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FPGA Implementation of an Evolutionary
Algorithm for Autonomous Unmanned Aerial

Vehicle On-Board Path Planning
Jonathan Kok, Felipe Gonzalez, and Neil Kelson

Abstract—In this paper, a hardware-based path planning
architecture for unmanned aerial vehicle (UAV) adaptation is
proposed. The architecture aims to provide UAVs with higher au-
tonomy using an application specific evolutionary algorithm (EA)
implemented entirely on a field programmable gate array (FPGA)
chip. The physical attributes of an FPGA chip, being compact in
size and low in power consumption, compliments it to be an ideal
platform for UAV applications. The design, which is implemented
entirely in hardware, consists of EA modules, population storage
resources, and three-dimensional terrain information necessary
to the path planning process, subject to constraints accounted
for separately via UAV, environment and mission profiles. The
architecture has been successfully synthesised for a target Xilinx
Virtex-4 FPGA platform with 32% logic slices utilisation. Results
obtained from case studies for a small UAV helicopter with
environment derived from LIDAR (Light Detection and Ranging)
data verify the effectiveness of the proposed FPGA-based path
planner, and demonstrate convergence at rates above the typical
10 Hz update frequency of an autopilot system.

Index Terms—Evolutionary algorithm, field programmable
gate array, path planning, unmanned aerial vehicle.

I. INTRODUCTION

UNMANNED aerial vehicles (UAVs) are on an upsurge

to be the preeminent platform for some military [2]

and civilian aerial applications [3]. In the 5 years, 2010-

2015, the U.S. UAV market alone is forecasted to generate

USD$62 billion in revenues [4]. Potential advantages of UAV

deployment on both civilian and military missions include

decreased risk of fatality and reduced workload of human

operators, these in turn increasing efficiency and reducing

costs of missions.

The advancement of UAV technology and applications

has been assisted by research aimed at improving levels

of autonomy whilst being bounded by flight constraints.

These include power consumption, physical space and weight

limitations, along with limited on-board telecommunication,

computational, and other resources. One aspect of the research
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effort is to investigate the feasibility of more autonomous on-

board path planning as an alternative to UAV path planning

currently performed remotely by human operators. This is

not straightforward, as solving the path planning problem for

autonomous UAV navigation is an NP-hard problem [5]. Fur-

thermore, the overall path planning process involves complex

design issues, as there exists strong couplings between the

environment representation, type of path planning algorithm

and the application-specific task [6].

To date, UAV path planning algorithms have been developed

via mainly PC software-based implementation, which may

not explicitly take into account some required real-time flight

constraints appropriate for UAVs operating autonomously in

the field [7]. In contrast, reconfigurable field programmable

gate arrays (FPGAs) are relatively small and light, making

them suitable for flight-constrained UAV applications where

e.g. the size and weight of the payload is greatly restricted.

In light of the above, our work considers an entirely on-

board hardware-based path planning system in the context

of an overall constrained process, where profiles that define

constraints relating to the environment, the mission, and the

individual characteristics of the UAV are specified. A path

planning architecture is proposed and implemented directly on

an FPGA platform based on the use of evolutionary algorithms

(EAs). Regarding algorithm choice, EAs are considered as

viable search algorithms for real-time UAV path planning [8]–

[13].

The EA-based path planner developed in this work is

based on a modified genetic algorithm (GA) [14] capable

of finding global solutions, albeit at significant computational

expense [15]. To address this issue, a GA-based path planner is

developed with all modules of the proposed architecture being

entirely implemented and run on a single FPGA for computa-

tional efficiency. Compared to prior work, this study is the only

one known to the authors that attempts to implement all of the

relevant functionalities of the GA-based path planner entirely

on reconfigurable FPGA hardware. Conceptually, we elaborate

on earlier design proposals by explicitly accounting for a

wider range of flight constraints via the inclusion of segregated

UAV, environment and mission profiles within corresponding

separate hardware modules. Additionally, three-dimensional

terrain data is stored on the FPGA, via the hardware module

corresponding to the environment profile. The approach taken

is intended to be more modular and extensible than prior

proposals, and should permit greater UAV autonomy.

To the Authors knowledge, optimal in-hardware implemen-
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tation of various GA functions and modules has also not been

addressed in detail by earlier studies. In contrast, we instead

explore hardware-based implementation of both the overall

architecture and the various functional modules within it so as

to exploit the parallel processing capability of the FPGA. For

example, our design incorporates a 6-to-1 multiplexer memory

interface which is resource efficient as compared to passing the

entire GA population from module to module. As shown via

three case studies, a hardware-based implementation of the

proposed architecture which exploits the processing capability

of the FPGA can achieve convergence at rates above the

typical 10 Hz update frequency of an autopilot system.

This paper is organized as follows. Section II gives further

details of related work and highlights the main difference

in our approach. Section III presents our proposed FPGA-

based UAV path planning system, including descriptions of the

architecture, system operation, execution flow and communi-

cation. Section IV provides hardware implementation details

for a target Xilinx Virtex 4 FPGA development platform

(available from the university HPC department). Choices for

GA population characteristics and other parameters appro-

priate to the available resources on the target FPGA are

presented, along with details of in-hardware implementations

of various path planner modules. Section V presents results

of empirical case studies to verify the effectiveness of the

proposed FPGA-based path planner for a specific UAV over

a sample three-dimensional terrain. The chosen UAV is an

unmanned 1 m length helicopter with a limited 5 kg payload

capacity (available from the ARCAA), while the terrain is a

512 m3 environment derived from LIDAR (Light Detection

and Ranging) data. Section VI concludes with a brief summary

of the applicability and current research direction.

II. BACKGROUND AND RELATED WORK

A. UAV Path Planning

Path planning can be defined as the framework employed to

determine flight plans for UAVs traversing from one location

to another [7].

B. Previous FPGA Implementations for Path Planning

FPGAs are and have been used for a range of engineering

applications [16], however their influence in path planning

applications is recent and limited [15], [17]–[23].

Alliare et al. [15] demonstrated that the possibility of in-

creased UAV navigation autonomy can be achieved by instan-

taneous on-the-fly replanning via the implementation of a path

planning GA on an FPGA for algorithm acceleration. They

argue that GAs produce higher quality solutions as compared

to deterministic algorithms but are disadvantaged due to their

extensive computational overhead that is inevitably inherited

by the GA’s population-based metaheuristics optimisation ap-

proach. Their path planning GA implementation details were

partially set according to Cocaud’s [14] work involving a

customised GA specifically for UAV task allocation and path

generation. Their results indicate that some mechanisms of the

GA running on an FPGA can be sped up by factor of thou-

sands. However, their research was limited to co-simulation

between a CPU and an FPGA running simultaneously and

exchanging information in a collaborative manner.

Vacariu et al. [17] proposed an FPGA implementation of

a simple breadth-first search (BFS) algorithm [24] applied

on static two-dimensional discrete environment. The BFS

technique, which has two degrees of freedoms, is based on

maintaining a queue of all accessible neighbours, whereby a

sequence of directions leading to the goal point is acquired.

This search algorithm is complete, that is to say it will find

a solution if one exists, but does not guarantee any level of

optimality or feasibility. Their results show execution times

sped up by factors of hundreds.

Girau et al. used an FPGA to compute approximated har-

monic control functions [25] for making robot navigation de-

cisions. The use of harmonic functions ensures that generated

trajectories avoid local optima in cluttered and concaved envi-

ronments [26]. They argued that the main advantage of their

work was not the speedup, as real-time computational speed

can be easily reached by software coded harmonic control

functions. Instead, they highlighted the potential of embedding

FPGAs for online processing needs on low powered mobile

robots.

Sudha and Mohan [19] designed an FPGA-accelerated path

planner based on the Euclidean distance transform [27] of a

captured image from an overhead camera. Priya et al. [20]

customised an FPGA architecture for path planning based

on revised simplex method [28] applied on a pre-constructed

visibility graph [29]. Sudha and Mohan argue that their path

planning solution is process complete as contrasted to Priya

et al. work, as a raw binary image of environment is directly

processed in the hardware rather than a meta-modelled nodes-

and-edges visibility graph. On the other hand, results from

Priya et al. were in factors of µs as compare to ms from Sudha

and Mohan: the former was interested in ballistic missiles

application, whereas the latter was directed towards ground-

based robot navigation.

Hachour [21] proposed an FPGA-based path planning GA

method for ground-based mobile robots. However, the path

planning GA concept and the actual hardware implementation

were not described in any detail, and the results and validated

functionality were not reported.

Huang et al. [22] proposed a hardware/software co-designed

parallel elite genetic algorithm (PEGA) for ground mobile

robot path planning in a static environment. Their FPGA-based

PEGA architecture consists of two path planning GA [30]

of which the evolutionary-influenced selection, crossover, and

mutation modules operate concurrently. Elitism is preserved

via a migration module that periodically exchanges the corre-

sponding two best members into the selection pool after a pre-

defined number of generations. However, the computationally

dominant fitness evaluation function was executed sequentially

on an embedded processor.

Schmidt and Fey [23] implemented marching pixels (MP)

[31] applied on a skeleton map (SM) [32] on an FPGA for path

planning. MP is akin to artificial ants behaving as modelled by

cellular automata, where one pixel of an image is represented

by a two-dimensional coordinate on the map. Their results

show computational effectiveness in factors of ms for image
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Fig. 1. Constraints associated with a typical UAV path planning process.

resolutions up to 1024 × 800. However, their approach inherits

the two main disadvantages from the nature of SM sampling:

the resulting path solution is non-optimal, and sharp turning

edges are probable.

While the above research works summarised in Table I

have established the concept of FPGA implementations for

speeding up different computationally intensive path planning

algorithms, this work instead aims to contribute a completely

embedded UAV path planning system inclusive of constraints

via UAV, environment and mission profiles. Note that for this

work, the UAV was the designated robotic platform but this is

not expected to be restrictive. Furthermore, unlike prior works

which were limited to a two-dimensional model, except for

[15], our work considers the real-world aspects of a three-

dimensional model.

III. PROPOSED FPGA-BASED PATH PLANNING SYSTEM

A. Path Planning Constraints and Execution

As previously mentioned, here we consider path planning

in the context of an overall constrained process. A diagram

illustrating our approach is shown in Fig. 1. Flight constraints

are segregated and handled separately with the aim of making

the overall path planning architecture more easily generalisable

and adaptable for different UAV, environment or mission

configurations.

The environment profile proposed here contains terrain

specific information by which the path planning algorithm is

constrained. Note that no restriction on the source of data

contained therein is intended for this or the other profiles.

Similarly, in-flight data refresh of one or more profiles is not

excluded. For example, static data for FPGA upload could be

transmitted from the base station, while dynamic data could be

generated by on-board cameras, sensors, or auxiliary UAVs.

The UAV profile defines the aircraft performance constraints

of the targeted UAV platform such as minimum and maximum

velocity, maximum fuel capacity, and turning radius. Similarly,

Fig. 2. Pseudo code of modified genetic algorithm for the path planner.

the mission profile includes all desired mission characteristics

such as starting and ending coordinates, flight boundaries,

elevation deviation, and maximum allowed mission-time.

The figure also illustrates a basic difference between

autonomous and non-autonomous UAV flights. In non-

autonomous operation, a human operator would verify the

feasibility of the generated path solution and approve its execu-

tion. The proposed FPGA-based architecture instead aims to

provide real-time solutions of practical utility for increasing

the level of autonomy and confidence of the system, hence

reducing or even eliminating the need for intervention by a

human operator. This is useful in tedious missions (such as

sampling and inspection).

B. Architecture

As noted earlier, the architecture for the proposed FPGA-

based path planning design is based on an application spe-

cific genetic algorithm (GA) characteristic recommended by

Cocaud [14] for flight path planning. Briefly, the GA is a

stochastic optimisation method that iteratively generates im-

proving candidate solutions using adaption techniques inspired

by natural evolution, such as natural selection, recombina-

tion/crossover, mutation and inheritance, fitness evaluation and

so forth [35], [36]. Elitism is included to prevent the loss of

beneficial solutions during the evolutionary cycle. Note also

that here the usual GA iterative process has been modified

to reinitialise parts of the population diversity, if necessary,

to conteract any tendancy towards premature convergence.

Pseudo code of the modified GA used here is shown in

Fig. 2. The various evolutionary operations are customised

specifically for a path planning task, details of which will be

elaborated below.

A schematic of the proposed FPGA-based path planning

architecture is illustrated in Fig. 3. The design is intended to

fit into a single FPGA, and includes modules corresponding

to typical GA tasks where the functionality of each module

can be set according to the algorithmic requirements of the

specific GA under consideration.

C. Overall System Operation

Overall, the driving component of the FPGA-based path

planning system shown in Fig. 3 is the Control Unit (CU)

that monitors the evolutionary process throughout the entire
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TABLE I
EXISTING LITERATURE ON FPGA IMPLEMENTATIONS OF PATH PLANNING ALGORITHMS

Work Path Planning Algorithm Environment Sampling Method Platform Model

[15] Modified Genetic Algorithm [14] Hybrid Octree Knowledge Base [14] Xilinx Virtex-II Pro XC2VP30

[17] Breath-First Search Algorithm [24] Sukharev Grid [33] Xilinx Virtex-II Pro

[18] Harmonic Potential Trajectory Control [25] Sukharev Grid [33] Xilinx Virtex-II XC2V6000

[19] Euclidean Distance Transform [27] Euclidean Distance Mapping [34] Xilinx Spartan-3 XC3S1500L

[20] Revised Simplex Method [28] Visibility Graph [29] Xilinx Virtex-II XC2V6000

[21] Motion-based Genetic Algorithm [21] - Xilinx XC4000

[22] Modified Genetic Algorithm [30] Sukharev Grid [33] Altera Stratix EP1S10F780C6

[23] Marching Pixel [31] Skeleton Map [32] Xilinx Virtex-5 XC5VLX110T

Proposed Modified Genetic Algorithm Sukharev Grid [33] Xilinx Virtex-4 XC4VLX200

Fig. 3. Schematic of the FPGA-based path planner architecture.

operation. Random number generators modelled by cellular

automata technique [37] are used for generating a sequence

of pseudo random numbers. Block random-access memories

(RAMs) in the FPGA are used for storing the parent and

offspring populations, as well as the UAV, environment and

mission profiles. The initial and subsequent populations are

then evolved based on this information.

Population of chromosomes are stored in the Parent and

Offspring memories. Each chromosome is made up of one

possible path solution and its associated fitness (i.e. collision

and distance costs for the UAV to traverse the given envi-

ronment between designated start and end waypoints). An on-

module memory interface is provided by the 6-to-1 multiplexer

(MUX) for allowing all modules to read and write the Parent

and Offspring memories.

The Decoder is used for converting the bitstream format of

the best chromosome into a meaningful representation for the

external output interface. Two inputs which drive the FPGA-

based planner are the clock signal and the activate signal. The

clock signal is connected to the embedded global clock of the

FPGA, and the activate signal is connected to an input external

to the FPGA. The best chromosome within the Parent memory
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is connected to the output allowing a best path solution to be

constantly available.

The Initial Population Module (IPM) is used for generating

a population of candidate solutions based on the output from

the random number generator. The Selection Module (SM) is

used for applying selection pressure on the parent population

to populate a mating pool of useful chromosomes. The Genetic

Operation Module (GOM) is used for adaptively altering the

chromosomes in the mating pool. The Evaluation Module

(EM) is used for evaluating the altered chromosomes. The

Population Update Module (PUM) is used for updating the

next generation of parent population with useful chromo-

somes amongst the parent population and the newly generated

offspring population. The Premature Convergence Module

(PCM) is used for monitoring the gene diversity of the parent

population, and signifies a possible premature convergence

when diversity is lost early in the generational cycle.

D. Iterative Execution Flow and Communication

The flow of execution and communication between the

individual units of the FPGA-based path planner is now

described. Note that during the evolution phases, processes

in each module are handled concurrently.

To begin the FPGA-based path planning process, an activate

signal is received, initiating the IPM to generate, influenced

by flight parameters such as minimum and maximum UAV

elevation, a set of random path solutions that are evaluated

internally and stored in the Parent memory. This completes

the initial setup of the FPGA-based planner.

To commence the next iteration of the EA process, the

IPM notifies the CU that the FPGA-based planner is ready

to begin execution. The SM exercises a selection process on

the Parent memory and populates the Offspring memory with

a mating pool of elected chromosomes. The GOM, which

consists of the genetic crossover and mutation operations,

starts genetic operation on the Offspring memory, creating new

chromosomes. Once completed, the genetically altered chro-

mosomes are updated back into the Offspring memory. The

EM evaluates the feasibility and fitness of new chromosomes

generated by the GOM. Upon completion, the EM updates

the fitness information within each chromosome and sends

the evaluated chromosomes back into the Offspring memory.

The PUM sorts and updates the Parent memory for the next

generation with elites from amongst the Parent and Offspring

memory. The PCM monitors the Parent memory for premature

convergence, and triggers a reinitialise signal if necessary.

Finally, the CU excludes the IPM in the next evolution cycles

until the reinitialise signal is activated.

The above iterative steps are repeated endlessly. An in-

dependent Decoder transmits out the optimised flight path

solution at every clock cycle, this being the best chromosome

decided through the fitness sorting PUM. The GA run is never

ceasing, hence it is always trying to improve its current best

path. The system only restarts when the activate signal is

triggered again. Such a scenario may occur, for example, when

the UAV has reached the end waypoint or new environment

or mission profiles are uploaded. Effectively, the planning of a

longer journey across a dynamic environment would be carried

out in a stepwise manner.

IV. HARDWARE IMPLEMENTATION DETAILS

To explore the feasibility of the proposed design architec-

ture, an implementation of the proposed FPGA-based path

planner in synthesisable very-high-speed integrated circuit

hardware description language (VHDL) was undertaken tar-

geting an available development platform containing a Xilinx

Virtex-4 LX200 (XC4VLX200-11FF1513) FPGA processor.

This platform was used to explore implementation issues such

as the population characteristics and extent of parallelism

possible within the design, subject to various FPGA hardware-

specific constraints including the programmable logic re-

sources available on the device. The implementation of the

FPGA-based planner requires application of the GA pop-

ulation characteristics and operations specifically for path

planning. As shown in Fig. 3, selection, genetic operation,

evaluation, and update operation are involved and require

specification in the iterative GA process. Implementation de-

tails of the various modular elements and the GA population

characteristics are briefly described below.

A. Implementation-Specific Design

1) Encoding of GA Parameters: One of the first design

decisions is determining the encoding of the parameters as this

will, for example, directly affect usage of available resources

on the target Virtex 4 FPGA and also enhance or hinder the

computational time. In view of this, population chromosomes

were chosen here to correspond to single path solutions

comprising four transitional waypoints, excluding the start

and end waypoints which are intialised and stored separately

in the Mission Profile module. Each transitional waypoint is

characterised by its three spatial coordinates X, Y, and Z. The

latter were chosen to be 9-bit wide for the chomosomes and

for the three-dimensional terrain map data stored separately in

the Environment Profile module. The parent/offspring size and

the number of transitional waypoints for all path solutions are

not subjected to change during the entire evolutionary process.

It was found through experimentation that a path solution with

around 3 to 6 transitional waypoints provided good solutions.

The bits encoding for the parameters of each chromosome

and associated cost function (computed in the EM) is given

in Table II.

2) FSM-based Approach: The sequential iterative process

of the GA is mapped onto a parallel executed digital logic

system by constituting sequential logic circuits through the

use of finite state machines (FSMs). The FSM is established

as the backbone of all the modules except the memory blocks.

The state diagram of the CU is shown in Fig. 4, the rest of

the modules are built on this principle.

3) 6-to-1 Multiplexer (MUX): The 6-to-1 MUX interface to

the Parent and Offspring memories allows for all the modules

to read the entire list of path solutions and overwrite the

original contents of the underlying Block RAM with the list

of updated path solutions. As compared to passing the entire

population from module to module, the memory interface does
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TABLE II
ENCODING OF EACH CHROMOSOME FOR THE PATH PLANNER

Parameter Number of Bits Integer Range

Transitional Waypoint 1.X 9 Bits [0, 29 − 1]

Transitional Waypoint 1.Y 9 Bits [0, 29 − 1]

Transitional Waypoint 1.Z 9 Bits [0, 29 − 1]

Transitional Waypoint 2.X 9 Bits [0, 29 − 1]

Transitional Waypoint 2.Y 9 Bits [0, 29 − 1]

Transitional Waypoint 2.Z 9 Bits [0, 29 − 1]

Transitional Waypoint 3.X 9 Bits [0, 29 − 1]

Transitional Waypoint 3.Y 9 Bits [0, 29 − 1]

Transitional Waypoint 3.Z 9 Bits [0, 29 − 1]

Transitional Waypoint 4.X 9 Bits [0, 29 − 1]

Transitional Waypoint 4.Y 9 Bits [0, 29 − 1]

Transitional Waypoint 4.Z 9 Bits [0, 29 − 1]

Evaluation Cost 32 Bits [0, 232 − 1]

Total Number of Bits 140 Bits

require more clock cycles to retrieve population information.

However, handling the population through a memory interface

reduces the amount of resource utilisation. The tradeoff for

additional clock cycle as to high resource utilisation was

preferred.

4) Parent and Offspring Memories: The Parent and Off-

spring memories are implemented using the available FPGA

Block RAM. As such, there is no shared memory external

to the FPGA-based path planning system. As a compromise

between available FPGA resources and model complexity,

each of the Parent and Offspring memories was fixed to store

32 population chromosomes (i.e. path solutions).

5) Control Unit (CU): The CU operates as a finite state ma-

chine (FSM) that monitors the evolutionary process throughout

the entire operation. The states and conditions are illustrated

in Fig. 4.

6) Initial Population Module (IPM): Initially, the IPM

generates 32 path solutions using randomly generated 9-bit

binary strings to initialise each of the transitional waypoint

components listed in Table II. Subsequently, when the reini-

tialise condition is met, the IPM then preserves the current best

chromosome and regenerates 31 random path solutions. Note

that the randomly generated initial population are generally

zigzagged and overlapping in nature.

7) Selection Module (SM): Selection involves the identifi-

cation of chromosomes from the Parent memory to undergo

crossover and mutation. Tournament selection pressure is

instituted with the fitter of two randomly chosen chromosomes

flagged as the tournament winner. For this work, the SM is

composed of 32 identical processing units which exploits the

parallel processing capabilities of the FPGA by operating in

parallel. Each unit randomly selects two chromosomes from

the Parent memory for tournament selection where the winner

is sent to the Offspring memory.

8) Genetic Operation Module (GOM): The genetic op-

eration consists of two types of operators: crossover and

mutation. For crossover, all transitional waypoints after a

randomly chosen splitting point of the path are truncated and

swapped between two randomly selected path solutions. This

Fig. 4. State diagram of the Control Unit.

operation encourages exploitation of useful information from

two chromosomes. The operation is illustrated in Fig. 5 for the

present implementation involving four intermediate waypoints.

For mutation, randomly selected path solutions are subjected

to global perturb mutation, local perturb mutation, delete

mutation, and swap mutation to promote exploitation of the

search space with the expectation of speeding-up convergence

to a global optimum (as represented in Fig. 6, Fig. 7, Fig. 8,

and Fig. 9). The global and local perturb mutation are designed

to induce small perturbation in a chromosome. Since the

number of transitional waypoints is fixed at four, the delete

mutation simply shifts a selected point spatially to the middle

of a straight line connecting the preceding and following

points. The swap mutation randomly picks two points and

swaps their position.

For this work, the GOM is internally configured with

crossover and mutation operations to be performed on all

chromosomes of the Offspring memory. The GOM is com-

posed of 24 identical crossover units (i.e. 75% of the offspring

size) and eight mutation units (i.e. 25% of the offspring

size). The eight mutation units consists of two global perturb

mutation units, two local perturb mutation units, two delete

mutation units, and two swap mutation units. Notably, all

crossover and mutation operations for a single generation are

conducted in parallel. The GOM generates a variety of parental

combinations to produce 32 candidate path solutions.

9) Evaluation Module (EM): The fitness of each chromo-

some of the offspring is assessed based on contraints defined

in the profiles such as feasibility and shortest distance. The EM

evaluates the feasibility of the 32 new candidate path solutions
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Fig. 5. General case for the crossover operation.

Fig. 6. General case for the global perturb operation.

Fig. 7. General case for the local perturb operation.

and generates a new evaluation cost value for each one of

them. The evaluation operations for a single generation are

conducted in parallel. Additional constraint functions, such as

vehicle kinematics, can be modularly included here into the

EM. The inclusion of problem-specific constraints relating to

the UAV, environment and mission profiles will be addressed

below in the case studies.

Fig. 8. General case for the delete operation.

Fig. 9. General case for the swap operation.

10) Population Update Module (PUM): The population is

updated using an elitist approach, where the selection of the

best path solutions from the Parent and Offspring memories

are retained and the remaining more inferior chromosomes are

overwritten by the next generation.

The PUM concatenates the Parent and Offspring memo-

ries and sort them based on their fitness. Thereby, the new

Parent memory that is ready for subsequent evolutionary
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cycles consists a mix of surviving chromosomes from previous

Parent memory and those which benefited from the genetic

operations.

11) Premature Convergence Module (PCM): The PCM

is made of comparators which monitor the Parent memory

for premature convergence and triggers a reinitialise signal

if necessary. Premature convergence occurs when there is a

loss of genetic diversity within the population, causing the

evolutionary search algorithm to get trapped in local optima in

the early stages of the evolutionary process. The reinitialising

of the Parent memory encourages the evolutionary process to

recover with the reintroduction of new randomly generated

population.

B. Synthesis Details

The design was synthesised the Xilinx ISE software with

the Xilinx Virtex-4 LX200 as the target device, and the design

goal was set to ”balanced”. A ”balanced” design implies that

no optimisation for speed or utilisation of FPGA resources was

considered. Once the design was synthesised successfully, it

was then compiled and built for implementation. This process

consists of translating, mapping, placing and routing of the

signals. For the design implementation process, no partition

was specified and the design was translated and mapped

successfully. All signals were placed and routed successfully

as well, and all timing constraints were met. 32% of the logic

slices on the device were utilised. The overall FPGA design

had a maximum operating frequency of 83 MHz.

V. CASE STUDY EXPERIMENTS AND RESULTS

A. Experiments

Three case studies were performed to verify the effective-

ness of the proposed FPGA-based path planning system. The

first case study is on an empty environment profile, which tests

the basics of the algorithm with the expectancy of a straight

line prediction for the optimal path between the start and end

waypoints. To further test and verify the predictive capabilities

of the algorithm, the second and third case studies were on

a simulation environment 512 m high by 512 m long by 512

m wide. The second case study did not set any maximum

elevation in the mission profile, whereas the third constrained

the UAV to a maximum elevation of 5 m below the highest

peak. Five simulation runs are executed for each case study.

A typical autopilot system has an update frequency of 10 Hz

[38]. Therefore, it is essential for the time of convergence to

be faster than the 100 ms threshold. For all three case studies,

the start and end waypoints are kept to be identical. These

examples are illustrative of an air sampling biosecurity mission

or a remote sensing mission [39], [40].

The targeted UAV platform for the case studies was an

autonomous helicopter measuring 0.5 m high and 1 m long

(available from the ARCAA).The UAV profile was set to a

rotary wing UAV so that kinematic constraints were assumed

to be negligible.

The process used for generating the map data for use

in the Environment Profile module is as follows. LIDAR

TABLE III
ENCODING OF ASSOCIATED COST

Parameter Number of Bits Integer Range

Collision Cost 8 Bits [0, 28 − 1]

Distance Cost 24 Bits [0, 224 − 1]

Total Number of Bits 32 Bits

(Light Detection And Ranging) technology provided the three-

dimensional elevation map that was constructed into a lookup

table (LUT) representation through the Sukharev grid [33]

sampling theorem. The LUT can be seen as an X-by-Y matrix,

with the referenced element corresponding to the elevation,

Z, at that specific coordinate. The size of the LUT is 2.25

megabytes. The map data is within 1 m resolution, thereby

each pixel is able to accommodate the rotary wing UAV

without requiring any rescaling.

For these case studies, a simple fitness function was used

which incorporated a collision cost and distance cost only (see

Table III). The former relates to the number of collision points

along the path solution. The latter relates to the Euclidean

distance of the path solution inclusive of the start and end

waypoints. The cost returned by the fitness function was

evaluated by concatenating the binary 8-bit representation of

the collision cost before the 24-bit distance cost to arrive at a

resultant 32-bit score.

B. Results

Fig. 10 shows the results for case study one with the

expected results of a straight line. It took 18 generations for

the algorithm to reach an absolute convergence, after which

no better path solutions were found. Fig. 11 shows the results

for case study two with the path initially climbing over the

first mountainous region and subsequently curving towards the

end waypoint. For this case study, the algorithm took 282

generations for convergence. Fig. 12 shows the results for

case study three with maximum elevation included into the

mission profile. The path solution now deviates around the

mountainous region and continues towards the end waypoint.

Convergence was achieved at 527 generations.

Table IV shows the results of the average computational

time required for convergence. From the results, it can be seen

that the algorithm takes longer to converge as the complexity

of the task increases. Note that the output of the path planning

architecture, a series of transitional waypoints, is intended to

be coupled to an autopilot system via an appropriate data

transformation, although that has not been implemented here.

A typical autopilot has an update frequency of 10 Hz, thus it

is essential that the results from the path planning module in

all case studies must be output under 100 ms. All case studies

are able to meet the 100 ms threshold.

VI. CONCLUSION

In this paper an autonomous GA-based UAV path planner is

developed with all modules of the proposed architecture being

entirely implemented on a single FPGA, including terrain data

and flight constraints stored on the FPGA in separate UAV,
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Fig. 10. Case study one.

Fig. 11. Case study two.

Fig. 12. Case study three.

TABLE IV
COMPUTATIONAL TIME RESULTS FOR THE CASE STUDIES

Generation Average

Case Study At Convergence Convergence Time

Case Study One 18 2.7 ms

Case Study Two 282 21 ms

Case Study Three 527 47 ms

environment and mission profiles. The design architecture,

operation, execution flow and communication are described in

detail, as well as implementation issues arising from the choice

of FPGA configurable hardware. Implementation targeting a

Xilinx Virtex 4 FPGA development platform was achieved

for a population size of thirty two, where each chomosome

corresponds to a single path solution with four transitional

waypoints between the start and end waypoints. Results of

case studies for a small 1m long UAV helicopter with a 512

m3 environment derived from LIDAR data demonstrate the

ability of the FPGA-based path planner to generate feasible

solutions with performance that can meet the 10 Hz update

frequency of a typical autopilot system. The present work

supports the use of an FPGA as suitable platform for flight

constrained autonomous UAVs. While this work is focused

on autonomous UAV applications, our approach may have the

potential to be more widely applicable in hardware systems

that also require on-board, real-time optimisation techniques.

Future work will involve testing the limitations and bound-

aries by, for example, increasing the complexity of the UAV

and mission profiles (e.g. fixed-wing UAV kinematics, airspace

restriction, and number of transitional waypoints), so that

the whole FPGA-based UAV path planning algorithm can

be verified as suitable for real-world applications. Also for

consideration in future work is an examination of the reconfig-

uration capabilities of the FPGA, which could allow inclusion

of other functions required for fully autonomous operation

without compromising on-board path planning capabilities.
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