
FPGA Implementation of Dynamic Threshold
Sphere Detection for MIMO Systems

Kiarash Amiri, Joseph R. Cavallaro
Center for Multimedia Communication

Department of Electrical and Computer Engineering
MS-366, Rice University, 6100 Main St., Houston, TX 77005

{kiaa, cavallar}@rice.edu

Abstract� In this paper, we consider the FPGA implemen-
tation of a modi�ed sphere detection algorithm. We analyze
breadth-�rst and depth-�rst search in sphere detection, and
compare the relative performance and complexity. Based on
these comparisons, we propose a more ef�cient and less complex
scheme, Dynamic Threshold Sphere Detection (DTSD), which
can effectively increase the throughput and reduce the error
rate. We, then, propose a novel architecture for this scheme,
and discuss the complexity reduction techniques that we utilized.
These techniques do not compromise the overall performance.
Finally, the high throughput FPGA implementation results of
this algorithm will be presented.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) systems can pro-
vide higher data rates and spectral ef�ciencies in wireless
communications systems [1]. Thus, they have been proposed
and adopted for many different wireless standards, such as
IEEE 802.11n, IEEE 802.16e and upcoming 3GPP LTE. How-
ever, a major bottleneck in any MIMO system is the detection
complexity. A typical maximum-likelihood (ML) detector for
a MIMO system with M transmit antennas each using a
modulation scheme of the order w, requires wM different
search operations to choose the best possible candidate. If
using an OFDM based system, this number will be multiplied
by the number of the data-bearing subcarriers. For instance,
for a MIMO-OFDM system with four transmit antennas, 16-
QAM modulation and 48 active subcarriers, approximately
3× 106 comparisons are required to detect the transmitted
signal. This signi�cant computational complexity can be quite
discouraging and motivates the need to look for new ways of
reducing the complexity of the detection.

Sphere detection (SD), also known as lattice detection,
has been proposed and studied to mitigate the computational
requirements of the maximum-likelihood (ML) method [2],
[3], [4]. Two main sphere detection (SD) approaches have
been studied and implemented: a depth-�rst search (DFS)
based approach [5], and a breadth-�rst search (BFS) based
approach [6], [7]. In this paper, we propose novel ideas as
well as architecture-oriented techniques to further reduce the
complexity and latency of the sphere detector. Furthermore,
in order to investigate the feasibility of implementing our
proposed scheme on recon�gurable architectures, we present
the implementation results of a 4× 4, 16-QAM detector on
the state-of-the-art Xilinx Virtex-4 FPGA.

The organization of the paper is as follows: section II
introduces the system model and sphere detection. Section
III discusses the new technics that are used to reduce the
complexity of the sphere detector. Section IV presents the
simulation results and compare the BER performance as well
the complexity with previous schemes. Finally, in section V,
FPGA implementation results are discussed.

II. SPHERE DETECTION IN MIMO SYSTEMS

The MIMO system model with M transmit antennas and N
receive antennas can be described by

y = Hs+n (1)

where HN×M is the channel matrix, sM×1 is the transmitted
vector with complex elements chosen from a set of modulation
constellation, nN×1 is the complex noise vector, and yN×1 is
the received vector. The maximum-likelihood (ML) estimate
of the transmitted signal is given by

�s = argmin
s∈Ω

‖ y−Hs ‖2 (2)

where Ω is the constellation set with w elements, i.e. |Ω|= w,
and ‖ . ‖2 denotes the `2 norm of the matrix throughout the
paper.

The ML estimate is shown to be the optimum detector in
communication receivers [8]. However, ML detectors have a
high complexity in MIMO systems with high order modulation
schemes. Thus, sphere detection [2], [3] has been proposed to
decrease the complexity of the search.

The norm in (2) can be simpli�ed as [9]:

D(s) = ‖ y−Hs ‖2

= (y−Hs)H(y−Hs)
= (y−Hs)HQQH(y−Hs)
= (QHy−Rs)H(QHy−Rs)
= ‖QHy−Rs ‖2 (3)

=
1
∑

i=M
|yi
′−

M
∑
j=i

Ri js j|2 (4)

where H = QR, QQH = I, R is an upper triangular matrix
and y′ = QHy. Superscript H denotes the conjugate transpose

kiaa
Text Box
To appear in: Proc. Asilomar, Monterey, CA, Nov, 2006

operator. We also de�ne the partial distance (PD) as,

PD = |yi
′−

M
∑
j=i

Ri js j|2. (5)

The summation in (3) can be done through a tree where
the value of each node of the tree is equivalent to the partial
distance of that node. This tree will have M + 1 levels.
Moreover, each node of the tree has w children nodes where
w is the number of constellation points. Furthermore, since
the external summation is over non-negative terms, children
nodes have partial distances greater than or equal to the partial
distances of their parent.

If the search is limited to those nodes whose partial dis-
tances are smaller than a pre-speci�ed threshold, the number
of visited nodes, and hence the complexity, would decrease. In
other words, imposing the condition that D(s)≤ R2, will lead
to pruning out the nodes whose partial distances are greater
than R2. Note that whenever a node is pruned out, its children
can also be pruned out. This is because of the monotonic
increasing nature of partial distances.

Figure 1 shows a speci�c case of a MIMO system with
four transmit antennas, each using a two-element modulation
constellation, e.g. BPSK. Applying maximum-likelihood (ML)
to this detection problem is equivalent to visiting all the
31 possible nodes of the search tree; whereas, imposing a
threshold, i.e. a radius of 9, leads to visiting 19 nodes. The
complexity reduction is more signi�cant with more strict
thresholds and higher order modulation schemes.

0

3 7

114 3 10

5 7 7 6

78887 109 9

Radius=9

i=4

i=3

i=2

i=1

Fig. 1. Computing partial distances using a tree. Numbers in each node
indicate the partial distance

III. DYNAMIC THRESHOLD SPHERE DETECTION (DTSD)
In this section, we propose new techniques to further reduce

the complexity of the sphere detector.

A. Dynamic Threshold
There are two primary methods to implement the tree

search; namely depth-�rst search [5] and a modi�cation of
breadth-�rst search, called K-best [6] [7]. In the depth-�rst
approach, the tree is traversed vertically in both upward and
downward directions. Starting from the top level, one node

is selected, the PDs, (5), of its children are calculated, and
among those new computed PDs, one of them is chosen, and
that becomes the parent node for the next iteration. The PDs of
its children are calculated, and the same procedure continues
until a leaf is reached. Then, the search continues with another
node at a higher level, and the search controller traverses the
tree down to another leaf. If a node with a PD larger than the
radius, i.e. the global threshold, is reached; that node, along
with all nodes lying beneath that, are pruned out, and the
search continues with a new node.

On the other hand, in the breadth-�rst approach, the search
visits a speci�ed number of nodes in each level, and then
continues with the children of these nodes in the next level.
Hence, there is not any tree traversal in the reverse, i.e. upward,
direction. A common modi�cation of this search algorithm
which is extensively used for sphere detection is called K-
best. In K-best, the best K candidates at each level are chosen
and the search continues with them. We will show later in the
next sections why we have chosen the depth-�rst scheme.

Generally, the radius remains constant during the search,
although there are some depth-�rst based schemes where the
radius is updated with the current PD whenever a leaf is
reached. We are proposing to change the radius dynamically
since the value of the PD highly depends on its corresponding
level. In other words, due to the non-negativity of each of the
PDs (5), the norm is increasing monotonically as we move
down the tree. So, a more reasonable choice for the radius is
a dynamically changing threshold that increases for the lower
levels of the tree. Now, two issues need to be addressed:

1. How does this dynamic radius relate to the level number?
If we use the indexing of Figure 1 for the levels of the tree,

it is clear that as we move down the tree, i.e. reduce the level
index, the dynamic threshold should increase. Revisiting (1)
and left-multiplying it by QH , we get

QHy−Rs = QHn (6)

and, we de�ne n′ as

n′ = QHn = [n′1, ...,n′M]T . (7)

Therefore, the D(s) derived in (3) is

D(s) =‖QHy−Rs ‖2=‖ n′ ‖2=
M
∑
i=1
|n′i|2. (8)

It is easy to see that each ni is

n′i = eiQHn (9)

where ei is an M-element row vector with 1 at the i-th position,
and zero everywhere else. Hence, the expected value of the
component added in the i-th layer, is

E{|n′i|2} = E{n′in′∗i }
= E{eiQHnnHQeH

i }
= eiQHE{nnH}QeH

i
= σ2

neiQHIQeH
i

= σ2
neieH

i = σ2
n (10)

where superscript ∗ denotes the conjugate. Also, note that for
this derivation, we have assumed that the noise components
of different receive antennas have the same variance and are
independent from each other. The above derivation shows
that the mean is a constant scalar independent of the level
index, i, and purely depends on the statistical properties of the
noise. In other words, the value of the PDs added in different
levels of the tree have similar �rst-order statistical properties.
This implies that a reasonable choice for updating the radius
is using a linear function to relate the level index and the
threshold. To be more precise, if the initial estimate for the
threshold is R, the dynamic threshold for each level of the
tree, i.e. Ri, can be calculated from

Ri = R(M +1− i)/M. (11)

Therefore, at each level, the threshold equals to a weighted
copy of R. It is also worth noting that the value of R is
shrinking each time a new estimate, i.e. a tree leaf, is found.
That is because whenever a leaf is reached inside the tree, R
is updated with that leaf's norm. This way, R decreases each
time a leaf is visited.

We should note here that the approach proposed in [10]
partially resembles our approach, but with two major dif-
ferences: it is requiring that the prior knowledge of SNR is
provided in the detector to �nd the thresholds; plus, it does
not update R, and hence Ris, each time a leaf is reached.
Similar threshold updating has been proposed in [7] for a K-
best implementation, and its impact on the complexity and
performance of K-best search has been studied. However, this
scheme requires calculation of the radius in advance, while in
our scheme, the radius is set whenever a leaf, i.e. a node in
the very last level of the tree, is reached. Moreover, choosing
[7] incurs performance degradation compared to the original
K-best method; while, the original K-best is also showing
larger bit error rates compared to depth-�rst based schemes,
see section IV.

2. How much performance do we give up by adopting this
scheme?

Clearly, since the radius is smaller, more nodes are pruned
out at each step; equivalently, less nodes are effectively
visited. Hence, the complexity is reduced. However, there is
a higher probability for the optimum solution to be pruned
out. Realizing this tradeoff, we need to �nd out how much
of the performance we are loosing, and at the same time,
how much reduction in the complexity we are gaining through
adopting this scheme. Section IV presents the simulation
results comparing different scenarios.

It is worth noting that another advantage of using the
linear approach is that in some particular MIMO systems,
e.g. 4× 4, it can be implemented more easily compared to
other more complex approaches. Speci�cally, other possible
functions require divisions and multiplications which are quite
expensive in terms of hardware resources and time; while
using the linear approach, these computations can be avoided.
For example, in the case of a 4×4 system, the possible values
of thresholds are R/4,R/2,3R/4 and R. All these different

values can be calculated using two bit-shifters and one adder.
See Figure 2.

2-bit Shifter

1-bit Shifter

AdderR 3R/4

R/4

R/2

Fig. 2. Dynamic threshold updating implementation

B. Minimum Finding
Unlike K-best method, where it is critical to sort the children

nodes in order to �nd the best K candidates, a depth-�rst
structure does not necessarily require sorting. However, a
sorted list can expedite the search and reduce the latency
for a depth-�rst based scheme. But, sorting algorithms can
be quite time and resource consuming. We are proposing to
�nd only the minimum of each children rather than sorting all
the list. In other words, each time the partial distances of the
children of a node is computed, the one with the minimum
partial distance will be the next node to visit; other nodes,
if inside the local threshold of that level, are saved in the
memory to be visited later. Since the value of the global
threshold, R, is updated whenever a leaf is reached, choosing
the minimum-path expedites shrinking the global radius of the
tree. Therefore, this approach helps us reduce the radius faster
as leafs are visited at the end of a tree, and at the same time,
avoids signi�cant number of computations required for sorting.

IV. SIMULATION RESULTS

We compared our scheme with the original DFS-based and
K-best schemes in terms of complexity, i.e. number of visited
nodes, and performance, i.e. bit error rate (BER). We have
assumed a Rayleigh fading channel and circularly symmetric
Gaussian noise components. The channel realizations for dif-
ferent symbols are independent from each other, and perfect
channel state information at the receiver is assumed. The
results are shown in Figures 3 and 4.

Since in our scheme thresholds are updated dynamically,
less nodes are visited compared to both the original DFS-based
scheme and the K-best when K=10. The number of visited
nodes in the K-best method is comparable to our scheme only
for low SNRs and K=5. However, our scheme shows better
BER performance compared to K-best both for K=5 and K=10.

Note that compared to the original DFS-based approach,
our scheme visits considerably less nodes; but, this is at an
expense of less than 1 dB loss in BER performance compared
to maximum-likelihood.

0 2 4 6 8 10 12 14 16 18
10

−4

10
−3

10
−2

10
−1

10
0

Eb/No [dB]

B
E

R
BER Comparison, 4X4 16−QAM

K−best, K=5
K−best, K=10
Proposed, Dynamic Threshold Updating
Original Depth−first Based

Fig. 3. BER performance comparison of different search approaches

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

Eb/No [dB]

N
um

be
r

of
 v

is
ite

d
no

de
s

Number of visited nodes, 4X4 16−QAM

K−best, K=10
K−best, K=5
Original Depth−first Based
Proposed, Dynamic Threshold Updating

Fig. 4. Complexity comparison of different search approaches

V. HARDWARE ARCHITECTURE AND IMPLEMENTATION

The architecture proposed for implementing dynamic
threshold sphere detection is shown in Figure 5. The Pre-
Processing Unit (PPU) is used to compute the QR decomposi-
tion of the channel matrix as well as calculate QHy. The Tree
Traversal Unit (TTU) is the controlling unit which decides in
which direction and with which node to continue. Computation
Unit (CMPU), Figure 6, computes the partial distances, based
on (3), for w different s j. Each PD unit in Figure 6 computes
|yi′−∑M

j=i Ri, js j|2 for each of the w children of a node. Finally,
The Node Ordering Unit (NOU), Figure 7, is for �nding the
minimum and saving other legitimate candidates, i.e. those
inside Ri, in the memory.

This architecture has been implemented for a 4× 4 16-
QAM system on the Xilinx state-of-the-art Virtex-4 FPGA
using Xilinx System Generator. The performance is compared
and veri�ed on FPGA hardware with the simulations. Table I

Pre-Processing Unit

(PPU)

Tree Traversal

Unit

(TTU)

Computation Unit

(CMPU)

Node Ordering Unit

(NOU)

Sphere

Detector

Channel Matrix Received Vector

Detected Vector

Fig. 5. Sphere Detector Block Diagram

PD Unit

#1

PD Unit

#2

.

.

.

PD Unit

#w

Computation Unit

(CMPU)

Previous PD
PD_1

PD_2

PD_w

.

.

.

Fig. 6. Computation Unit (CMPU)

shows the number of required cycles to accomplish each task.
Note that the number of cycles required for TTU unit depends
on whether the current visited node is a dead-end node, i.e.
a node outside the threshold or a leaf, or a regular node.
Moreover, Table II presents the resource utilization as well
as maximum achievable clock frequency for this particular
Xilinx device. The maximum achievable data rate that the
detector can support is 50.05 Mbps. Figure 8 shows the data
rate for different values of the SNR. Note that the fastest
reported FPGA implementation of sphere detection is given in
[11] where a maximum throughput of 35.75 Mbps has been
achieved using Altera Stratix EP1S10. It should be noted that
generally the maximum achievable clock frequency in FPGAs

Min

Finder

To

Memory

Min

Finder

To

Memory

To

Memory

To

Memory

To

Memory

To

Memory

To

Memory

To

Memory

To

Memory

To

Memory

To

Memory

To

Memory

To

Memory

To

Memory

To

Memory
Min

Finder

Min

Finder

Min

Finder

Min

Finder

Min

Finder

Min

Finder

Min

Finder

Min

Finder

Min

Finder

Min

Finder

Min

Finder

Min

Finder

Min

Finder

Minimum

PD_1

PD_2

PD_3

PD_4

PD_5

PD_6

PD_7

PD_8

PD_9

PD_10

PD_11

PD_12

PD_13

PD_14

PD_15

PD_16

Fig. 7. Node Ordering Unit (NOU). Each Min Finder block �nds the
minimum of its two inputs, and passes that minimum to the next minimum
�nder. The larger output of each Min Finder block will be saved into memory
only if it is inside the local threshold.

TABLE I
NUMBER OF CLOCK CYCLES

Unit Name Number of Clock Cycles
Computation Unit (CMPU) 6
Node Ordering Unit (NOU) 1
Tree Traversal Unit (TTU) 1 (6)

are less than ASICs for the same design.

VI. CONCLUSION AND FUTURE WORK

We proposed a dynamic threshold technique to be included
in the depth-�rst search to reduce the complexity of the
sphere detector, and increase its speed, while maintaining
high performance. Furthermore, we used a minimum �nding
scheme rather than a complete sorting to ensure fast tree
pruning. Finally, we implemented this scheme on a Xilinx
Virtex-4 FPGA which can achieve very high throughput.

As a future work step, the implemented hardware can
be easily extended for use in list sphere detectors and soft
decoding architectures [4].

VII. ACKNOWLEDGEMENT

This work was supported in part by Nokia Corporation and
by NSF under grants CCF-0541363, CNS-0551692, and CNS-

0 5 10 15 20
20

25

30

35

40

45

50

55

EbNo [dB]

T
hr

ou
gh

pu
t (

M
bp

s)

Data Rate

Fig. 8. Data rate of the FPGA implementtion of the design

TABLE II
FPGA RESOURCE UTILIZATION FOR SPHERE DETECTOR

Device Xilinx Virtex-4 xc4vfx100-12ff1517
Number of Slices 4065/42176 (9%)
Number of FFs 3344/84352 (3%)

Number of Look-Up Tables 6457/84352 (7%)
Number of RAMB16 3/376 (1%)
Number of DSP48s 32/160 (20%)

Max. Freq. 125.7 MHz

0619767.
REFERENCES

[1] G. Foschini, �Layered space-time architecture for wireless communica-
tion in a fading environment when using multiple antennas,� Bell Labs.
Tech. Journal, vol. 2, 1996.

[2] U. Fincke and M. Pohst, �Improved methods for calculating vectors
of short length in a lattice, including a complexity analysis,� Math.
Computat., vol. 44, no. 170, pp. 463�471, Apr. 1985.

[3] E. Viterbo and J. Boutros, �A universal lattice decoder for fading
channels,� IEEE Trans. on Inf. Theory, vol. 45, no. 5, pp. 1639�1642,
Jul. 1999.

[4] B. Hochwald and S. ten Brink, �Achieving near-capacity on a multiple-
antenna channel,� IEEE Trans. on Commun., vol. 51, pp. 389�399, Mar.
2003.

[5] A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner and H.
Bolcskei, �VLSI implementation of MIMO detection using the sphere
decoding algorithm,� IEEE JSSC, vol. 40, no. 7, pp. 1566�1577, Jul.
2005.

[6] Z Guo and P. Nilsson, �A 53.3 Mb/s 4×4 16-QAM MIMO decoder in
0.35µm CMOS,� IEEE ISCAS, vol. 5, pp. 4947�4950, May 2005.

[7] J. Jie, C. Tsui and W. Mow, �A threshold-based algorithm and VLSI
architecture of a K-best lattice decoder for MIMO systems,� IEEE
ISCAS, vol. 4, pp. 3359�3362, May 2005.

[8] J. Proakis, Digital communications, 4th ed. McGraw-Hill International
Edition, 2001.

[9] M. O. Damen, H. E. Camel and G. Caire, �On maximum likelihood
detection and the search for the closest Lattice point,� IEEE Trans. on
Inf. Theory, vol. 49, no. 10, pp. 2389�2402, Oct. 2003.

[10] R. Gowaikar and B. Hassibi, �Ef�cient statistical pruning for maximum
likelihood decoding,,� Proceeding of the IEEE ICASSP, vol. 5, pp. 49�
52, 2003.

[11] J. Ma and X. Huang, �A system-on-programmable chip approach
for MIMO sphere decoder,� IEEE Symposium on Field-Programmable
Custom Computing Machines, pp. 317�318, Apr. 2005.

