

©2001 IEEE. Personal use of this material is permitted. However, permission to

reprint/republish this material for advertising or promotional purposes or for

creating new collective works for resale or redistribution to servers or lists, or to

reuse any copyrighted component of this work in other works must be obtained

from the IEEE.”

FPGA Hardware Architecture of the Steganographic ConText Technique

Edgar Gómez-Hernández, Claudia Feregrino-Uribe, Rene Cumplido
Nacional Institute for Astrophysics, Optics and Electronics

Luis Enrique Erro No.1, Sta. María Tonantzintla, Puebla, México, 72840
{ed06mx, cferegrino, rcumplido}@inaoep.mx

Abstract

This work presents a hardware architecture of the
ConText steganographic technique in a Cyclone II
FPGA of the Altera family. The ConText technique
takes advantage of noisy regions and those with
abrupt gray levels changes in an image where the
hidden information is very difficult to detect; the
process to locate this region is highly repetitive and
computationally expensive. The technique is
implemented in an FPGA to increase the processing
speed. The implementation results show a throughput
of 61.5 Mbps.

1. Introduction

The term Steganography comes from the Greek

words stegos (cover) and graphy (write), and it
literally means covered writing. Contrary to the
cryptography, the steganography does not change the
message, just hides it from people whom it is not this
directed to [1].

 The steganography is the art and the science of

the hidden communications. As the cryptography, the
steganography has been practiced for many years. In
the past, people made it with hidden tattoos, with
invisible inks, wooden charts with wax, among many
other methods. Currently the same principle applies
when sending some message; the sender simply hides
such a message by keeping it inside some other file,
image, text, audio or video [3].

 The elements of a steganographic system are the

following:
• Cover-object: It is any object that may carry a

hidden message, for example: images, audio,
video, text, HTML files, etc.

• Stego-object: refers to the object which is carrying
a hidden message. Cover-object + message =
stego-object.

In the same way that the cryptoanalysis corresponds

to cryptography, whose objective is to obtain the

coded information, the steganalysis corresponds to
steganography, which looks for the existence of
hidden information in some object. The main strategy
of the steganalysis is to look for strong changes among
the original object (cover-object) and the object that is
analyzed (stego-object). For such a reason there has
been developed a type of steganographic algorithms
that are based on incrusting the information depending
on the peculiar characteristics of the cover-object,
looking for regions in which the information does not
produce detectable changes.

 In the case of the digital images, these places are

found where there are noise or borders, that is where
there are abrupt changes in the pixels tones (gray
scale).

 Among the steganographic techniques that exist

today for images are [4] :

• Masked and filtrate: Masking and filtering
techniques, usually restricted to 24-bit and gray-
scale images, hide information by marking an image,
a manner similar to paper watermarks.
Watermarking techniques may be applied without
fear of image destruction due to lossy compression
because they are more integrated into the image.

• Algorithms and Transformations (embedded in
the transformed domain) Most of the work in this
category has been concentrated on making use of
redundancies in the DCT (discrete cosine
transform) domain, which is used in JPEG
compression. But there have been other
algorithms which make use of other transform
domains such as the frequency domain.

• Least Significant Bit (LSB) insertion (embedded

in the space domain)

Insert in the LSB. This technique is the most

popular, but the easiest of attacking. It takes an image,
and reconstructs the original image in another, the
least significant bit of the message to hide changes.

18th International Conference on Electronics, Communications and Computers

0-7695-3120-2/08 $25.00 © 2008 IEEE
DOI 10.1109/CONIELECOMP.2008.24

123

Example LSB: To insert an A : 100000011 in the 3

pixels RGB:
 R G B
Pixel 1: 00100111 11101001 11001000
Pixel 2: 00100111 11001000 11101001
Pixel 3: 11001000 00100111 11101001

The underlined bits are modified bits, the others are
equal:

The Context technique hides the information using

this method.
There have been some hardware architectures of

steganographic algorithms reported in the literature [5,6].
In [5], a steganographic algorithm that instead of using
conventional substitution and translation operations on
the plaintext characters uses simple plaintext hiding in a
random bit string called the hiding vector is reported.
And in [6], a secret key steganographic algorithm is
described, that given a message aims to hide it into a
cover such that even if an attacker detects the existence
of the message, the attacker will not be able to recover it
without the secret key that is known only to sender and
receiver. A comparison of the architecture results is
shown in Table 3.

In spite of the attractiveness of speeding up the
insertion and recovering process in steganographic
algorithms, not much has been done in hardware about
steganography. This work aims to do that by presenting
hardware architecture of the Context steganographic
algorithm. The following section describes the ConText
algorithm, as it is described in [2].

The paper is organized as follows. Section 2 provides
an introduction to the ConText Technique as it is
described in [2]. Section 3 shows the proposed
architecture for the ConText algorithm and its modules
are described in detail. Section 4 describes the
implementation of the architecture, Section 5 shows the
experimental results and finally Section 6 concludes.

2. ConText Technique

To be able to correctly identify the regions where
the information will be inserted, the gray scale level is
analyzed in the spatial distribution, looking for the
areas with greater diversity of gray scale levels. The
selection process of the pixel where the information
will be inserted is described in the following steps [2]:

• Divide the image in non overlapping blocks of
3x3 pixels (Figure 1).

• The block of 3x3 is divided in four sub-blocks of

2x2 pixels (Figure 2).

• Each sub-block of 2x2 is considered valid if there

are at least 3 values of gray scale levels.

• The information is inserted in the 3x3 block

center if the four sub-blocks are valid.

• The validity of the four sub-blocks of 2x2 is

verified after having inserted the information. If
some 2x2 sub-block is not valid after hiding the
information in the 3x3 block, then the inserted bit
is not considered as hidden to avoid losing
information during the recovery process.

In the Figures 1 and 2 this process can be appreciated.

3. ConText Hardware Architecture

As it can be appreciated from the ConText technique,
the most demanding operation is the comparison of the
pixel values of the 4 generated sub-blocks.

Figure 1. The image is divided in 3x3 blocks.

Figure 2. The 3x3 block is divided into four 2x2 sub-

blocks.

The hardware implementation was based on the
generation of blocks that perform simple operations,
following the Top - Down methodology.

124

3.1 Architecture

Figure 3. shows the general block of the
architecture, showing the input and output data for the
ConText technique.

Figure 3. ConText Interface.

The inputs are:

• Din: Pixel value of the image.

• Information: The information that was incrusted

in the image, if it is the case.

The outputs of ConText architecture are:

• Cont: It takes the control data input data to hide

in the image (cover-object).

• Output: Central pixel value of the 3x3 matrix
after inserting the information in the image
(cover-object).

• InfOutput: Extracted information of the central

pixel of the 3x3 matrix (stego-object).

• SHide: Output bit that is activated if it is selected
to hide information in the central pixel of the 3x3
matrix (cover-object).

• SGet: Output bit that is set to 1 if information can

be obtained from the central pixel of the 3x3
matrix (stego object).

Figure 4. shows the architecture in more detail. It can

be seen that it has four blocks: 1) Shell_control1, 2)
Mux8to1, 3) Regbank, and 4) ConText. Next, these four
blocks are described deeper.

1) Block Shell_control1

This block is a state machine that controls the other

blocks. It also keeps counters that control the input
data flow (Din, Information). It inputs a signal (Ins)
that indicates if it is possible to incrust information in
the 3x3 matrix (stego object) and their outputs are:

• Conta: It controls the input pixels of the image

(stego object) to be stored in the RegBank (Bank
of Registers).

• C8: It controls the input of the 8 bits vectors

information that will be incrusted in the image.

• C4: It selects from the 8 bits vector the bit to be
inserted in the 3x3 matrix.

2) Block Mux8to1

Block that is used to select the information bit that
was hidden in the 3x3 matrix.

125

Figure 5. RegBank (Register’s bank).

3) Block RegBank

This block is a registers bank that stores the values
of the 3x3 matrix to be used by the ConText block
(Figure 5).

4) Block ConText

This block carries out the main part of the

architecture, which consists on the execution of the
ConText technique, where the division of the 3x3
matrix in the four 2x2 sub-blocks is carried out and
later on their comparison. As it can be appreciated in
the Figure 6, the block consists of 8 sub-blocks. Each
sub-block (Figure 7) compares the values of the 2x2
sub-blocks, the first four ones are the input matrix and
the following ones are to compare the values of the
3x3 matrix with the incrusted bit of information. The
purpose is to verify if the condition (if the four 2x2
sub-blocks are valid) is preserved. If the condition is
lost when incrusting the bit of information, the
incrusted bit is left there and it does not count as an
inserted bit in order to avoid loss of information
during the recovery process.

Figure 6. ConText Block.

4. Implementation

The hardware architecture of the ConText
technique was developed using the description
language VHDL (Vhsic Hardwre Description
Language). The simulation tests were carried out with
the ModelSim tool from Xilinx. For the synthesis and
the place and route, the Altera software Quartus II was
used. Lastly, to test the operation, a prototyping card
with a Cyclone II EP2C35F672C6 from Altera,

126

MatLab 7 with Simulink and DSP Builder version 6.1
from Altera were used.

Figure 7. Context Sub-block

 a) b)

 c) d)

Figure 8. Test images

5. Results

The images used for testing the architecture are
shown in Figure 8. They include different gray scale
images that range from geometric forms to medical
magnetic resonance images.

 Figures 9a) and 9b) show the pixels where the
information will be hidden from Figures 8a) and 8b).
Figures 9c) and 9d) show the stegoimages. From the
figures, it can be appreciated that no change can be
detected visually.

a)

 b)

 c) d)

Figure 9. Output Imagines

127

The synthesis results are shown in Table 1. It can
be seen that the architecture may process eight million
pixels per second, that is, 61.54 Mbps.

Logical elements 204
Maximum frequency (MHz) 106.75
Throughput (Mbps) 61.54
Yield (pixel/s) 8,066,000
Yield / Area (pixel/s / logical
elements)

39, 539

Table 1. Results of the synthesis in FPGA

The tests of the algorithm implemented in software

that served as the basis of this architecture [2] were
carried out in a computer with a Celeron processor at
1.4 GHz and 512 MB of RAM memory, Windows XP
operating system with Matlab version 7.0.

As it can be seen in Table 2, the software
implementation runs on average in 8.089 seconds per
image, whereas the hardware architecture achieves an
average of 0.0325 seconds per image. That means, the
hardware architecture perform 252 times faster than
the software implementation.

Image Size Software FPGA

a 512x512 6.5818 0.0325
b 512x512 5.1174 0.0325
c 512x512 10.6524 0.0325
d 512x512 10.0044 0.0325
Table 2. Comparison of times (seconds) of the

implementations in Software and in FPGA.

 [5] [6]
Throughput (Mbps) 95.532 1.576
Area (CLB) 168
Functional Density
(Mbps/CLB) 0.569
Frequency (MHz) 35.4

 Table 3. Performance report reference.

A comparison of the performance of the software
implementation of the ConText algorithm against other
similar algorithms can be consulted at the reference [2].
No other hardware implementation of the ConText
algorithm has been reported in the literature, so it is not
possible to make a comparison of performance. On the
other hand, the comparison between architectures of
algorithms different from ConText is not fair since they
would not be compared under the same conditions;
furthermore the algorithms are based on different
techniques.

6. Conclusions

 The FPGA hardware architecture of the ConText
technique has shown a significant improvement over a
Matlab implementation. Although it is not a fair
comparison, it gives an idea of the gains achieved by
hardware implementations in this type of steganographic
algorithms. Even if a faster software implementation
were available, this hardware implementation performs 8
comparisons in a single clock cycle, so, it is not expected
that this hardware implementation can be outperformed
by a software one.
 As further work, the modules or blocks that perform
simple and repetitive operations, such as the Context
Block, could be parallelized in order to achieve that all
the comparisons are executed in only one clock cycle,
Care must be taken if a reduced area architecture is
desirable.

7. References

[1] J. Fridich, and R. Du, “Secure Steganographics
Methods for Palette Images”, In Information Hiding, 3rd
International Workshop, Springer 1999,pp. 47-60.

[2] Dulce R. Herrera-Moro, Raúl Rodríguez-Colín, Claudia
Feregrino-Uribe, “Adaptive Steganography based on
textures” Electronics, Communications and Computers,
2007 CONIELECOMP ’07 17th international Conference
Page(s): 34 - 34 .

[3] Mehdi Kharrazi, Husrev T. Sencar and Nasir “Image
Steganography: concepts and practice.” Memon. Polytechnic
University. Broklyn, NY. USA. April 22, 2004
www.ims.nus.edu.sg/preprints/2004-25.pdf.

[4] Neil F. Johnson, Sushil Jajodia, “Exploring
Steganography: Seeing the Unseen ”.Journal Title: IEEE
Computer. Date: 1998. Volume: 31. Issue: 2. p. 26 – 34.

[5] Farouk, H.A. Saeb, M. “ Hybrid Hiding Encryption
Algorithm (MHHEA) for Data Communication Security
base on Hybrid Hiding Encryption Algorithm (HHEA) ”
Comput. Dept., Arab Acad. for Sci., Technol. &
Maritime Transp., Alexandria, Egypt; Design,
Automation and Test in Europe, 2005. 7-11 March 2005.

[6] Farouk, H. Saeb, M. “ Design and implementation of
a secret key steganographic micro-architecture employing
FPGA ” Dept. of Comput., Arab Acad. for Sci. Technol.
& Maritime Transport, Alexandria, Egypt; Design,
Automation and Test in Europe Conference and
Exhibition, 2004. 16-20 Feb. 2004 Volume: 3, On
page(s): 212- 217 Vol.3.

128

