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FPGA Implementation of Embedded Fuzzy
Controllers for Robotic Applications
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Abstract—Fuzzy-logic-based inference techniques provide ef-
ficient solutions for control problems in classical and emerging
applications. However, the lack of specific design tools and system-
atic approaches for hardware implementation of complex fuzzy
controllers limits the applicability of these techniques in modern
microelectronics products. This paper discusses a design strategy
that eases the implementation of embedded fuzzy controllers as
systems on programmable chips. The development of the con-
trollers is carried out by means of a reconfigurable platform
based on field-programmable gate arrays. This platform combines
specific hardware to implement fuzzy inference modules with a
general-purpose processor, thus allowing the realization of hybrid
hardware/software solutions. As happens to the components of the
processing system, the specific fuzzy elements are conceived as
configurable intellectual property modules in order to accelerate
the controller design cycle. The design methodology and tool chain
presented in this paper have been applied to the realization of a
control system for solving the navigation tasks of an autonomous
vehicle.

Index Terms—Autonomous vehicles, embedded systems, field-
programmable gate arrays (FPGAs), fuzzy control, intellectual
property (IP).

I. INTRODUCTION

FUZZY logic provides a mathematical framework to deal
with the uncertainty and the imprecision typical of the

human reasoning system. One of its main characteristics is the
capability to describe the behavior of a complex system in a
linguistic way by means of IF–THEN rules similar to those
employed in natural language [1]. The facility of fuzzy logic
controllers (FLCs) to capture the knowledge of human experts
and translate it into robust control strategies without the need
of a mathematical model of the system under control has led
to a significant increase in the number of control applications
using fuzzy inference techniques in the last 25 years [2].
This has motivated the development of different approaches
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to implement fuzzy control systems. These approaches range
from fully software or hardware solutions to hybrid strategies
that allow reaching adequate tradeoffs between flexibility and
inference speed [3]. Hybrid realizations require a processor
for software task execution and dedicated hardware for imple-
menting complex time-consuming tasks, i.e., usually the fuzzy
inference process.

Many of the emerging applications of fuzzy controllers in
fields such as autonomous mobile robots, artificial vision sys-
tems, or traffic control in the Internet demand area, power,
speed, or cost requirements that can only be satisfied by imple-
menting them as embedded systems. The continuous advances
in microelectronic industry and its integration capabilities allow
the realization of such complex circuits on a single silicon
chip [4]. However, the rapid evolution of silicon technologies
has not only increased the density of application-specific in-
tegrated circuits (ASICs) but also allowed that programmable
logic devices like field-programmable gate arrays (FPGAs)
reduce their die sizes and therefore their cost, so hardware
platforms based on FPGAs can be used not only as rapid
prototyping approaches but also as final solutions that greatly
shorten the time-to-market of new consumer products. Mod-
ern FPGA devices include complex specific resources such
as memory blocks, hardware multipliers, clock management
circuits, and high-speed interface circuits. Most of them also
include soft cores for processors, input–output (I/O) peripher-
als, memory controllers, etc., which facilitate the development
of general-purpose processing systems. Some examples are the
MicroBlaze system from Xilinx and the Nios processor from
Altera. As a consequence, the availability of low-cost large-
capacity FPGAs, many standard system components described
as intellectual property (IP) modules, and powerful computer-
aided design (CAD) tools make possible nowadays the whole
development of a system on a programmable chip (SoPC)
[5]. Depending on the application and the number of chips to
be fabricated, this approach may become more attractive than
ASIC solutions.

A novel strategy for the implementation of embedded fuzzy
controllers as SoPC is presented in this paper. Section II briefly
explains the fundamentals of fuzzy control and the different
implementation alternatives reported in the literature. The main
components of a reconfigurable platform for the development
of hybrid hardware/software (HW/SW) fuzzy controllers are
described in Section III. The design flow proposed, which
combines standard FPGA implementation tools and a specific
environment for the development of fuzzy controllers as IP
modules, is outlined in Section IV. As an example of using
this design strategy, Section V shows the development of a
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control system for parking an autonomous mobile robot, and
Section VI discusses the obtained experimental results. Finally,
main conclusions are summarized in Section VII.

II. HW/SW IMPLEMENTATION OF FUZZY CONTROLLERS

Fuzzy controllers employ the same input and output variables
as their conventional counterparts. The difference between both
approaches is that, in most of the practically used conventional
controllers, the output is obtained as a linear combination of
inputs, while in the fuzzy approach, the control heuristic is
defined by a set of rules that employ linguistic variables repre-
sented by fuzzy sets. As a consequence, the (usually nonlinear)
control surface provided by a fuzzy controller can be locally
modified by changing the rules that affect the corresponding
areas in the universes of discourse. In addition, the use of
fuzzy logic allows the development of robust controllers able to
support great perturbations and to provide soft output variations
with a small number of rules.

The mathematical framework of fuzzy inference techniques
provides systematic and deterministic algorithms that can be
easily described with high-level programming languages or
implemented as electronic circuits. Thus, there are basically
two alternatives for fuzzy controller implementation: one of
them is based on software and the other on hardware. Software
solutions offer flexibility as one of their main features (the
designer can choose any type of fuzzy sets, operators, and
rulebases). For this reason, many of the first fuzzy controllers
were implemented in software on general-purpose computers
by describing the fuzzy algorithm with a high-level program-
ming language. In applications in which size, weight, power,
or cost are constrained, as occurs with consumer electronics,
standard microcontrollers have been usually employed. Many
software tools that ease the development of FLCs by generating
optimized code for different families of microcontrollers were
developed in the last decade of the past century. MicroFPL,
TIL Shell, and Fuzzy CLIPS from Togai InfraLogic; FIDE from
Aptronix; and FuzzyTECH from Inform are some of them.

The main drawback of software implementations of FLCs
is speed limitation due to the sequential program execution
and the fact that standard processors do not directly support
many fuzzy operations, such as minimum or maximum. In
order to reduce the lack of fuzzy operations, some develop-
ments modifying the architecture of standard processors to
support fuzzy computation have been carried out [6], [7]. The
68HC12 microcontroller from Motorola [8] and the ST Five
microcontroller family from ST Microelectronics [9] are com-
mercially available devices that use these techniques. Although
the specific hardware added to these devices speed up fuzzy
computation by at least one order of magnitude over standard
processors, these software solutions are still not fast enough
for some real-time applications, where a dedicated hardware
structure must be used [10].

Since the initial fuzzy hardware proposals from Togai and
Watanabe [11] and Yamakawa and Miki [12] in the mid 1980s,
many microelectronic implementations of fuzzy controllers
have been described in the last years [13]. Both digital and
analog design techniques have been employed, with the digital

approaches being the most widely used due to the availabil-
ity of well-established design methodologies and supporting
CAD tools. In order to accelerate fuzzy computation, many
hardware solutions implement the inference module or some
of its units on a dedicated integrated circuit, so they need
to be connected to a general-purpose processing system to
complete their operation. These hardware implementations,
which are known as fuzzy accelerators or fuzzy coprocessors,
were very popular at the end of the 1990s. Some examples of
commercially available fuzzy coprocessors are the SAE 81C99
and SAE 81C991 families from Siemens [14]; the FP1000,
FP3000, and FP5000 fuzzy coprocessors from Omron [15];
and the W.A.R.P. architecture from ST Microelectronics [16].
Nowadays, fuzzy coprocessors are seldom used, and most of
them have disappeared from the market as a consequence of
the increasing speed of conventional processors, which makes
it possible to execute the simple fuzzy algorithms required by
many applications.

Fully hardware realizations of FLCs implemented on FPGAs
[17]–[19] or ASICs [20], [21] achieve a very high inference
speed but are characterized by their lack of flexibility because
some limitations must be adopted in order to obtain a cost-
effective dedicated hardware. Typically, these realizations im-
plement a specific fuzzy inference algorithm for a specific
application, so no configuration options are possible. The high
performance of these FLCs is usually achieved at the expense
of a long design time.

Halfway between software and hardware implementations,
the use of hybrid HW/SW techniques permits appropriate
tradeoffs between the advantages and drawbacks of both ap-
proaches. The development of a high-performance HW/SW
fuzzy controller requires an efficient partition of the different
tasks to execute in order to obtain a flexible and high-speed
system. According to this idea, complex time-consuming tasks
[usually the whole fuzzy inference module (FIM)] must be im-
plemented in hardware, while those tasks related to system con-
figuration and nonfuzzy computations are better executed by
software [22].

Recent advances in silicon technologies allow integrating a
complex fuzzy-logic-based control system on a single chip.
On the other hand, general and specific resources available on
current FPGAs make possible its implementation as SoPC. The
hybrid HW/SW strategy for the implementation of embedded
fuzzy controllers as SoPC employed in this paper is illustrated
in Fig. 1. It is based on the use of a general-purpose processor
available as an IP module and the employment of application-
specific FIMs (also developed as IPs) to accelerate the inference
tasks [23]. The whole controller can be easily implemented
on an FPGA by combining standard FPGA synthesis and
implementation tools and a specific CAD environment for the
development of fuzzy systems, thus considerably reducing the
design cycle of new controllers.

III. DEVELOPMENT PLATFORM FOR

HYBRID FUZZY SYSTEMS

In order to implement the above-introduced strategy, a devel-
opment platform for fuzzy controllers has been defined. This
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Fig. 1. Hardware–software partitioning of a fuzzy-logic-based control system.

platform integrates all the physical and logical elements as well
as the procedures required to build embedded fuzzy controllers
on programmable logic devices. The physical components in-
cluding the configurable IP modules of the processing system,
the specific architecture for FIMs, and the FPGA development
board required to support the SoPC will be described in this sec-
tion. The FPGA design tools and the fuzzy system development
environment making up the logical components of the platform
will be discussed in the next section jointly with the proposed
design flow.

A. MicroBlaze Processing System

According to the aforementioned idea, the processing system
will perform all the controller tasks that do not need spe-
cific hardware resources. The selected element has been the
MicroBlaze IP module from Xilinx. MicroBlaze is a 32-bit
Reduced Instruction Set Computer processor based on Harvard
architecture that can be implemented into Xilinx Spartan II,
Spartan 3, and Virtex FPGA families [24]. A simplified block
diagram of the MicroBlaze system is shown in Fig. 2. Data
and instruction buses are further divided into local buses (to
rapid connection of dual-port block memory structures avail-
able in the FPGAs) and peripheral buses based on the IBM’s
standard on-chip peripheral bus (OPB). There are many IP mod-
ules of configurable peripherals compatible with this standard
(input/output ports, timers, Universal Asynchronous Receiver
Transmitter (UART), interrupt controllers, etc.) that allow con-
figuring the system according to application requirements.
Design tools included in Xilinx’s Embedded Development Kit
(EDK) provide software drivers that ease the use of MicroBlaze
peripherals as well as facilities for converting custom hardware
into OPB-compatible IP modules (as shown in the shaded box
of Fig. 2).

B. FIM Architecture

The FIMs required by hybrid solutions will be implemented
on hardware by using the resources available in FPGA. These

Fig. 2. MicroBlaze-based processing system.

Fig. 3. Block diagram of FIMs.

modules follow the architecture and design methodology pre-
viously developed in [25] for fuzzy ASICs. Some of the
keys that allow this architecture to provide low-cost and high-
speed digital FIMs are the following: 1) to evaluate only the
contribution of the active rules; 2) to restrict the shapes of
the fuzzy set membership functions; and 3) to use simplified
defuzzification methods. Active rule processing contributes to
increase the speed of the fuzzy inference process by reducing
the number of rules to be evaluated to those whose contribution
is a nonzero value. Constraining to two the overlapping degree
of input fuzzy set reduces to 2I the number of active rules
to be processed instead of the total number of rules LI of a
system with I inputs and L fuzzy sets per input. In addition,
if the input fuzzy sets are also constrained to be normalized
piecewise linear functions, the membership function degree can
be obtained by simple arithmetic methods. The use of simplified
defuzzification methods (instead of conventional ones) also
contributes to increase system speed and to reduce hardware
resources consumption.

Fig. 3 shows a block diagram of the FIM architecture used
in the development platform. In each operation cycle, the
membership function circuits (MFCs) evaluate the input values
and provide pairs of “label, activation-level” (Li, µi) values.
The inference process is carried out by sequentially processing
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the active rules by means of an active-rule selection circuit
composed by a counter-controlled multiplexer array (MUX).
In each clock cycle, the membership degrees µi from rule
antecedents are combined within the connective-antecedent
operator circuit to calculate the activation level hi of the rule,
while the antecedent labels Li address the rule memory location
containing the parameters (ci, wi) that define its corresponding
consequent. A configurable defuzzifier block (DEF) is used
to obtain the crisp output value y, whereas a control block
regulates the timing of the fuzzy inference process.

One advantage of this architecture arises from the availability
of different circuit realizations for the blocks in Fig. 3, which
provides a high configuration degree to the fuzzy modules
used in the controller. MFCs can be implemented using ei-
ther memory- or arithmetic-based approaches. Memory-based
MFCs store the labels and the membership function degrees
corresponding to each point of the input universe of discourse.
The main advantages of this approach are its high operation
speed and the possibility to use unrestricted fuzzy set shapes.
Its major drawback is the exponential increase of memory
consumption when the number or the resolution of inputs grows
up. Arithmetic-based MFCs employ an arithmetic circuit to
implement normalized triangular functions using the break-
points and slopes stored in a common parameter memory, thus
reducing the memory requirements. Implementation of fuzzy
operators and defuzzification methods can also be selected
by the designer among several options. The connective block
in Fig. 3 that represents the conjunctive nexus between rule
antecedents (“and” clause) can be implemented by a minimum
or product operator. Finally, depending on the kind (interpolat-
ing or decision making) of fuzzy module, different defuzzifier
blocks can be employed. Fig. 4(a) shows the block diagram of
a circuit that implements the equation

y =
∑

i hi · ci · wi∑
i hi · wi

(1)

where hi’s are the activation degrees of the rules, ci’s are crisp
values representing the rule conclusions, and wi’s are their
corresponding weight factors. According to the meaning of the
wi parameter, some well-known defuzzification methods like
Fuzzy Mean, Weighted Fuzzy Mean, or Center of Sums can
be implemented by this circuit. As a particular case, only one
multiplier is needed for Fuzzy Mean implementation (wi = 1).
The architecture also has a defuzzification option for decision-
making systems. Fig. 4(b) shows the schematic of a defuzzifier
named “MaxLabel” in which the rule consequent ci with the
highest activation degree hi will be considered as the crisp
system output.

Regarding timing considerations, memory-based MFCs ob-
tain antecedent activation levels in only one clock cycle,
whereas arithmetic MFCs need as many clock cycles to perform
its operation as membership functions are defined. One clock
cycle is required by the active-rule selection mechanism to
evaluate each active rule (the number of active rules depends
on the number of inputs and the overlapping degree of input
membership functions). Finally, using a sequential division cir-
cuit with shift subtract/add nonrestoring technique, the division

Fig. 4. (a) Block diagram of a configurable defuzzifier module. (b) Defuzzifier
for decision-making systems.

at the defuzzifier stage needs a clock cycle for each bit of the
quotient (this division can be eliminated when using normalized
membership functions and the product operator as connective).
Introducing pipeline stages among the three main blocks of the
architecture, the number of required clock cycles to produce a
control output is limited by the maximum between the number
of active rules and the number of cycles required to perform the
operations of the fuzzifier and defuzzifier interfaces.

C. FPGA Development Board

In order to give physical support to the development plat-
form, a Spartan-3 Starter Board (from Digilent Inc.) has been
employed. This board includes a 1000K gate Spartan-3 with
24 18-bit multipliers and 432 Kb of block RAM. It also con-
tains onboard I/O devices (slide switches, pushbuttons, light-
emitting diodes, and seven-segment display), serial and JTAG
ports, and 1-MB asynchronous SRAM.

IV. CAD TOOLS AND DESIGN FLOW

A second reason to select the above FIM architecture in the
proposed platform is the availability of CAD tools that make
the design and implementation of FIMs easy. These tools are
included in the Xfuzzy environment [26]. As described in this
section, the output of the synthesis facilities provided by Xfuzzy
can be combined with standard FPGA tools in order to obtain
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Fig. 5. Design flow of FLCs combining Xilinx and Xfuzzy tools.

an IP module that can be used in an FPGA-based embedded
fuzzy controller.

A. Xfuzzy Environment

The Xfuzzy design environment facilitates the different devel-
opment stages of fuzzy systems by providing description, sim-
ulation, learning, and simplification tools that permit the fuzzy
system to be defined, verified, and optimized. The environment
also includes synthesis tools that provide software or hardware
implementations of fuzzy inference systems [27]. The common
specification language of Xfuzzy, i.e., XFL, used by the tools
allows defining hierarchical systems, which combine fuzzy
and nonfuzzy components, with complex rulebases and user-
defined fuzzy operators. Verification and tuning tools permit
to simulate the system behavior and to adjust the system pa-
rameters by means of different supervised learning algorithms.
Software synthesis tools generate C or C++ codes that can
be cross compiled and executed in the MicroBlaze processor,
thus providing a fully software solution for embedded fuzzy
controllers. Finally, the hardware synthesis tool included in the
environment is able to generate a description of the system in
VHSIC Hardware Description Language (VHDL) according to
the optimized architecture for the realization of fuzzy systems
previously described. When the designer runs the synthesis
process, different architectural and implementation options can
be chosen according to the particular characteristics of the
problem. The generated VHDL description of the system can
be further converted into an IP module to be used with the tools
of Xilinx’s EDK environment.

B. Using Fuzzy IP Modules in EDK

The EDK environment includes a set of IP components and
tools that simplify the development of embedded processing

systems on FPGAs. The Xilinx Platform Studio (XPS) graphi-
cal user interface provides a group of templates that facilitate
the design of OPB-compatible peripherals. These templates
include a VHDL code that describes two components: IP Inter-
face (“IPIF”), which performs the interface functions with the
OPB bus; and “User_logic,” which includes the logic developed
by the user. In our case, the latter is composed of a VHDL
description of the FIM given by Xfuzzy plus the necessary code
to access the controller through the registers of the IP module.
Both components communicate through the IP Interconnect
(“IPIC”) interface, which is independent on the peripheral bus.
Different types of templates exist depending on the operation
mode of the peripheral (master/slave) and the services provided
by the IPIF block. The XPS graphical user interface also
facilitates the generation of files required for the use of the IP
module as another peripheral of the system.

Fig. 5 shows the design flow that allows integrating the
MicroBlaze processing system and the inference module in
order to obtain a SoPC embedded fuzzy controller. Once the
FIM is defined and verified, and after obtaining its VHDL
code with the help of the synthesis tool of Xfuzzy, the FIM
can be encapsulated as an OPB-compatible peripheral. Then,
a typical development cycle for hybrid HW/SW systems can
be carried out with Xilinx’s EDK environment. MicroBlaze
components (including the OPB-connected FIM) defined in
the hardware specification file (“.mhs” file) are synthesized
and implemented by using EDK’s platgen tool and Xilinx’s
ISE development environment. The obtained bit stream (“.bit”
file) will be used to configure the FPGA internal connections
that allow determining its behavior. MicroBlaze drivers and
libraries for the included peripherals are generated by using
EDK’s libgen tool according to the software specifications file
(“.mss” file). Application programs can be compiled and linked
with the GNU cross-development tools also provided by the
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Fig. 6. Parking problem illustration.

EDK environment. Finally, the debugging tool xmd permits
to download the executable code (“.elf” file) into the program
memory.

V. FUZZY CONTROL SYSTEM FOR AUTONOMOUS

MOBILE ROBOTS

The parking of autonomous vehicles in a constrained space
is a typical control problem in robotics [28], [29]. Fig. 6
illustrates the diagonal parking problem addressed in this paper.
Starting from any given position and orientation (x, y, φ), the
autonomous mobile robot must drive forward and backward (as
required) at speed v and with a wheel curvature γ in order to
always arrive backward at target position (0, 0, 0).

The mobile robot used has been an autonomous electric
vehicle called Romeo-4R [30]. Romeo-4R is a four-wheeled
car with standard Ackerman steering, direct current traction and
steering electrical motors, and a set of sensors and actuators
that make it capable of autonomous navigation. A digital signal
processor (DSP) TMS-320LF from Texas Instruments provides
support for motor control (encoder inputs and pulsewidth-
modulated outputs), analog-to-digital conversion, and commu-
nication links through serial ports, thus easing the low-level
control of the vehicle [31]. The DSP acquires information from
sensors (a gyroscope and encoders) and processes it by using
a kinematical model usually employed for car-like robots in
order to resolve the actual position (x, y) and orientation (φ)
according to

ẋ = v · sin(φ)

ẏ = v · cos(φ)

φ̇ = γ · v. (2)

Once the values of the current state (x, y, φ, v, and γ) of
Romeo-4R are known, the DSP transmits them to the FPGA
containing the fuzzy controller through an RS-232 serial inter-
face and using a specific communication protocol (which is also
implemented by the program running in the MicroBlaze proces-

Fig. 7. FIM structure for parking control.

sor). The state of the vehicle is transmitted every 50 ms, thus
determining the duration of the control cycle. The fuzzy high-
level controller performs the parking control strategy and sends
back to the DSP the new required values of speed and wheel
curvature so that the DSP controls the traction and direction
motors. This hierarchical control structure allows developing
different control strategies in the high-level controller and frees
it from the low-level control task of Romeo-4R. As corresponds
to a reactive approach, the fuzzy controller responds to the
present inputs using a stimulus/response type of behavior that
does not take into account the past history of the vehicle. For
this reason, possible errors in the calculus of the vehicle’s state
due to road friction, sensor inexactitudes, etc., only affect the
current iteration and may be compensated in the next control
cycles.

Following the proposed hybrid HW/SW strategy, the Mi-
croBlaze processor performs the interface protocol to commu-
nicate with the low-level controller through an OPB-connected
UART module, the sequencing of the different processing
stages, and the information interchange with the FIM. This FIM
implements a motion planning strategy based on rules that emu-
late the expert knowledge of a human driver. Its design process
has been carried out with the help of the Xfuzzy environment
[32]. Different FIMs have been tested: from simple modules
aimed at implementing simple behaviors to the hierarchical
structure shown in Fig. 7 containing six rulebases with multiple
inputs and outputs.

The rulebases Position, Planning, and Direction in Fig. 7
correspond to decision-making rulebases that provide as out-
puts the labels that represent the different situations of the
vehicle. On the contrary, Celerity, Forward, and Backward
are interpolating rulebases that provide numeric output values.
Position determines if the vehicle is near or far from the target
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Fig. 8. Experimental results of parking maneuvers from different initial positions.

position and if it is centered or not with respect to this position.
Its output (pos) is combined with the vehicle orientation in
the Planning rulebase to propose a driving direction (plan).
Afterward, the plan output is combined with the previous speed
value at the Direction rulebase to obtain the actual driving
direction (way). Celerity determines the absolute value (cel) of
the vehicle speed. The heuristic implemented by this rulebase
is simple: the vehicle will drive slower when the absolute value
of its curvature is big and when the car is arriving at the parking
place. Backward and Forward set the vehicle curvature. The
parameters defining the behavior of these rulebases have been
tuned using the supervised learning tools provided by Xfuzzy
and a training file with data obtained from the geometrical
consideration of the problem taking into account the nonholo-
nomic constraints of Romeo-4R. Both rulebases share the input
variables, which makes it possible to implement them in a
single module. Finally, references to the traction and direction
engines (new values of v and γ) can be obtained as a function of
way by means of a sign selector and a multiplexer, as illustrated
in Fig. 7.

VI. EXPERIMENTAL RESULTS

Once the FIM is implemented and encapsulated as an IP
module, it has been combined with an adequate configuration
of the MicroBlaze processing system in order to build the
fuzzy controller. The hardware realization of this controller
consumes 3438 Slices of the FPGA (approximately 45% of
the Spartan-xc3s1000 available in the development board).
The 60% of these resources are required to implement the

MicroBlaze processing system and its associated components.
The remaining 40% correspond to the FIM. The controller also
employs 8 of the 24 hardware multipliers available in the FPGA
(three for the MicroBlaze core, one for the Celerity rulebase,
and four for the combined Backward–Forward rulebase) and
16 RAM memory blocks that provide 32 KB of local memory
used to execute the control programs.

The high-level C program running in the MicroBlaze proces-
sor is in charge of the following tasks: receiving the status
information coming from the DSP, performing the required
data-type conversions, writing the inputs to the FIM, reading
the corresponding outputs, calculating the new values of speed
and curvature, and sending them to the DSP. The control
continues until the vehicle has arrived at the target position, a
predefined number of iterations has been reached, or more than
three transmission errors have been detected.

Both the MicroBlaze system and the FIM operate with the
50-MHz clock signal available in the development board. All
the operations carried out by MicroBlaze in each iteration are
performed in less than 3 µs, which is far from the 50-ms control
cycle fixed by the DSP-based low-level controller. Once its
inputs are established, the FIM completes the inference process
and provides a valid output after 16 clock cycles (320 ns).

The upper graphs in Fig. 8 show experimental results illus-
trating the trajectories of several parking maneuvers that start
from different initial positions. The lower graphs in Fig. 8 show
the temporal evolution of the vehicle’s curvature (γ) in the three
considered situations. Fig. 8(a) corresponds to a case where
the vehicle faces the parking place, and it is far enough so
as to be able to reach the target by driving only backward.
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Romeo-4R starts describing an arc of maximum curvature until
its orientation is near 45◦ and then changes the sign of the
curvature and progressively reduces its value to approach the
parking position. The trajectory in Fig. 8(b) corresponds to
a very usual case where the initial orientation of the vehicle
is perpendicular to the parking place. Romeo-4R is driven
forward by the fuzzy controller first with maximum curvature
and then with smaller values in order to situate the robot near
the x = 0 axis and with orientation φ = 0. From this point, the
vehicle is driven backward toward the parking site. Finally, a
more complex trajectory is illustrated in Fig. 8(c). In this case,
Romeo-4R is initially parked at the target position but with a
wrong orientation. To correct this situation, the vehicle is first
driven backward to leave the parking place and then follows a
path similar to the one described in case b. As can be observed
in the graphs, all the transitions are smooth when the robot is
moving backward or forward.

VII. CONCLUSION

A realization strategy for the development of hybrid HW/SW
embedded fuzzy controllers on FPGA devices has been de-
scribed. The main characteristic of this strategy is the use
of IP modules for the realization of both the general-purpose
processing system that carries out the software-assigned task
and the fuzzy modules implemented by specific hardware that
accelerates the inference processes. The combination of this
strategy with a set of generic and specific design tools allows
the rapid development of fuzzy controllers with excellent flexi-
bility and performance characteristics. In addition, the use of
modern logical programmable devices for hardware support
provides rapid and low-cost implementations for consumer
products that do not require high production volumes. In order
to validate this approach, a configurable platform for embedded
fuzzy controllers has been presented and used to develop a
fuzzy control system for the diagonal parking of an electrical
vehicle. The obtained results demonstrate the capabilities of the
fuzzy logic techniques to cope with these types of problems,
and the utility of the platform and its associated chain tool to
confront the design of complex fuzzy controllers.
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