distributed Processing Symposium Workshop (IPDPSW).

Lattice Corp. 2003. ORCA Series 4 FPGAs. Lattice Semiconductor Corporation.
Z. Li, K. Compton, and S. Hauck. 2000. Con�guration caching management techniques for recon�gurable computing. In

Proceedings of IEEE Symposium on FPGAs for Custom Computing Machines (FCCM).
Z. Li and S. Hauck. 2001. Con�guration Compression for Virtex FPGAs. In Proceedings of IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM).
J. Lipsky. 2015. (Jan. 2015). http://www.eetimes.com/document.asp?doc_id=1325499
M. Liu, W. Kuehn, Z. Lu, and A. Jantsch. 2009a. Run-Time partial recon�guration speed investigation and architectural

design space exploration. In Proceedings of International Conference on Field Programmable Logic and Applications (FPL).
S. Liu, R. N. Pittman, and A. Forin. 2009b. Minimizing Partial Recon�guration Overhead with Fully Streaming DMA Engines

and Intelligent ICAP Controller. Technical Report MSR-TR-2009- 150. Microsoft Research.
J. W. Lockwood, N. Naufel, J. S. Turner, and D. E. Taylor. 2001. Reprogrammable Network Packet Processing on the Field

Programmable Port Extender (FPX). In Proceedings of ACM/SIGDA International Symposium on Field Programmable Gate

Arrays (FPGA).
J. Lotze, S.A. Fahmy, J. Noguera, B. Ozgul, L. Doyle, and R. Esser. 2009. Development framework for implementing

FPGA-based cognitive network nodes. In Proceedings of IEEE Global Telecommunications Conference (GLOBECOM).
Y. Lu, T. Marconi, K. Bertels, and G. Gaydadjiev. 2009. Online Task Scheduling for the FPGA-Based Partially Recon�gurable

Systems. Springer Berlin Heidelberg, Berlin, Heidelberg, 216–230.
Y. Lu, T. Marconi, G.N. Gaydadjiev, K. Bertels, and R.J. Meeuws. 2008. A Self-adaptive on-line Task Placement Algorithm for

Partially Recon�gurable Systems. In Proceedings of Parallel and Distributed Processing Symposium (IPDPS).
W. Luk, N. Shirazi, and P.Y.K. Cheung. 1996. Modelling and Optimising Run-time Recon�gurable Systems. In Proceedings of

IEEE Symposium on FPGAs for Custom Computing Machines (FCCM).
W. Luk, N. Shirazi, and P. Y. K. Cheung. 1997. Compilation tools for run-time recon�gurable designs. In Proceeding of IEEE

ACM Computing Surveys

http://www.eetimes.com/document.asp?doc_id=1325499

1:36 K. Vipin and S. A. Fahmy

Symposium on Field-Programmable Custom Computing Machines (FCCM). 56–65.
P. Lysaght, B. Blodget, J. Mason, J. Young, and B. Bridgford. 2006. Invited Paper: Enhanced Architectures, Design Method-

ologies and CAD Tools for Dynamic Recon�guration of Xilinx FPGAs. In Proceedings of International Conference on Field

Programmable Logic and Applications (FPL).
P. Lysaght and J. Stockwood. 1996. A simulation tool for dynamically recon�gurable �eld programmable gate arrays. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems 4, 3 (Sept 1996), 381–390.
M. Majer, J. Teich, A. Ahmadinia, and C. Bobda. 2007. The Erlangen Slot Machine: A Dynamically Recon�gurable FPGA-

based Computer. The Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology 47, 1 (01 Apr
2007), 15–31.

P. Manet, D. Maufroid, L. Tosi, G. Gailliard, O. Mulertt, M. D. Ciano, J. D. Legat, D. Aulagnier, C. Gamrat, R. Liberati, V. L.
Barba, P. Cuvelier, B. Rousseau, and P. Gelineau. 2008. An evaluation of dynamic partial recon�guration for signal and
image processing in professional electronics applications. EURASIP Journal on Embedded Systems 2008 (2008), 1–11.

A. Montone, M.D. Santambrogio, D. Sciuto, and S.O. Memik. 2010. Placement and �oorplanning in dynamically recon�gurable
FPGAs. ACM Transactions on Recon�gurable Technology and Systems (TRETS) 3, 4 (Nov. 2010), 24:11–24:34.

National. 1993. Con�gurable Logic Array (CLAy) Data Sheet. National Semiconductor.
B. Navas, I. Sander, and J. Oberg. 2013. The RecoBlock SoC platform: A �exible array of reusable Run-Time-Recon�gurable

IP-blocks. In Proceedings of Design, Automation & Test in Europe Conference & Exhibition. 833–838.
J. Noguera and I. O. Kennedy. 2007. Power Reduction in Network Equipment Through Adaptive Partial Recon�guration. In

Proceedings of International Conference on Field Programmable Logic and Applications (FPL). 240–245.
R.T. Ong. 1995. Programmable Logic Device which stores more than one con�guration and means for switching con�gura-

tions. (1995).
B. Osterloh, H. Michalik, S. A. Habinc, and B. Fiethe. 2009. Dynamic Partial Recon�guration in Space Applications. In

Proceedings of NASA/ESA Conference on Adaptive Hardware and Systems.
J. H. Pan, T. Mitra, and W. Wong. 2004. Con�guration bitstream compression for dynamically recon�gurable FPGAs . In

Proceedings of IEEE/ACM International Conference on Computer Aided Design (ICCAD).
K. Papadimitriou, A. Anyfantis, and A. Dollas. 2010. An E�ective Framework to Evaluate Dynamic Partial Recon�guration

in FPGA Systems. IEEE Transactions on Instrumentation and Measurement 59, 6 (June 2010), 1642–1651.
K. Papadimitriou, A. Dollas, and S. Hauck. 2011. Performance of Partial Recon�guration in FPGA Systems: A Survey and

Cost Model. ACM Transactions on Recon�gurable Technology and Systems (TRETS) 4, 4 (Dec. 2011), 36:1–36:24.
C. Patterson. 2000. High performance DES encryption in Virtex FPGAs using JBits. In Proceedings of IEEE Symposium on

Field-Programmable Custom Computing Machines (FCCM). 113–121.
M. Peattie. 2009. Using a Microprocessor to Con�gure Xilinx FPGAs via Slave Serial or SelectMAP Mode. Technical Report.

Xilinx Inc.
T. H. Pham, S. A. Fahmy, and I. V. McLoughlin. 2017. An End-to-End Multi-Standard OFDM Transceiver Architecture Using

FPGA Partial Recon�guration. IEEE Access 5 (2017), 21002–21015.
M. Platzner, J. Teich, and N. Wehn. 2010. Dynamically Recon�gurable Systems. Springer Netherlands.
A. Purgato, D. Tantillo, M. Rabozzi, D. Sciuto, and M. D. Santambrogio. 2016. Resource-E�cient Scheduling for Partially-

Recon�gurable FPGA-Based Systems. In Proceedings of IEEE International Parallel and Distributed Processing Symposium

Workshops (IPDPSW). 189–197.
A. Putnam, A. M. Caul�eld, E.S. Chung, D. Chiou, K. Constantinides, J. Demme, H. Esmaeilzadeh, J. Fowers, G.P. Gopal, J.

Gray, M. Haselman, S. Hauck, S. Heil, A. Hormati, J.Y. Kim, S. Lanka, J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong,
P.Y. Xiao, and D. Burger. 2014. A recon�gurable fabric for accelerating large-scale datacenter services. In Proceedings of

the International Symposium on Computer Architecture. 13–24.
S. Raaijmakers and S. Wong. 2007. Run-Time Partial Recon�guration for Removal, Placement and Routing on the Virtex-II

Pro. In Proceedings of International Conference on Field Programmable Logic and Applications (FPL).
M. Rabozzi, R. Cattaneo, T. Becker, W. Luk, and M. D. Santambrogio. 2015. Relocation-Aware Floorplanning for Partially-

Recon�gurable FPGA-Based Systems. In Proceedings of IEEE International Parallel and Distributed Processing Symposium

Workshop (IPDPSW). 97–104.
M. Rabozzi, J. Lillis, and M.D. Santambrogio. 2014. Floorplanning for Partially-Recon�gurable FPGA Systems via Mixed-

Integer Linear Programming. In Proceedings of IEEE International Symposium on Field-Programmable Custom Computing

Machines (FCCM).
V. Rana, S. Murali, D. Atienza, M. D. Santambrogio, L. Benini, and D. Sciuto. 2009. Minimization of the recon�guration

latency for the mapping of applications on FPGA-based systems. In Proceedings of IEEE/ACM International Conference on

Hardware/software Codesign and System Synthesis (CODES+ISSS).
T. A. Reis and A.A. Fröhlich. 2009. Operating System Support for Di�erence-Based Partial Hardware Recon�guration. In

Proceedings of IEEE/IFIP International Symposium on Rapid System Prototyping (RSP). 75–80.
M.D. Santambrogio, V. Rana, and D. Sciuto. 2008. Operating system support for online partial dynamic recon�guration

ACM Computing Surveys

FPGA Dynamic and Partial Reconfiguration: A Survey 1:37

management. In Proceedings of International Conference on Field Programmable Logic and Applications (FPL). 455–458.
A. Schallenberg, W. Nebel, A. Herrholz, P.A. Hartmann, K. Grüttner, and F. Oppenheimer. 2010. Dynamically Recon�g-

urable Systems (1 ed.). Springer, Chapter POLYDYN-Object-Oriented Modelling and Synthesis Targeting Dynamically
Recon�gurable FPGAs, 139–158.

A. Schallenberg, W. Nebel, A. Herrholz, P. A. Hartmann, and F. Oppenheimer. 2009. OSSS+R: A framework for application
level modelling and synthesis of recon�gurable systems. In Proceedings of the Design, Automation and Test in Europe

Conference(DATE). 970–975.
S. Shreejith, B Banarjee, K Vipin, and S. A. Fahmy. 2015. Dynamic Cognitive Radio on the Xilinx Zynq Hybrid FPGA. In

Proceedings of International Conference on Cognitive Radio Oriented Wireless Networks (CROWNCOM).
S. Shreejith and S. A. Fahmy. 2015. Security Aware Network Controller for Next Generation Automotive Embedded Systems.

In Proceedings of Design Automation Conference (DAC).
S. Shreejith, K. Vipin, S. A. Fahmy, and M. Lukasiewycz. 2013. An approach for redundancy in FlexRay networks using

FPGA partial recon�guration. In Proceedings of the Design, Automation and Test in Europe Conference (DATE).
L. Singhal and E. Bozorgzadeh. 2007. Multi-layer �oorplanning for recon�gurable designs. IET Computers & Digital

Techniques 1, 4 (July 2007), 276–294.
G. S. Snider and R. S. Williams. 2007. Nano/CMOS architectures using a �eld-programmable nanowire interconnect.

Nanotechnology 18, 3 (2007), 035204.
A.A. Sohanghpurwala, P. Athanas, T. Frangieh, and A. Wood. 2011. OpenPR: An Open-Source Partial-Recon�guration

Toolkit for Xilinx FPGAs. In Proceedings of IEEE International Symposium on Parallel and Distributed Processing Workshops

and Phd Forum (IPDPSW). 228–235.
C. Steiger, H. Walder, and M. Platzner. 2004. Operating systems for recon�gurable embedded platforms: online scheduling

of real-time tasks. IEEE Trans. Comput. 53, 11 (Nov 2004).
N.J. Steiner. 2008. Autonomous Computing Systems. Ph.D. Dissertation. Virginia Polytechnic Institute and State University.
N. Steiner, A. Wood, H. Shojaei, J. Couch, P. Athanas, and M. French. 2011. Torc : Towards an Open-Source Tool Flow. In

Proceedings of ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA).
G. Stitt and J. Coole. 2011. Intermediate fabrics: Virtual architectures for near-instant FPGA compilation. IEEE Embedded

Systems Letters 3, 3 (2011), 81–84.
Tabula. 2010. ABAX Product Brief. Technical Report. Tabula.
H. Taghipour, J. Frounchi, and M. H. Zari�. 2008. Design and Implementation of MP3 Decoder using Partial Dynamic Recon-

�guration on Virtex-4 FPGAs. In Proceedings of International Conference on Computer and Communication Engineering.
E. Tau, I. Eslick, D. Chen, J. Brown, and A. DeHon. 1995. A First Generation DPGA Implementation. In Proceedings of the

Canadian Workshop on Field-Programmable Devices (FPD). 138–143.
T.J. Todman, G.A. Constantinides, S.J.E. Wilton, O. Mencer, W. Luk, and P.Y.K. Cheung. 2005. Recon�gurable computing:

architectures and design methods. IEE Proceedings - Computers and Digital Techniques 152, 2 (Mar. 2005), 193–207.
J. Torresen, G.A. Senland, and K. Glette. 2008. Partial Recon�guration Applied in an On-line Evolvable Pattern Recognition

System. In Proceedings of The Nordic Microelectronics event (NORCHIP).
S. Trimberger, D. Carberry, A. Johnson, and J. Wong. 1997. A time-multiplexed FPGA. In Proceedings of IEEE Symposium on

FPGAs for Custom Computing Machines (FCCM). 22–28.
K. Vipin and S. A. Fahmy. 2011. E�cient Region Allocation for Adaptive Partial Recon�guration. In Proceedings of the

International Conference on Field Programmable Technology (FPT). 1–6.
K. Vipin and S. A. Fahmy. 2012a. Architecture-Aware Recon�guration-Centric Floorplanning for Partial Recon�guration. In

Proceedings of the International Symposium on Applied Recon�gurable Computing (ARC). 13–25.
K. Vipin and S. A. Fahmy. 2012b. A high speed open source controller for FPGA partial recon�guration. In Proceedings of

IEEE International Conference on Field-Programmable Technology (FPT).
K. Vipin and S. A. Fahmy. 2013. An Automated Partitioning Scheme for Partial Recon�guration based Adaptive Systems. In

Proceedings of Recon�gurable Architecture Workshop (RAW).
K. Vipin and S. A. Fahmy. 2014a. DyRACT: A Partial Recon�guration Enabled Accelerator and Test Platform. In Proceedings

of the International Conference on Field Programmable Logic and Applications (FPL).
K Vipin and S A. Fahmy. 2014b. ZyCAP: E�cient Partial Recon�guration Management on the Xilinx Zynq. IEEE Embedded

Systems Letters 6, 3 (Sept. 2014), 41–44.
K. Vipin and S. A. Fahmy. 2015. Mapping Adaptive Hardware Systems with Partial Recon�guration Using CoPR for Zynq.

In Proceedings of the NASA/ESA Conference on Adaptive Hardware and Systems (AHS).
F. Wang and J.J. Jean. 2012. Architecture and operating system support for two-dimensional runtime partial recon�guration.

The Journal of Supercomputing 59, 2 (2012), 610–635.
L. Wirbel. 2014. Xilinx SDAccel : A Uni�ed Development Environment for Tomorrow’s Data Center. Technical Report. Xilinx

Inc.
M.J. Wirthlin and B.L. Hutchings. 1995. A Dynamic Insruction Set Computer. In Proceedings of IEEE Symposium on FPGAs

ACM Computing Surveys

1:38 K. Vipin and S. A. Fahmy

for Custom Computing Machines.
Z. Xiao, D. Koch, and M. Lujan. 2016. A partial recon�guration controller for Altera Stratix V FPGAs. In Proceedings of

International Conference on Field Programmable Logic and Applications (FPL).
Xilinx Inc. 1996. Programmable Logic Data Book.
Xilinx Inc. 2003. DS031:Virtex-II Platform FPGAs.
Xilinx Inc. 2004a. XAPP151: Virtex Series Con�guration Architecture User Guide.
Xilinx Inc. 2004b. Xilinx Device Drivers Documentation. Xilinx Inc.
Xilinx Inc. 2006. DS280: OPB HWICAP. Xilinx Inc.
Xilinx Inc. 2008. UG070: Virtex-4 FPGA User Guide. Xilinx Inc.
Xilinx Inc. 2010. DS586: XPS HWICAP. Xilinx Inc.
Xilinx Inc. 2011a. DS083: Virtex-II Pro and Virtex-II Pro-X Platform FPGAs. Xilinx Inc.
Xilinx Inc. 2011b. UG360 : Virtex 6 FPGA Con�guration User Guide. Xilinx Inc.
Xilinx Inc. 2013a. UG585: Zynq-7000 All Programmable SoC Technical Reference Manual. Xilinx Inc.
Xilinx Inc. 2013b. UG682: PlanAhead User Guide. Xilinx Inc.
Xilinx Inc. 2014. UG910: Vivado Design Suite User Guide. Xilinx Inc.
Xilinx Inc. 2015. UG570: UltraScale Architecture Con�guration. Xilinx Inc.
Xilinx Inc. 2016. UltraScale Architecture and Product Overview. Xilinx Inc.
Xilinx Inc. 2017a. UG1023: SDAccel Environment User Guide.
Xilinx Inc. 2017b. UG893: Vivado Design Suite User Guide. Xilinx Inc.
Xilinx Inc. 2017c. UG909: Vivado Design SuiteUser Guide Partial Recon�guration. Xilinx Inc.
D. Yin, D. Unnikrishnan, Y. Liao, L. Gao, and R. Tessier. 2011. Customizing Virtual Networks with Partial FPGA Recon�gu-

ration. ACM SIGCOMM Computer Communication Review 41, 1 (Jan. 2011), 57–64.
J. Yuan, S. Dong, X. Hong, and Y. Wu. 2005. LFF algorithm for heterogeneous FPGA �oorplanning. In Proceedings of Asia

and South Paci�c Design Automation Conference (ASP-DAC). 1123–1126.
W. Zhang, N. K. Jha, and L. Shang. 2009. A hybrid nano/CMOS dynamically recon�gurable system–Part I: Architecture.

ACM Journal on Emerging Technologies in Computing Systems 5, 4 (2009), 16:1–16:30.

ACM Computing Surveys

FPGA Dynamic and Partial Reconfiguration: A Survey 1:39

APPENDIX-I: LIST OF ABBREVIATIONS/ACRONYMS

ALM Adaptive Logic Module
ASIC Application Speci�c Integrated Circuits
AXI Advanced eXtensible Interface
BRAM Block Random Access Memory
CLB Con�gurable Logic Block
DPGA Dynamically Programmable Gate Arrays
DRAM Dynamic Random Access Memory
DSP Digital Signal Processing
EDA Electronic Design Automation
FPGA Field Programmable Gate Arrays
HLS High-Level Synthesis
ICAP Internal Con�guration Access Port
ILP Integer Linear Programming
JTAG Joint Test Action Group
LAB Logic Array Block
LUT Look Up Table
MCAP Media Con�guration Access Port
MC-FPGA Multi-Context Field Programmable Gate Arrays
OpenCL Open Computing Language
PCAP Processor Con�guration Access Port
PCIe Peripheral Component Interconnect express
PL Programmable Logic
PLC Programmable Logic Cell
PLL Phase Locked Loop
PR Partial Recon�guration
PRR Partially Recon�gurable Region
PS Processing System
RCM Recon�gurable Context Memory
RTL Register Transfer Level
SoC System on a Chip
SRAM Synchronous Random Access Memory
SDM Secure Digital Managers
SDR Software De�ned Radio
SEU Single Event Upset
TBUF Tri-state Bu�er
UCF User Constraints File
UML Uni�ed Modeling Language
VHDL Very High-speed integrated circuit Hardware Description Language
XML eXtensible Markup Language
XDL Xilinx Description Language
XST Xilinx Synthesis Technology

ACM Computing Surveys

	Abstract
	1 Introduction
	1.1 Background and Motivation
	1.2 Advantages of Partial Reconfiguration
	1.3 Desired Features of a PR Platform

	2 Architectures
	2.1 Academic and Non-Commercial Architectures
	2.2 Commercial Devices Supporting PR
	2.3 Summary

	3 Design, Implementation, and Simulation Tools
	3.1 Vendor PR Design Flows
	3.2 Academic PR Development Tools
	3.3 PR Simulation
	3.4 Summary

	4 Overhead Reduction Techniques
	4.1 Partitioning
	4.2 Floorplanning
	4.3 Runtime Placement and Configuration File Manipulations
	4.4 Configuration File Compression
	4.5 High-Speed Reconfiguration Controllers
	4.6 Summary

	5 Run-time Management of PR Systems
	5.1 Management of Reconfigurable Tasks
	5.2 Software/Processor-Based Runtime Management
	5.3 Custom Hardware Based Runtime Management
	5.4 Summary

	6 Applications of Partial Reconfiguration
	6.1 Dynamic System Adaptation
	6.2 System Cost Reduction
	6.3 Reliability
	6.4 Computing Systems
	6.5 Summary

	7 Conclusions and Future Directions
	References

