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ABSTRACT 

 

Spatial multiplexing multiple-input-multiple-output (MIMO) 

communication systems have recently drawn significant 

attention as a means to achieve tremendous gains in wireless 

system capacity and link reliability. The optimal hard 

decision detection for MIMO wireless systems is the 

maximum likelihood (ML) detector. ML detection is 

attractive due to its superior performance (in terms of BER). 

However, direct implementation grows exponentially with 

the number of antennas and the modulation scheme, making 

its ASIC or FPGA implementation infeasible for all but low 

density modulation schemes using a small number of 

antennas. Sphere decoding (SD) solves the ML detection 

problem in a computationally efficient manner. However, 

even with this complexity reduction, real-time 

implementation on a DSP processor is generally not feasible 

and high-performance parallel computing platforms such as 

FPGAs are increasingly being employed for this class of 

applications. The sphere detection problem affords many 

opportunities for algorithm and micro-architecture 

optimizations and tradeoffs. This paper provides an 

overview of and FPGA implementation of a sphere detector 

and channel matrix pre-processor applicable to the 802.16e 

air interface protocol. The architecture of the design is 

presented along with resource utilization data and BER 

performance curves.  

 

1. INTRODUCTION 

 

Spatial division multiplexing (SDM) MIMO processing 

significantly increases the spectral efficiency, and hence 

capacity, of a wireless communication system: it is a core 

component of next generation wireless systems, for example, 

WiMAX and other OFDM-based communication schemes. 

Sphere detection is a prominent method of simplifying the 

detection complexity in both SDM and SDMA systems 

while maintaining BER performance comparable with 

optimum maximum-likelihood (ML) detection [1], [2]. 

There are several approaches for realizing sphere detectors, 

and the algorithmic landscape is rich with methods that 

enable the designer to make various tradeoffs between 

performance, e.g. throughput of the wireless channel, BER, 

and implementation complexity [3]. While the algorithm 

(e.g. K-best or depth-first-search (DFS)) and hardware 

architecture obviously have a strong influence on the 

resulting BER performance of the MIMO detector, the 

channel matrix pre-processing that is typically conducted 

prior to sphere detection likewise has a significant influence 

on the BER performance [4]. The channel matrix pre-

processing can range from very simple processing that 

might, for example, compute a preferred order for 

processing the spatially multiplexed data streams, based on 

variance computations applied to the channel matrix, 

through to much more sophisticated matrix factorization 

techniques that determine the preferred order for processing 

the streams in a more optimal (in the BER sense) manner.  
This paper describes the field programmable gate array 

(FPGA) implementation of a detector for spatial 

multiplexing MIMO in 802.16e broadband wireless systems. 

By utilizing a channel matrix pre-processor that realizes a 

type of successive interference cancellation similar in 

concept to that employed in BLAST (Bell Labs Layered 

Space Time) processing, the detector achieves close to ML 

performance. 

 

2. MIMO SYSTEM MODEL 

 

Let us assume wireless MIMO system that has MT number of 

transmit antennas and MR number of receive antennas, where 

MR ≥ MT. All transmit antennas use the same channel for 

simultaneous communication with the receive antennas. The 

complex input-output MIMO model can be written as: 
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receive vector of dimension 1×RM  and n~  is a circularly 

symmetric complex additive white Gaussian noise vector of 

size MR. The values for Tj Mj ,...,1,
~

=s  are chosen from the 

complex set of symbols Ω  with p bits per symbol, i.e. 
p2=Ω , where the set of all possible transmitted vector 

symbols is denoted by pΩ . The MT parallel streams may use 

different modulation densities such as 4-, 16- or 64-QAM.  

The detection process requires computing the solution 

to (1), and the goal is to reduce the required compute 

complexity by using simple arithmetic operations, while 

simultaneously retaining the numerical integrity of the final 

result. The matrix elements in (1) are formed from complex 

valued scalar quantities. However, this complex valued 

system of equations can be decomposed into a system of 

equations employing only real-valued numbers as follows 
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with the new matrices having larger dimensions M=2MT and 

N=2MR. While the dimensinality of the key matrices has 

increased, the arithmetic required to manipulate the matrix 

elements is now simplified due to the real-valued nature of 

the entries. Each Mii ,...,1, =s in s is chosen from the set of 

real numbers 'Ω , which in the case of 64-QAM modulation 

is { }1,3,5,7' ±±±±=Ω .  

In addition to the real-valued decomposition (RVD) 

described above, the modified RVD (M-RVD) presented in 

[2] is employed in our design to improve the BER 

performance. The new reordering of real and imaginary 

values of the complex components in (1) is summarized as 

follows: 

nsHy ˆˆˆˆ +=  (4) 
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The matrix Ĥ  is the permuted channel matrix of (3) whose 

columns are reordered to match the other vectors of the new 

decomposition ordering in (5). There is no extra 

computational cost associated with this new reordering. The 

optimum detector for the system described in (4) would be 

the maximum-likelihood detector which minimizes the value 
2

Hsy −  across all possible combinations of the vector s. 

For high order modulation and large number of antennas, the 

number of calculations in the detection scheme grows 

exponentially, and the corresponding compute requirements 

render the real-time implementation of ML detection 

impractical. A reduced complexity quasi-ML algorithm can 

be formulated starting with the QR decomposition of the 

channel matrix H and defining the distance metric as shown 

in (6)  
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where H=QR, QQ
H

=I and yQy H=′ . The final term in (6) is 

a consequence of the upper triangular structure of the matrix 

R. The norm in (6) can be computed in M iterations, starting 

from the M
th

 (i=M) and progressing to the first antenna (i = 

1). For the first iteration the initial partial norm is defined as 

zero ( )( ) 01

1 =+

+

M

MT s . Using the notation from [2], the partial 

Euclidian distance at each iteration can be calculated as: 
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The iterative algorithm defined in equations (7) and (8) can 

be viewed as a tree traversal with each level of the tree i 

corresponding to processing symbols from the i
th

 antenna. 

The tree traversal can be performed using several different 

methods [5]. In our implementation we elect to employ a 

breadth-first search due to the attractive feedforward 

structure (and hence hardware friendly) nature of the 

approach. At each level only the K nodes with the smallest Ti 

are chosen for the expansion. This type of detector is called 

a K-best detector [2], [5].  

The order in which the antennas are processed by the 

sphere detector has a profound impact on the BER (bit error 

rate) performance. So prior to sphere detection, channel 

reordering is applied. The proposed method is a V-BLAST-

like channel reordering [6]. The method determines the 

optimum detection order of columns of the complex channel 

matrix defined in (1) by calculating the norms of the rows of 

the pseudo-inverse of the channel matrix over several 

iterations. Depending on the iteration count, the row with the 

maximum or minimum norm is selected. The row with the 

minimum Euclidian norm represents the influence of the 

strongest antenna while the row with the maximum 
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Euclidian norm represents the influence of the weakest 

antenna. The novel approach first processes the weakest 

stream. All subsequent iterations process the streams from 

highest to lowest power. The iteration process is illustrated 

in the following equations: 
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where ][,

~
jkjH  represents the deflated channel matrix excluding 

the detected jk  column which is placed on the thT jM )1( +−  

column space of the new sorted matrix. One can envision 

that every iteration of the reordering method operates on the 

smaller matrix and the last step will be calculated on 22×  

matrix. The last remaining column will be placed on the 1
st
 

column space of the sorted matrix.  

 

3. FPGA HARDWARE IMPLEMENTATION 

 

In this section the main features of the FPGA 

implementation are presented. The target technology is 

Xilinx Virtex®-5 FPGA technology. The design flow 

employs System Generator [7] for design capture simulation 

and verification. In order to support the different number of 

antenna/user and modulation orders, the detector is designed 

for the most demanding 44× , 64-QAM case.  

The block diagram of the MIMO 802.16e broadband 

wireless receiver is shown in the Figure 1.  

 

 
Figure 1:  Block diagram of the MIMO 802.16e broadband 
wireless receiver. 

 

It is assumed that the channel matrix is perfectly known 

to the receiver which can be accomplished by classical 

means of channel estimation [8]. After channel reordering 

and QR decomposition, the sphere detector (SD) is applied. 

In preparation for engaging a soft-input-soft-output channel 

decoder (e.g. Turbo decoder), soft outputs are produced by 

computing the log-likelihood ratio (LLR) of the detected 

bits.  

The main architectural elements of the system include 

the data sub-carrier processing and managing the system 

sub-modules to process the desired number of sub-carriers in 

real time while simultaneously minimizing processing 

latency. The channel matrix is estimated for every data sub-

carrier which limits the available processing time for every 

channel matrix. For the selected FPGA, with a target clock 

frequency of 225MHz and a communication bandwidth of 5 

MHz (corresponding to 360 data sub-carriers in a WiMAX 

system), the available number of processing clock cycles per 

channel matrix interval is calculated in (10) 

( )
( )

64
225/1

360/9.102
_ ≅=

MHz

us
cyclesnum  (10) 

The design is optimized to meet the timing specification 

defined in (10). Hence, the sub-modules are configured in a 

pipeline fashion to accommodate the high throughput of the 

channel matrix coefficient stream. Besides the high data rate, 

managing the latency of the sub-modules was also an 

important issue guiding the design architecture. The latency 

issues were solved by introducing Time Division 

Multiplexing (TDM) of the successive channel matrices. 

This approach provided more processing time between the 

matrix elements of the same channel while still sustaining 

high data throughput. The number of channels comprising a 

TDM grouping varies as a function of the specific sub-

module. The channel matrix inversion process employs 5 

channels in the TDM scheme, while 15 channels are time 

division multiplexed in the real-valued QR decomposition 

module.  

 

3.1. Channel Matrix Reordering 

 

To meet the high data rate requirements of the system the 

channel ordering processing is realized using the pipelined 

architecture as shown in Figure 2. The channel matrix is 

successively deflated in dimension as it progresses through 

the processing pipeline. Buffer memories organized in a 

ping-pong manner are incorporated to store the sorted 

columns. The first iteration buffer holds the estimated matrix 

values and its size is determined by the number of data sub-

carriers. Buffers for the additional iterations store 5 channels 

employed in the TDM structure. 

 

 
Figure 2:  Iterative channel matrix reordering algorithm. 

 

The calculation of the G
~

 matrix is the most demanding 

component in Figure 2. The heart of the process is matrix 

inversion which is realized using QR decomposition (QRD). 

A common method for realizing QRD is based on Givens 

Rotations [9]. This paper presents a novel approach for 

performing the complex rotations which are the fundamental 
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computations in the systolic array we are using. Some well 

known algorithms for angle estimation and planar rotations, 

such as CORDIC, introduce very high system latency for the 

numerical accuracy required in this application, and this is 

unacceptable for our system. The goal was to find an 

alternative solution for vector rotation and phase estimation 

using the FPGA embedded DSP resources (DSP48 [10]). 

The algorithm described in [9] shows that the diagonal cell 

of the systolic structure rotates the input vector to the real 

axis and delivers the angle measured in this process to the 

off-diagonal cells where an additional set of rotations are 

applied. Denoting the complex value in a diagonal cell as Z, 

we observe that multiplication of the value contained in an 

off-diagonal cell with the complex conjugate *Z and scaling 

by ( )2

/1 Zsqrt  produces the desired rotation. The division is 

done as a multiplication with a reciprocal value calculated 

using a polynomial approximation on the defined interval. 

Analysis of the function )(xf , defined in (11), showed the 

range where the function is close to linear. A first order 

approximation can be applied to data in the interval )[ ∞+,c , 

where the constant c is chosen to be as large possible, while 

producing an acceptably small error for our application. The 

input data range is determined in the following 

manner ( ) ( ) [ ]1,1,;20
2

−∈ℑℜ<< ZZZ ; hence the values 

lower than c have to be scaled in order to be in range ][ 2,c . 

The input scaling is implemented by shifting the data by the 

number of sign bits carried in the value, and the shift factor 

is determined using a binary search of the leading bits. Since 

the sqrt function is approximated, the shift factor is chosen 

to be an even number of bits so the output compensation 

scaling of the result will just be simple shifts. Taking all 

these facts into account, the constant was determined to 

be 25.0=c . The first order approximation is illustrated in 

(11): 

( )
x

xfxfxxfxxf
1

);()()( =′⋅∆+=∆+  (11) 

The values )(xf  and )(xf ′  are mapped to FPGA memories 

[10] while the multiplication is done using the DSP48 slice. 

Using the approximation, the final signal flowgraph of the 

complex rotator in the diagonal systolic cell is shown in the 

Figure 3. 

The data sent to the off-diagonal cells are actually in-

phase and quadrature components of the rotated vector 

scaled by the corresponding approximated value. The 

multiplication process in the off-diagonal cell is defined in 

(12):  
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Figure 3:  Block diagram of the diagonal systolic array cell. 

 

High data throughput is obtained using a pipelined 

architecture for the diagonal and off-diagonal cells while the 

latency introduced by the approximation module and 

complex multiplier was managed by time division 

multiplexing (TDM) of the hardware across 5 channels. The 

number of diagonal and off-diagonal cells implemented for 

the 44×  matrix is 1 and 7, respectively while the processing 

time to decompose a single matrix is 1644 =×  data cycles. 

The data is delivered at the rate of one sample every 3 clock 

cycles, so that total time to decompose a single matrix is 

48443 =××  clock cycles (out of the available 64). The rest 

of the available cycles are used for IO and initializing the 

memories for the next 5-channel TDM sub-frame. Back 

substitution of the decomposed matrix [9] and further 

reordering operations in (9) are implemented in the same 

TDM manner using established and published algorithms.  

 

3.2. Modified Real-Valued QR decomposition 

 

After obtaining the optimal ordering of the channel matrix 

columns, the QR decomposition (QRD) on the real-valued 

matrix coefficients is applied. The functional unit used for 

this QRD processing is similar to the QRD engine designed 

to compute the inverse matrix, but with some modifications. 

The input data in this case are real valued and the systolic 

array structure has a correspondingly higher degree. In 

essence, the higher order matrix is processed, as explained 

in (5), and in order to meet the desired timing constraints the 

input data consumption rate had to be 1 input sample per 

clock cycle. This introduced challenges around processing 

latency problems which couldn’t be addressed with a 5-

channel TDM structure. The number of channels in a TDM 

group was increased to 15 to provide more time between the 

successive elements of the same channel matrix.  
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3.3. Sphere Detector (SD) 

 

The norm computation defined in (8) is done in the PED 

blocks of the SD. Depending on the level of the tree, three 

different PED blocks are used: the root node PED block 

calculates all possible PEDs (tree level index is 8== Mi ). 

The second level PED block computes 8 possible PEDs for 

each of the 8 survivor paths generated in the previous level. 

This will give us 64 generated PEDs for the tree level index 

7=i . The third type of PED block is used for all other tree 

levels which compute the closest-node PED for all PEDs 

computed on the previous level. This will fix the number of 

branches on each level to 64=K , thus propagating to the last 

level 1=i  and producing 64 final PEDs along with their 

detected symbol sequences. The closest-node search is 

presented in the sort-free SD [2]. 

The pipeline architecture of the SD allows data 

processing on every clock cycle, thus the number of PED 

blocks necessary at every tree level is only one. The total 

number of PED units is equal to the number of tree levels, 

which for 44×  64-QAM, is 8. The block diagram of the SD 

is illustrated in the Figure 4. The input data are provided 

from the real-valued QRD and the outputs are saved and 

analyzed further in the design, depending on the type of 

decoding process. 

 

 
Figure 4:  Block diagram of the sphere detector 

 

3.4. Soft output decoding 

 

Two types of decoding process can be employed in the SD, 

hard decoding, that determines the sequence having 

minimum distance metric through all levels in the tree, and 

soft decoding which represents each output bit as a Log-

Likelihood Ratio (LLR) value, these values typically being 

supplied as an a priori input values to the channel decoder. 

Although soft decoding isn’t part of the material reported in 

this paper, the sphere detector implementation provides 

support for the generation of soft outputs for use in the  

iterative detector/decoder shown in Figure 5. Floating point 

simulations have shown a significant improvement in BER 

performance when iterative soft detection is used [5]. The 

iterative structure presents challenges for the memory 

architecture of the system, and additional memory buffers 

must be used to store block of bits along with their PEDs, so 

increasing the memory footprint of the FPGA design.  

 

 
Figure 5:  Block diagram of the iterative soft decoding 

 

Generating Soft Values block in the Figure 5 is designed 

based on the algorithm described in [12]. LLR values are 

computed, saturated to 3 bits and decoded further using a 

CTC. The algorithm uses extrinsic information provided by 

the CTC as a priori LLR, AL  and based on the stored PED 

value calculates the output LLR, EL . High latency and delay 

introduced by the soft generating block is minimized by 

using a parallel/pipelined architecture. 

 

4. FPGA RESOURCE UTILIZATION 

 

The architecture described in the previous sections was 

realized using the Xilinx System Generator for DSP [7] 

design flow and implemented on a Virtex®-5 

XC5VFX130T-2FF1738 FPGA [10]. The target clock 

frequency was 225MHz. As mentioned earlier, the most 

computationally demanding 44×  64-QAM configuration 

has been designed and tested. The achievable raw data rate 

in this case is calculated as follows in (13): 

nbitsMssubcarriernum
T

D T

symb

**_*
1

=   

[ ]Mbps
s

D 965.836*4*360*
9.102

1
==

µ
 (13) 

The implementation and simulation included the detection 

process illustrated in the Figure 1 with the exclusion of the 

soft output generation module. Table I shows the resource 

consumption for each of the key functional units in the 

design. The percentage utilization values in the table 

indicate FPGA area expressed relative to a XC5VFX130T 

device. 
TABLE I 

RESOURCE FOOTPRINT SUMMARY BY SUB-SYSTEM 

Function Slices LUTs/FFs DSP48 Block

RAM 

Channel 

preproc. 

9,999 

(48%) 

20,339/29,954 

(24%) 

159 

(49%) 

105 

(17%) 

RVD 

QRD 

1,715 

(8%) 

4,418/5,556 

(5%) 

30 

(9%) 

27 

(4%) 

Sphere 

Detector 

2,445 

(11%) 

3,113/6,525 

(3%) 

48 

(15%) 

12 

(2%) 

 

5. SIMULATION RESULTS 

 

The entire detection chain was realized using System 

Generator for DSP. Design validation employed not only the 

simulation semantics of the MATLAB/Simulink® [13] 
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environment but also the co-simulation capabilities of 

System Generator [7]. In our simulation we assume that the 

channel matrix is known to the receiver. In-phase and 

quadrature components of the channel matrix coefficients 

are drawn from a normal distribution and delivered from 

MATLAB to the System Generator modeling environment. 

The bit error rate (BER) is computed using this simulation 

framework. Figure 6 contrasts the BER plots for our fixed-

point hard decision implementation, the floating-point 

version of the model and the ML curve. We note that there 

is virtually no difference between the floating-point software 

model and the hardware implementation. For a BER of 10
-5 

the difference is only 0.006dB. 

 

6. CONCLUSION 

 

This paper has described the hardware implementation of a 

sphere detector for 802.16e systems. Unlike many papers on 

this topic we have described the algorithmic and architecture 

details of the channel matrix pre-processor preceding the 

sphere detector. There are many ways to realize the 

preprocessing, and while our method is computationally 

complex, the resulting BER performance is close to ML. We 

note that the pre-processor is the largest functional unit in 

the design requiring 5.3x more multipliers than the QRD 

block and 3.3x more multipliers than the sphere detector 

itself. However, considering the system benefits delivered by 

the design, and noting that new generation FPGAs provide 

in excess of 2000 multipliers, the cost of the circuit is 

warranted. 
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Figure 6:  BER curves comparing the 4x4 64-QAM system for the 
floating point MATLAB simulation (hard decision), System 
Generator design (hard decision) and ML curve. 
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