
FPGA Implementation of IP Packet Header Parsing Hardware

Danijela Efnusheva, Aristotel Tentov, Ana Cholakoska and Marija Kalendar
 Computer Science and Engineering Department, Faculty of Electrical Engineering and Information Technologies,

Ss. Cyril and Methodius University, Skopje, Macedonia

{danijela, toto, acholak, marijaka}@feit.ukim.edu.mk

Keywords: FPGA, Header Parser, IP Packet Processing, Multi-gigabit Networks, Network Processor.

Abstract: The rapid expansion of Internet has caused enormous increase in number of users, servers, connections and

demands for new applications, services, and protocols in the modern multi-gigabit computer networks. The

technology advances have resulted with significant increase of network connection links capacities,

especially with the support for fiber-optic communications, while on the other hand the networking router's

hardware and software have experienced many difficulties to timely satisfy the novel imposed requirements

for high throughput, bandwidth and speed, and low delays. Considering that most network processors spend

a significant part of processor cycles to provide IP packet header field access by means of general-purpose

processing, in this paper we propose a specialized IP header parsing hardware that is intended to provide

much faster IP packet processing, by allowing direct access to non byte- or word-aligned fields found in

IPv4/IPv6 packet headers. The proposed IP packet header parser is designed as a specialized hardware logic

that is added to the memory where the IP packet headers are placed; and is described in VHDL and then

implemented in Virtex7 VC709 Field Programmable Gate Array (FPGA) board. The simulation timing

diagrams and FPGA synthesis (implementation) reports are discussed and analyzed in this paper.

1 INTRODUCTION

Internet as the most popular and most widely used

network is constantly growing with an extremely

large pace, (Ahmadi, 2006). This is due to the ever

increasing number of users, servers, connections and

new applications. In parallel, the speed of the

networking links grows constantly, especially with

the great expansion of the fiber-optic technology. As

a result of the increased network traffic, the

networking hardware remains as the bottleneck for

constructing high speed networks. Network

processors (NPs) have become the most popular

solution to this problem, (Wheeler, 2013). In general

they are defined as chip-programmable devices,

which are specially tailored to perform several

network processing operations, including: header

parsing, bit-field manipulation, pattern matching,

table look-ups, and data movement, (Lekkas, 2013).

NPs are usually implemented as application

specific instruction processors (ASIPs) that mainly

include many processing engines (PE), dedicated

hardware accelerators, network interfaces, adjusted

memory architectures, interconnection mechanisms

and provide support for various parallelization

techniques, (Shorfuzzaman, Eskicioglu, Graham,

2004). NPs might be used in different types of

network equipment such as routers, switches, IDS or

firewalls, (Giladi, 2008). Over the last few years

many vendors have developed their own NPs, which

resuled with many NP architectures existing on the

market. Moreover, many novel approaches, such as

the NetFPGA architecture, (Naous, Gibb, Bolouki,

McKeown, 2008), or software routers, (Petracca,

Birkea, Bianco, 2008), are constantly emerging.

The most popular NPs, which are used today,

include one or many parallel homo- or

heterogeneous processing cores. For instance, Intel's

IXP2800 processor, (Intel, 2005), includes 16

identical multi-threaded general-purpose RISC

processors organized as a pool of parallel

homogenous processing cores that can be easily

programmed with great flexibility towards ever-

changing services and protocols. Furthermore,

EZChip has introduced the first NP with 100 ARM

cache-coherent programmable processor cores,

(Doud, 2015), that is by far the largest 64-bit ARM

processor yet announced.

Proc. of the 5th International Conference on Applied Innovations in IT, (ICAIIT), March 2017

33

The discussed NPs confirm that most of the

operations in NPs are performed by general-purpose

RISC-based processing cores as a cheaper but

slower solution, combined with custom-tailored

hardware that is more expensive but also more

energy-efficient and faster. If network packet

processing is analyzed on general-purpose

processing cores then it can be easily concluded that

a significant part of processor cycles will be spent on

packet header parsing, especially when the packet

header fields are non byte- or word-aligned. In such

case, some bit-wise logical and arithmetical

operations are needed in order to extract the value of

the appropriate field from the packet header.

Network processing usually begins by copying

the packets into a shared memory buffer that is

available for further processing by the processor.

This buffer may be upgraded with specialized

hardware to perform the field extraction operations

directly on its output, before forwarding them to the

processor. The basic idea of this approach is to

replace the bit-wise logical and arithmetic operations

by a special parsing logic that will extract the header

fields from the on-chip memory and provide them to

the processor. The result of using this header parsing

logic should be a single-cycle memory access to

these non byte- or word- aligned header fields.

The header parsing logic is simple to design,

provided that it will be specially adapted to work

with IPv4/IPv6 header formats. Actually, the

proposed header parsing hardware will be used for

reading a single IPv4/IPv6 header field from the

memory, or writing to a single IPv4/IPv6 header

field into the memory. If this logic is manufactured

as an ASIC it cannot be reused for other header

formats, so in this paper we investigate the

possibilities to utilize a reconfigurable hardware

platform like Virtex7 VC709 FPGA, (Xilinx, 2016).

In fact, FPGA technology is very suitable for use,

providing a compromise between performance, price

and re-progrmability, (Cardoso, Hubner, 2011).

The rest of this paper is organized as follows:

Section II gives an overview of different networking

hardware and software solutions intended to speed

up network processing and also discusses several

aproaches used for simplifing packet header parsing.

Sections III describes the proposed IP header parsing

logic and explains its ability to allow single-cycle

memory access to non byte- or word- aligned packet

header fields. Section IV presents simulations and

synthesis results from the FPGA implementation of

the IP header parsing hardware model in VHDL.

Section V concludes the paper, outlining the benefits

of the proposed IP header parsing module.

2 STATE OF THE ART

Each network device that exists in the computer

networks examines fields in the packet headers in

order to decide what to do with each packet. As a

result, the process of identifying and extracting

fields in a packet header is subject to a vast amount

of research, (Gibb, Varghese, Horowitz, McKeown,

2013). With the ever increasing speed of network

links, the research is mostly focused on hardware

acceleration for achieving suitable processing

speeds, (Kořenek, 2013). This is mainly done by

combining application-specific coprocessors with

general-purpose multiprocessor systems, or

reconfigurable FPGA platforms.

The basic function of each network device is to

process the ingress data flow accepted by the

physical interface, and then forward the packets to

an outbound port, after the processing is finished. In

order to achieve this, network devices are usually

designed as a composition of four functional blocks:

physical interface, data plane, control plane and

switching interface, (Lekkas, 2013). Generally NPs

are used to perform fast packet processing in the

data plane. On the other hand, the slow packet

processing in the control plane (configuration and

management, execution of routing protocols) is

mostly handed by general purpose processor.

NP operation begins with the receipt of an input

stream of data packets. After that, usually the IP

header of the received packets is being processed, by

analyzing, parsing and modifying its content,

(Giladi, 2008). NPs might include some specialized

hardware units to perform classification of packets,

lookup and pattern matching, queue management

and traffic control. After the completion of all the

required operations, the network processing is

finished and the packet is sent out through the

switching fabric to the appropriate outbound port.

According to (Hauger, Wild, Mutter, 2009)

simpler packet processing and higher speeds can be

achieved if the most time–consuming network

processing operations are simplified, and some

appropriate choices of the routing protocol

functionalities are made. As a result, many different

approaches have been proposed, including label

concept and several other algorithms for faster table

lookup given by (Gupta, Lin, McKeown, 1998) and

(Eatherton, Varghese, Dittia, 2004).

In general, NP software is getting closer to the

NP hardware, such as in (Kekely, Puš, Kořenek,
2014) where part of the packet processing tasks such

as classification or security are offloaded to

application-specific coprocessors that are used and

Proc. of the 5th International Conference on Applied Innovations in IT, (ICAIIT), March 2017

34

Figure 1: Reading a single IPv4/IPv6 header field with the IP header parsing hardware unit.

controlled by the software. In this way, the

coprocessor hardware handles the heavy part of the

packet processing, at the same time leaving more

specific network traffic analyses to the general-

purpose processor. As follows, a flexible network

processing system with high throughput is built.

Some researchers also try to unify the view on the

various network hardware systems, as well as their

offloading coprocessors, by developing a common

abstraction layer for network software development,

(Bolla, Bruschi, Lombardo, Podda, 2014).

Other proposals make big use of FPGA

technology for packet parsing, as it is very suitable

for implementation of pipeline architectures and thus

ideal for achieving high-speed network stream

processing, (Puš, Kekely, Kořenek, 2014). Actually,

the reconfigurable FPGA boards can be used to

design flexible multiprocessing systems that adjust

themselves to the current packet traffic protocols and

characteristics. This approach is given by (Attig,

Brebner, 2011), who propose use of PP as a simple

high-level language for describing packet parsing

algorithms in an implementation-independent

manner. Similarly, in (Brebner, Jiang, 2014), a

special descriptive language PX is used to describe

the kind of network processing that is needed in a

system, and then a special tool generates the whole

multiprocessor system as an RTL description.

3 DESIGN OF IP PACKET

HEADER PARSING UNIT

The general idea of this paper is to propose an IP

packet header parsing hardware module that will

allow single cycle access (read or write) to various

IP header fields. As a result, the proposed IP header

parsing unit would speed up packet processing,

allowing same access time for a packet header field

as the access to any random memory word, even

when it is not byte- or word- aligned. This approach

would have huge impact on network processing

hardware and would provide increased overall

network throughput in computer networks at all.

In order to achieve single-cycle access, the

proposed IP packet header parsing unit will use part

of the memory address space to directly address

various IP packet header fields. This technique is

known as memory aliasing, and allows each IP

header field to be accessed with a separate memory

address value. When such address is input in the IP

header parsing module it selects the corresponding

word from memory, and afterwards depending on

the field, the word is processed in order to extract it.

This may include shifting the word and/or

modification of its bits. A scheme of the proposed

logic, used to read out a single IP header filed, is

presented in Fig.1.

Proc. of the 5th International Conference on Applied Innovations in IT, (ICAIIT), March 2017

35

IPv4 Header

IPv4 Header @0000100000001000

version 4

headerLength 4

typeofService 8

firstwordfirstHalf 16 //used for IP checksum

totalLength 16

identifier 16

flags 3

fragmentOffset 13

secondwordsecondHalf 16 // used for IP checksum

timetoLive 8

protocol 8

thirdwordfirstHalf 16 //used for IP checksum

headerChecksum 16

IPv6 Header

IPv6 Header @0000110000000000

version 4

trafficClass 8

flowLabel 20

payloadLength 16

nextHeader 8

hopLimit 8

Figure 2: Description of IPv4 and IPv6 headers.

The IP header parsing logic is designed so that it

assumes that a packet with IPv4 or IPv6 header

format is located in a fixed area of the memory. The

description of the format of IPv4 or IPv6 packet

headers is shown in Fig. 2. In the given IP header

descriptions the first line defines the name of the IP

header and its location in memory, while each

following line contains the definition of a single

field. For each IP header field, the name and its size

in bits are specified. The IP header fields are defined

in the order that they appear in the IP header.

The IP packet header starting address, which is

specified in the IP header description, is placed in a

specific base address unit that is part of the IP

header parsing logic. Besides that, the input memory

address for the specific IP header field is translated

into a field offset by the lookup table (LUT), as

given in Table 1. The field offset represents a word-

aligned offset to the starting IP header packet

address, which points to the location where the given

IP packet header field is placed. This means that if

the length of a specific field is smaller than the

memory word length, then the closest word-aligned

offset is selected and put in the LUT table.

The address of the memory word that holds the

required IP packet header field is calculated by

adding the field offset to the IP packet header

starting address. Once the word is selected, it is read

Table 1: Look up table in IP header parsing logic.

MemoryAddress for

IP header field

Word-aligned

IP header Field Offset

0000h (IPv4 version) 0000h (first word)

0001h (IPv4 headerLength) 0000h (first word)

0002h (IPv4 typeofService) 0000h (first word)

0003h (IPv4 firstwordfirstHalf) 0000h (first word)

0004h (IPv4 totalLength) 0000h (first word)

0005h (IPv4 identifier) 0001h (second word)

0006h (IPv4 flags) 0001h (second word)

0007h (IPv4 fragmentOffset) 0001h (second word)

0008h (IPv4 secondwordsecondHalf) 0001h (second word)

0009h (IPv4 timetoLive) 0002h (third word)

000Ah (IPv4 protocol) 0002h (third word)

000Bh (IPv4 thirdwordfirstHalf) 0002h (third word)

000Ch (IPv4 headerChecksum) 0002h (third word)

000Dh (IPv6 version) 0000h (first word)

000Eh (IPv6 trafficClass) 0000h (first word)

000Fh (IPv6 flowLabel) 0000h (first word)

0010h (IPv6 payloadLength) 0001h (second word)

0011h (IPv6 nextHeader) 0001h (second word)

0012h (IPv6 hopLimit) 0001h (second word)

Proc. of the 5th International Conference on Applied Innovations in IT, (ICAIIT), March 2017

36

Figure 3: Writing to a single IPv4/IPv6 header field with the IP header parsing hardware unit.

from the memory and then forwarded to the field

processing units. Each field processing is separated

into a field logic (FL) block that is activated by the

output enable (OE) signal connected to a decoder

output. The decoder is also driven by part of the

input memory address, causing only one of the FL

units to be selected at a given moment. Each FL

block is responsible to perform some bit-wise and/or

shifting operations in order to extract and then zero-

extend the appropriate IP header field. In the case

when an IP header field is word-aligned, then its FL

block is empty and the word is directly forwarded

from memory to the module output.

The presented IP header parsing module form

Fig. 1 shows the hardware that is needed to read out

a single IP header field from memory. The same

concept is used for writing directly to the IP header

field in memory, as can be seen in Fig. 3. The both

modules select the address of the memory word that

holds the required IP packet header field in the same

way. The only difference between them is that the

packet header word-aligned data read from memory

and the IP packet header field that should be written

to the memory are applied to each field logic block,

when writing is performed. In this way, the decoder

that is driven by part of the input memory address

activates only one of the FL units and then the

selected FL block sets the input IP packet header

field to the appropriate position in the input packet

header word-aligned data. After that the whole word,

including the appropriate IP header field is written to

the generated address into the memory.

The given approach of direct access to IP header

fields obviously brings much faster packet

processing in comparison with the bare general-

purpose processing, used by nearly all network

processors. For example, a comparison between

RISC-based general-purpose MIPS processor,

(Patterson, Hennessy, 2014) with and without IP

header parsing logic has shown that the number of

instructions needed to load all fields from IPv4/IPv6

header is decreased by 40%/45% when IP header

parsing unit is used.

Proc. of the 5th International Conference on Applied Innovations in IT, (ICAIIT), March 2017

37

Figure 4: Schematic of IP header parsing logic used for direct access to IP header fields. The module is described in

VHDL and then generated in Xilinx VIVADO Design Suite.

Figure 5: Schematic of IP header parsing logic used for writing to IP header fields. The module is described in VHDL

and then generated in Xilinx VIVADO Design Suite.

4 FPGA IMPLEMENTATION OF

IP PACKET HEADER PARSING

UNIT

The proposed IP header parsing logic was described

in VHDL, by means of Xilinx VIVADO Design

Suite tool. This software environment includes a

simulator for performing functional analysis of

VHDL models, and several other tools for hardware

synthesis and FPGA implementation. The FPGA

technology is utterly suitable for research purposes,

due to its advantage in terms of speed, cost,

flexibility and ease of re-programmability, (Cardoso,

Hubner, 2011). Therefore, for the FPGA

implementation of the proposed IP header parsing

logic, we make use of Virtex7 VC709 evaluation

platform, (Xilinx, 2016).

The VHDL model of the proposed IP header

parsing logic used for reading IP header fields is a

module that includes three sub blocks: Field/Data

address memory generator, on-chip memory and

Field/Data Selector. This top module receives a

memory address for specific IP header field and an

IP packet header starting address as an input, and

produces an IP packet header field or a word-aligned

data as an output. This unit is optimized only to

extract fields from IPv4 and IPv6 headers, but it can

be easily extended and reconfigured to work with

other packet header formats. This extension would

introduce some modifications into the look up table

and would require definition of novel field logic

blocks in the IP header parsing logic.

The schematic of the IP header parsing logic

used for direct access to IP header fields that has

been generated in Xilinx VIVADO Design Suite is

shown in Fig. 4. In addition to that, Fig. 5 presents

the schematic of IP header parsing logic that is used

for writing to IP header fields. This schematic has

been generated in Xilinx VIVADO Design Suite and

as shown in Fig. 5 is composed of RAM memory

and a ShiftBackComputeDataAndAddress module

that consists of memory address generator and data

field selector, which are used to generate the write

address and the data that should be written into the

RAM memory.

Proc. of the 5th International Conference on Applied Innovations in IT, (ICAIIT), March 2017

38

Figure 6: Simulation of direct access to IP header fields in VIVADO simulator.

a)

b)

Figure 7(a and b): Implementation of IP header parsing logic in Virtex 7 VC709 FPGA board.

Proc. of the 5th International Conference on Applied Innovations in IT, (ICAIIT), March 2017

39

Fig. 6 presents simulation results of the IP header

parsing top module (which includes modules for

read or write to IP header fields), while performing

extraction of several fields (version, header length

and type of service) from an IPv4 packet header. For

the given simulation scenario, it is considered that

the memory is already filled with several IP packets,

whose IP headers are later parsed and inspected. The

waveform signal given in Fig. 6 verifies that the

proposed IP header parsing logic works properly.

Once the functional simulation is finished, FPGA

synthesis and implementation of the proposed IP

header parsing module are performed. The synthesis

results show that the IP header parsing logic can be

implemented in Virtex7 VC709 evaluation platform,

by utilizing 0.01% of the slice registers and 0.35%

of the slice LUT resources, which is less than 1% of

the occupied FPGA slice resources. As a result of

the low FPGA resource's utilization, the initial IP

header parsing logic design can be further extended

(for other packet header formats) and then

implemented in the same Virtex 7 VC 709 FPGA

board. According to that, the use of FPGA

technology makes the proposed IP header parsing

hardware very flexible and also cheap for

implementation.

Fig. 7 presents the FPGA implementation of the

proposed IP header parsing logic. For that purpose

we have created a constraint file which makes use of

the input Switch Pins and output LEDs of the Virtex

7 VC 709 FPGA board. Therefore, we have used the

Switch Pins to set the specific memory address of

the IP header field that should be parsed. Once the

IP header field has been selected, the output LEDs

light were showing which FL block was activated,

during the appropriate IP header field extraction. In

this way we were able to test the proposed IP header

parsing module in real hardware (FPGA prototype).

5 CONCLUSIONS

This paper proposes an IP header parsing hardware

module that allows single- cycle memory access to

non byte- or word- aligned fields in IPv4 and IPv6

packet header formats. This approach accelerates the

packet processing in both general-purpose and

application-specific processor architectures, as IP

header field access is a very frequent operation in

network processing. Actually, it was shown that a

MIPS processor that is extended with IP header

parsing logic achieves 40/45% faster header parsing

of IPv4/IPv6 packets, in comparison with a bare

MIPS processor.

The main focus of this paper is the FPGA

implementation of the proposed IP header parsing

logic. Considering that the implemented IP header

parsing logic utilizes less than 1% of the occupied

FPGA slice resources, future work would include

comparison of hardware complexities for various

header formats and justification of the additional

hardware over the performance improvement. It is

obvious that these modifications would require

extensions of the look up table and definition of

novel field logic blocks in the existing IP header

parsing logic. Having this possibility to generate

parsing modules for specific packet headers, and

reconfigure the system to start using them, whenever

there is a need for a new networking protocol, is

very attractive. This approach makes use of FPGA

re-configurability, which has proven to be an ideal

solution for achieving reasonable speed at low price.

REFERENCES

Ahmadi, M., Wong, S., 2006. Network processors:

challenges and trends. In 17th Annual Workshop on

Circuits, Systems and Signal Processing.

Wheeler, B., 2013. A new era of network processing.

LinleyGroup Bob Wheeler's White paper.

Lekkas, P. C., 2013. Network Processors: Architectures,

Protocols and Platforms, McGraw-Hill Professional.

Shorfuzzaman, M., Eskicioglu, R., Graham, P., 2004.

Architectures for network processors: key features,

evaluation, and trends, Communications in

Computing, pp.141-146.

Giladi, R., 2008. Network Processors - Architecture,

Programming and Implementation, Ben-Gurion

University of the Negev and EZchip Technologies

Ltd.

Naous, J., Gibb, G., Bolouki, S., McKeown, N., 2008.

NetFPGA: reusable router architecture for

experimental research, in Sigcomm Presto Workshop.

Petracca, M., Birkea, R., Bianco, A., 2008. HERO: High

speed enhanced routing operation in software routers

NICs. in IEEE Telecommunication Networking

Workshop on QoS in Multiservice IP Networks.

Intel, 2005. Intel® IXP2800 and IXP2850 network

processors, Product Brief.

Doud, B., 2015. Accelerating the data plane with the Tile-

mx manycore processor, in Linley Data Center

Conference.

Xilinx, 2016. VC709 Evaluation Board for the Virtex-7

FPGA. User guide.

Cardoso, J. M. P., Hubner, M., 2011. Reconfigurable

Computing: From FPGAs to Hardware/Software

Codesign, Springer-Verlag.

Gibb, G., Varghese, G., Horowitz, M., McKeown, N.,

2013. Design principles for packet parsers. In

Proc. of the 5th International Conference on Applied Innovations in IT, (ICAIIT), March 2017

40

ACM/IEEE Symposium on Architectures for

Networking and Communications Systems, pp. 13–24.

Kořenek, J., 2013. Hardware acceleration in computer

networks. In 16th International Symposium on Design

and Diagnostics of Electronic Circuits Systems.

Hauger, S., Wild, T., Mutter, A., 2009. Packet processing

at 100 Gbps and beyond—challenges and

perspectives. In 15th International Conference on

High Performance Switching and Routing.

Gupta, P., Lin, S., McKeown, N., 1998. Routing lookups

in hardware at memory access speeds. In IEEE

Infocom’98, pp. 1240–1247.

Eatherton, W., Varghese, G., Dittia, Z., 2004. Tree bitmap:

hardware/software IP lookups with incremental

updates. In Sigcomm Computer Communication

Review, vol. 34, no. 2.

Kekely, L., Puš, V., Kořenek, J., 2014. Software Defined

Monitoring of application protocols. In IEEE

Conference on Computer Communications, pp. 1725–

1733.

Bolla, R., Bruschi, R., Lombardo, C., Podda, F., 2014.

OpenFlow in the Small: A Flexible and Efficient

Network Acceleration Framework for Multi-Core

System. In IEEE Transactions on Network and Service

Management, pp. 390-404.

Puš, V., Kekely, L., Kořenek, J., 2014. Design

methodology of configurable high performance packet

parser for FPGA. In 17th International Symposium on

Design and Diagnostics of Electronic Circuits

Systems, pp. 189–194.

Attig, M., Brebner, G., 2011. 400 Gb/s Programmable

Packet Parsing on a Single FPGA. In Seventh

ACM/IEEE Symposium on Architectures for

Networking and Communications Systems, pp. 12-23.

Brebner, G., Jiang, W., 2014. High-Speed Packet

Processing using Reconfigurable Computing. In IEEE

Micro, vol. 34, no. 1, pp. 8– 18.

Patterson, D., A., Hennessy, J., L., 2014. Computer

organization and design: the hardware/software

interface, Elsevier. 5th ed.

Proc. of the 5th International Conference on Applied Innovations in IT, (ICAIIT), March 2017

41

