
Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

FPGA IMPLEMENTATION OF A NEAR-ML SPHERE DETECTOR FOR 802.16E

BROADBAND WIRELESS SYSTEMS

Chris Dick (Xilinx, San Jose, CA, USA; chris.dick@xilinx.com); Milos Trajkovic

(Signum Concepts; San Diego, CA, USA; milos.trajkovic@signumconcepts.com);

Slobodan Denic (Signum Concepts; San Diego, CA, USA;

slobodan.denic@signumconcepts.com); Dragan Vuletic (Signum Concepts; San Diego,

CA, USA; dragan.vuletic@signumconcepts.com); Raghu Rao, (Xilinx, San Jose, CA,

USA; raghu.rao@xilinx.com), fred harris (San Diego State University (SDSU), San

Diego, CA, USA; fharris@mail.sdsu.edu); Kiarash Amiri (Rice University, Houston,

TX, USA; kiaa@rice.edu).

ABSTRACT

Spatial multiplexing multiple-input-multiple-output (MIMO)

communication systems have recently drawn significant

attention as a means to achieve tremendous gains in wireless

system capacity and link reliability. The optimal hard

decision detection for MIMO wireless systems is the

maximum likelihood (ML) detector. ML detection is

attractive due to its superior performance (in terms of BER).

However, direct implementation grows exponentially with

the number of antennas and the modulation scheme, making

its ASIC or FPGA implementation infeasible for all but low

density modulation schemes using a small number of

antennas. Sphere decoding (SD) solves the ML detection

problem in a computationally efficient manner. However,

even with this complexity reduction, real-time

implementation on a DSP processor is generally not feasible

and high-performance parallel computing platforms such as

FPGAs are increasingly being employed for this class of

applications. The sphere detection problem affords many

opportunities for algorithm and micro-architecture

optimizations and tradeoffs. This paper provides an

overview of and FPGA implementation of a sphere detector

and channel matrix pre-processor applicable to the 802.16e

air interface protocol. The architecture of the design is

presented along with resource utilization data and BER

performance curves.

1. INTRODUCTION

Spatial division multiplexing (SDM) MIMO processing

significantly increases the spectral efficiency, and hence

capacity, of a wireless communication system: it is a core

component of next generation wireless systems, for example,

WiMAX and other OFDM-based communication schemes.

Sphere detection is a prominent method of simplifying the

detection complexity in both SDM and SDMA systems

while maintaining BER performance comparable with

optimum maximum-likelihood (ML) detection [1], [2].

There are several approaches for realizing sphere detectors,

and the algorithmic landscape is rich with methods that

enable the designer to make various tradeoffs between

performance, e.g. throughput of the wireless channel, BER,

and implementation complexity [3]. While the algorithm

(e.g. K-best or depth-first-search (DFS)) and hardware

architecture obviously have a strong influence on the

resulting BER performance of the MIMO detector, the

channel matrix pre-processing that is typically conducted

prior to sphere detection likewise has a significant influence

on the BER performance [4]. The channel matrix pre-

processing can range from very simple processing that

might, for example, compute a preferred order for

processing the spatially multiplexed data streams, based on

variance computations applied to the channel matrix,

through to much more sophisticated matrix factorization

techniques that determine the preferred order for processing

the streams in a more optimal (in the BER sense) manner.
This paper describes the field programmable gate array

(FPGA) implementation of a detector for spatial

multiplexing MIMO in 802.16e broadband wireless systems.

By utilizing a channel matrix pre-processor that realizes a

type of successive interference cancellation similar in

concept to that employed in BLAST (Bell Labs Layered

Space Time) processing, the detector achieves close to ML

performance.

2. MIMO SYSTEM MODEL

Let us assume wireless MIMO system that has MT number of

transmit antennas and MR number of receive antennas, where

MR ≥ MT. All transmit antennas use the same channel for

simultaneous communication with the receive antennas. The

complex input-output MIMO model can be written as:

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

nsHy
~~~~ +=  (1) 

where H
~

 denotes the TR MM ×  complex channel matrix, 
T

MT
]

~
,...,

~
,

~
[

~
21 ssss =  is the MT-dimensional transmitted vector 

from n transmit antennas, 
T

MR ]
~

,...,
~

,
~

[
~

21 yyyy =  is the complex 

receive vector of dimension 1×RM  and n~  is a circularly 

symmetric complex additive white Gaussian noise vector of 

size MR. The values for Tj Mj ,...,1,
~

=s  are chosen from the 

complex set of symbols Ω  with p bits per symbol, i.e. 
p2=Ω , where the set of all possible transmitted vector 

symbols is denoted by pΩ . The MT parallel streams may use 

different modulation densities such as 4-, 16- or 64-QAM.  

The detection process requires computing the solution 

to (1), and the goal is to reduce the required compute 

complexity by using simple arithmetic operations, while 

simultaneously retaining the numerical integrity of the final 

result. The matrix elements in (1) are formed from complex 

valued scalar quantities. However, this complex valued 

system of equations can be decomposed into a system of 

equations employing only real-valued numbers as follows 

 

nHsy +=  (2) 

corresponding to  

 

( )
( )

( ) ( )
( ) ( )

( )
( )

( )
( )






ℑ

ℜ
+







ℑ

ℜ











ℜℑ

ℑ−ℜ
=







ℑ

ℜ

n

n

s

s

HH

HH

y

y
~

~

~

~

~~

~~

~

~
 (3) 

with the new matrices having larger dimensions M=2MT and 

N=2MR. While the dimensinality of the key matrices has 

increased, the arithmetic required to manipulate the matrix 

elements is now simplified due to the real-valued nature of 

the entries. Each Mii ,...,1, =s in s is chosen from the set of 

real numbers 'Ω , which in the case of 64-QAM modulation 

is { }1,3,5,7' ±±±±=Ω .  

In addition to the real-valued decomposition (RVD) 

described above, the modified RVD (M-RVD) presented in 

[2] is employed in our design to improve the BER 

performance. The new reordering of real and imaginary 

values of the complex components in (1) is summarized as 

follows: 

nsHy ˆˆˆˆ +=  (4) 

or:  

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

























ℑ

ℜ

ℑ
ℜ

+

























ℑ

ℜ

ℑ
ℜ

=

























ℑ

ℜ

ℑ
ℜ

R

R

T

T

R

R

M

M

M

M

M

M

n

n

n

n

s

s

s

s

H

y

y

y

y

~

~
.

.

.

~

~

~

~
.

.

.

~

~

ˆ

~

~
.

.

.

~

~

1

1

1

1

1

1

 (5) 

The matrix Ĥ  is the permuted channel matrix of (3) whose 

columns are reordered to match the other vectors of the new 

decomposition ordering in (5). There is no extra 

computational cost associated with this new reordering. The 

optimum detector for the system described in (4) would be 

the maximum-likelihood detector which minimizes the value 
2

Hsy −  across all possible combinations of the vector s. 

For high order modulation and large number of antennas, the 

number of calculations in the detection scheme grows 

exponentially, and the corresponding compute requirements 

render the real-time implementation of ML detection 

impractical. A reduced complexity quasi-ML algorithm can 

be formulated starting with the QR decomposition of the 

channel matrix H and defining the distance metric as shown 

in (6)  

    ( )
2

Hsy −=sD   

∑ ∑
= =

−=−=
1

2

,

'
2

Mi

M

ij

jji sRy
i

RsyQH

 (6) 

 

where H=QR, QQ
H

=I and yQy H=′ . The final term in (6) is 

a consequence of the upper triangular structure of the matrix 

R. The norm in (6) can be computed in M iterations, starting 

from the M
th

 (i=M) and progressing to the first antenna (i = 

1). For the first iteration the initial partial norm is defined as 

zero ( )( ) 01

1 =+

+

M

MT s . Using the notation from [2], the partial 

Euclidian distance at each iteration can be calculated as: 

 
( )( ) ( )( ) ( )( )

2
1

1

i

i

i

i

i

i eTT sss += +

+  (7) 

with 
( ) T

Mii

i ],...,,[ 1 ssss += , 1,...,1, −= MMi  and  

           
( )( )

2

1

,,

2

∑
+=

−−′=
M

ij

jjiiiii

i

i sRsRye s   

( )( )
2

,

1

1 iii

i

i sRb −= +

+ s  (8) 

The iterative algorithm defined in equations (7) and (8) can 

be viewed as a tree traversal with each level of the tree i 

corresponding to processing symbols from the i
th

 antenna. 

The tree traversal can be performed using several different 

methods [5]. In our implementation we elect to employ a 

breadth-first search due to the attractive feedforward 

structure (and hence hardware friendly) nature of the 

approach. At each level only the K nodes with the smallest Ti 

are chosen for the expansion. This type of detector is called 

a K-best detector [2], [5].  

The order in which the antennas are processed by the 

sphere detector has a profound impact on the BER (bit error 

rate) performance. So prior to sphere detection, channel 

reordering is applied. The proposed method is a V-BLAST-

like channel reordering [6]. The method determines the 

optimum detection order of columns of the complex channel 

matrix defined in (1) by calculating the norms of the rows of 

the pseudo-inverse of the channel matrix over several 

iterations. Depending on the iteration count, the row with the 

maximum or minimum norm is selected. The row with the 

minimum Euclidian norm represents the influence of the 

strongest antenna while the row with the maximum 



Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved 

Euclidian norm represents the influence of the weakest 

antenna. The novel approach first processes the weakest 

stream. All subsequent iterations process the streams from 

highest to lowest power. The iteration process is illustrated 

in the following equations: 

 

( ) 1...1,
~~~~~ 1

† −=′××′==
−

Tjjjjj MjHHHHG

() 2~
maxarg

kj

k

jk G= for 1=j

() 2~
minarg

kj

k

jk G= for 1≠j

][,11

~~
,

~~
jkjj HHHH == + (9)

where][,

~
jkjH represents the deflated channel matrix excluding

the detected jk column which is placed on the thT jM)1(+−

column space of the new sorted matrix. One can envision

that every iteration of the reordering method operates on the

smaller matrix and the last step will be calculated on 22×

matrix. The last remaining column will be placed on the 1
st

column space of the sorted matrix.

3. FPGA HARDWARE IMPLEMENTATION

In this section the main features of the FPGA

implementation are presented. The target technology is

Xilinx Virtex®-5 FPGA technology. The design flow

employs System Generator [7] for design capture simulation

and verification. In order to support the different number of

antenna/user and modulation orders, the detector is designed

for the most demanding 44× , 64-QAM case.

The block diagram of the MIMO 802.16e broadband

wireless receiver is shown in the Figure 1.

Figure 1: Block diagram of the MIMO 802.16e broadband
wireless receiver.

It is assumed that the channel matrix is perfectly known

to the receiver which can be accomplished by classical

means of channel estimation [8]. After channel reordering

and QR decomposition, the sphere detector (SD) is applied.

In preparation for engaging a soft-input-soft-output channel

decoder (e.g. Turbo decoder), soft outputs are produced by

computing the log-likelihood ratio (LLR) of the detected

bits.

The main architectural elements of the system include

the data sub-carrier processing and managing the system

sub-modules to process the desired number of sub-carriers in

real time while simultaneously minimizing processing

latency. The channel matrix is estimated for every data sub-

carrier which limits the available processing time for every

channel matrix. For the selected FPGA, with a target clock

frequency of 225MHz and a communication bandwidth of 5

MHz (corresponding to 360 data sub-carriers in a WiMAX

system), the available number of processing clock cycles per

channel matrix interval is calculated in (10)

()
()

64
225/1

360/9.102
_ ≅=

MHz

us
cyclesnum (10)

The design is optimized to meet the timing specification

defined in (10). Hence, the sub-modules are configured in a

pipeline fashion to accommodate the high throughput of the

channel matrix coefficient stream. Besides the high data rate,

managing the latency of the sub-modules was also an

important issue guiding the design architecture. The latency

issues were solved by introducing Time Division

Multiplexing (TDM) of the successive channel matrices.

This approach provided more processing time between the

matrix elements of the same channel while still sustaining

high data throughput. The number of channels comprising a

TDM grouping varies as a function of the specific sub-

module. The channel matrix inversion process employs 5

channels in the TDM scheme, while 15 channels are time

division multiplexed in the real-valued QR decomposition

module.

3.1. Channel Matrix Reordering

To meet the high data rate requirements of the system the

channel ordering processing is realized using the pipelined

architecture as shown in Figure 2. The channel matrix is

successively deflated in dimension as it progresses through

the processing pipeline. Buffer memories organized in a

ping-pong manner are incorporated to store the sorted

columns. The first iteration buffer holds the estimated matrix

values and its size is determined by the number of data sub-

carriers. Buffers for the additional iterations store 5 channels

employed in the TDM structure.

Figure 2: Iterative channel matrix reordering algorithm.

The calculation of the G
~

 matrix is the most demanding

component in Figure 2. The heart of the process is matrix

inversion which is realized using QR decomposition (QRD).

A common method for realizing QRD is based on Givens

Rotations [9]. This paper presents a novel approach for

performing the complex rotations which are the fundamental

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

computations in the systolic array we are using. Some well

known algorithms for angle estimation and planar rotations,

such as CORDIC, introduce very high system latency for the

numerical accuracy required in this application, and this is

unacceptable for our system. The goal was to find an

alternative solution for vector rotation and phase estimation

using the FPGA embedded DSP resources (DSP48 [10]).

The algorithm described in [9] shows that the diagonal cell

of the systolic structure rotates the input vector to the real

axis and delivers the angle measured in this process to the

off-diagonal cells where an additional set of rotations are

applied. Denoting the complex value in a diagonal cell as Z,

we observe that multiplication of the value contained in an

off-diagonal cell with the complex conjugate *Z and scaling

by ()2

/1 Zsqrt produces the desired rotation. The division is

done as a multiplication with a reciprocal value calculated

using a polynomial approximation on the defined interval.

Analysis of the function)(xf , defined in (11), showed the

range where the function is close to linear. A first order

approximation can be applied to data in the interval)[∞+,c ,

where the constant c is chosen to be as large possible, while

producing an acceptably small error for our application. The

input data range is determined in the following

manner () () []1,1,;20
2

−∈ℑℜ<< ZZZ ; hence the values

lower than c have to be scaled in order to be in range][2,c .

The input scaling is implemented by shifting the data by the

number of sign bits carried in the value, and the shift factor

is determined using a binary search of the leading bits. Since

the sqrt function is approximated, the shift factor is chosen

to be an even number of bits so the output compensation

scaling of the result will just be simple shifts. Taking all

these facts into account, the constant was determined to

be 25.0=c . The first order approximation is illustrated in

(11):

()
x

xfxfxxfxxf
1

);()()(=′⋅∆+=∆+ (11)

The values)(xf and)(xf ′ are mapped to FPGA memories

[10] while the multiplication is done using the DSP48 slice.

Using the approximation, the final signal flowgraph of the

complex rotator in the diagonal systolic cell is shown in the

Figure 3.

The data sent to the off-diagonal cells are actually in-

phase and quadrature components of the rotated vector

scaled by the corresponding approximated value. The

multiplication process in the off-diagonal cell is defined in

(12):

() ()[] =
+

−∗+
22

1

rotrot

rotrot

QI
jQIjQI

()

+
−

+
+=

2222

rotrot

rot

rotrot

rot

QI

Q
j

QI

I
jQI (12)

22

22

QI

QI

+

+

x
1

22
QI +

22

1

QI +
x

1

Figure 3: Block diagram of the diagonal systolic array cell.

High data throughput is obtained using a pipelined

architecture for the diagonal and off-diagonal cells while the

latency introduced by the approximation module and

complex multiplier was managed by time division

multiplexing (TDM) of the hardware across 5 channels. The

number of diagonal and off-diagonal cells implemented for

the 44× matrix is 1 and 7, respectively while the processing

time to decompose a single matrix is 1644 =× data cycles.

The data is delivered at the rate of one sample every 3 clock

cycles, so that total time to decompose a single matrix is

48443 =×× clock cycles (out of the available 64). The rest

of the available cycles are used for IO and initializing the

memories for the next 5-channel TDM sub-frame. Back

substitution of the decomposed matrix [9] and further

reordering operations in (9) are implemented in the same

TDM manner using established and published algorithms.

3.2. Modified Real-Valued QR decomposition

After obtaining the optimal ordering of the channel matrix

columns, the QR decomposition (QRD) on the real-valued

matrix coefficients is applied. The functional unit used for

this QRD processing is similar to the QRD engine designed

to compute the inverse matrix, but with some modifications.

The input data in this case are real valued and the systolic

array structure has a correspondingly higher degree. In

essence, the higher order matrix is processed, as explained

in (5), and in order to meet the desired timing constraints the

input data consumption rate had to be 1 input sample per

clock cycle. This introduced challenges around processing

latency problems which couldn’t be addressed with a 5-

channel TDM structure. The number of channels in a TDM

group was increased to 15 to provide more time between the

successive elements of the same channel matrix.

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

3.3. Sphere Detector (SD)

The norm computation defined in (8) is done in the PED

blocks of the SD. Depending on the level of the tree, three

different PED blocks are used: the root node PED block

calculates all possible PEDs (tree level index is 8== Mi).

The second level PED block computes 8 possible PEDs for

each of the 8 survivor paths generated in the previous level.

This will give us 64 generated PEDs for the tree level index

7=i . The third type of PED block is used for all other tree

levels which compute the closest-node PED for all PEDs

computed on the previous level. This will fix the number of

branches on each level to 64=K , thus propagating to the last

level 1=i and producing 64 final PEDs along with their

detected symbol sequences. The closest-node search is

presented in the sort-free SD [2].

The pipeline architecture of the SD allows data

processing on every clock cycle, thus the number of PED

blocks necessary at every tree level is only one. The total

number of PED units is equal to the number of tree levels,

which for 44× 64-QAM, is 8. The block diagram of the SD

is illustrated in the Figure 4. The input data are provided

from the real-valued QRD and the outputs are saved and

analyzed further in the design, depending on the type of

decoding process.

Figure 4: Block diagram of the sphere detector

3.4. Soft output decoding

Two types of decoding process can be employed in the SD,

hard decoding, that determines the sequence having

minimum distance metric through all levels in the tree, and

soft decoding which represents each output bit as a Log-

Likelihood Ratio (LLR) value, these values typically being

supplied as an a priori input values to the channel decoder.

Although soft decoding isn’t part of the material reported in

this paper, the sphere detector implementation provides

support for the generation of soft outputs for use in the

iterative detector/decoder shown in Figure 5. Floating point

simulations have shown a significant improvement in BER

performance when iterative soft detection is used [5]. The

iterative structure presents challenges for the memory

architecture of the system, and additional memory buffers

must be used to store block of bits along with their PEDs, so

increasing the memory footprint of the FPGA design.

Figure 5: Block diagram of the iterative soft decoding

Generating Soft Values block in the Figure 5 is designed

based on the algorithm described in [12]. LLR values are

computed, saturated to 3 bits and decoded further using a

CTC. The algorithm uses extrinsic information provided by

the CTC as a priori LLR, AL and based on the stored PED

value calculates the output LLR, EL . High latency and delay

introduced by the soft generating block is minimized by

using a parallel/pipelined architecture.

4. FPGA RESOURCE UTILIZATION

The architecture described in the previous sections was

realized using the Xilinx System Generator for DSP [7]

design flow and implemented on a Virtex®-5

XC5VFX130T-2FF1738 FPGA [10]. The target clock

frequency was 225MHz. As mentioned earlier, the most

computationally demanding 44× 64-QAM configuration

has been designed and tested. The achievable raw data rate

in this case is calculated as follows in (13):

nbitsMssubcarriernum
T

D T

symb

**_*
1

=

[]Mbps
s

D 965.836*4*360*
9.102

1
==

µ
 (13)

The implementation and simulation included the detection

process illustrated in the Figure 1 with the exclusion of the

soft output generation module. Table I shows the resource

consumption for each of the key functional units in the

design. The percentage utilization values in the table

indicate FPGA area expressed relative to a XC5VFX130T

device.
TABLE I

RESOURCE FOOTPRINT SUMMARY BY SUB-SYSTEM

Function Slices LUTs/FFs DSP48 Block

RAM

Channel

preproc.

9,999

(48%)

20,339/29,954

(24%)

159

(49%)

105

(17%)

RVD

QRD

1,715

(8%)

4,418/5,556

(5%)

30

(9%)

27

(4%)

Sphere

Detector

2,445

(11%)

3,113/6,525

(3%)

48

(15%)

12

(2%)

5. SIMULATION RESULTS

The entire detection chain was realized using System

Generator for DSP. Design validation employed not only the

simulation semantics of the MATLAB/Simulink® [13]

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

environment but also the co-simulation capabilities of

System Generator [7]. In our simulation we assume that the

channel matrix is known to the receiver. In-phase and

quadrature components of the channel matrix coefficients

are drawn from a normal distribution and delivered from

MATLAB to the System Generator modeling environment.

The bit error rate (BER) is computed using this simulation

framework. Figure 6 contrasts the BER plots for our fixed-

point hard decision implementation, the floating-point

version of the model and the ML curve. We note that there

is virtually no difference between the floating-point software

model and the hardware implementation. For a BER of 10
-5

the difference is only 0.006dB.

6. CONCLUSION

This paper has described the hardware implementation of a

sphere detector for 802.16e systems. Unlike many papers on

this topic we have described the algorithmic and architecture

details of the channel matrix pre-processor preceding the

sphere detector. There are many ways to realize the

preprocessing, and while our method is computationally

complex, the resulting BER performance is close to ML. We

note that the pre-processor is the largest functional unit in

the design requiring 5.3x more multipliers than the QRD

block and 3.3x more multipliers than the sphere detector

itself. However, considering the system benefits delivered by

the design, and noting that new generation FPGAs provide

in excess of 2000 multipliers, the cost of the circuit is

warranted.

0 5 10 15 20 25
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

EbNo [dB]

B
E

R

64 QAM, 4X4

Fixed-Point FPGA Sphere Det./preprocessing

Floating-point Matlab Sphere Det./preprocessing

Maximum Likelihood

Figure 6: BER curves comparing the 4x4 64-QAM system for the
floating point MATLAB simulation (hard decision), System
Generator design (hard decision) and ML curve.

7. REFERENCES

[1] A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner

and H. Bolcskei, “VLSI implementation of MIMO detection
using the sphere decoding algorithm,” IEEE JSSC, vol. 40,
no. 7, pp. 1566–1577, Jul 2005.

[2] K. Amiri, C. Dick, R. Rao, J. R. Cavallaro, “Flex-Sphere: An
FPGA configurable sort-free sphere detector for multi-user
MIMO wireless system”, Proceedings of the 2008 Software
Defined Radio Technical Conference, Oct. 26-30, 2008,
Washington D.C.

[3] L. G. Barbero, J. S. Thompson, “Rapid Prototyping of a
Fixed-Throughput Sphere Decoder for MIMO Systems”,
IEEE International Conference on Communications, Volume
7, Page(s):3082 – 3087, June 2006.

[4] L. G. Barbero, J. S. Thompson, “A fixed-complexity MIMO
detector based on the complex sphere decoder” Signal
Processing Advances in Wireless Communications, 2006.
SPAWC ’06. IEEE 7th Workshop on, Jul. 2006.

[5] Z. Guo, P. Nilsson, “Algorithm and implementation of the K-
best sphere decoding for MIMO detection”, IEEE Journal
Selected Areas in Communications, Volume 24, Issue 3,
Page(s): 491 – 503, March 2006.

[6] P.W. Wolniansky, G. J. Foschini, G.D. Golden, “V-BLAST:
an architecture for realizing very high data rates over the
rich-scattering wireless channel”, Proc. URSI International
Symposium on Signals, Systems and Electronics (ISSSE ’98),
Atlanta, GA, pp. 295–300, Sept. 1998

[7] Xilinx, “System Generator for DSP – User Guide”, Release
10.1, March 2008.

[8] A. R. S. Bahai, B. R. Saltzberg and M. Ergen, Multi-carrier
digital communications theory and applications of OFDM,
Springer, 2004.

[9] M. Karkooti, J.R. Cavallaro, C. Dick, “FPGA Implementation
of Matrix Inversion Using QRD-RLS Algorithm”, Conference
Record of the Thirty-Ninth Asilomar Conference on Signals,
Systems and Computers, page(s): 1625-1629, 2005.

[10] Xilinx, “Virtex-5 FPGA – User Guide”, UG190 (v4.5),
January 2009.

[11] Xilinx, “IEEE 802.16e CTC decoder v3.0”, Product
specification DS634, October 2007.

[12] B. M. Hochwald, S. ten Brink, “Achieving near-capacity on a
multiple-antenna channel” IEEE Trans. Commun., vol. 51,
no. 3, pp. 389–399, Mar. 2003.

[13] The Mathworks, Simulink – Simulation and Model Based
Design, http://www.mathworks.com/products/simulink/

