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Abstract: With the increasing number of Internet devices, the emergence of IoT, 5G and the increased traffic between 
the devices, the IPv6 is complementing IPv4. As IPv6 is becoming the protocol of choice by the new 
technologies, in order to accommodate for the features demanded by these technologies it is necessary to 
have high speed and low latency between the connected nodes. This paper introduces a hardwired IPv6 
FPGA node, which processes IPv6 packets and is focused on high-speed transmission. Although, the code is 
written VHDL, it is written in a way which enables the user to easily add new features and implement new 
extension headers. The implementation of this IPv6 header processor is done on a Virtex7 VC709 FPGA 
development board.  

1 INTRODUCTION 

As of 2021, almost three decades after the 
appearance of IPv6, only 35% of all accesses to 
Google have been made with IPv6. Google's chart of 
accesses starts to grow throughout the year 2011, 
and the official date of exhaustion of the IPv4 
address-space was on 31 January 2011. Even though 
the adoption rate is not equal in all countries, some 
countries reach over 50% levels, and some have less 
than 1% adoption in 2021 [1]. The IPv4 protocol has 
2^32 (<4.3e9) possible addresses with total available 
addresses ~3.7e9, the World's population counts 
more than 7.5e9, leaving ½ devices for every 
human. In comparison, IPv6 has 2^128 (~3.4e38) 
possible addresses (~8e28 more than IPv4). 
Processing the IPv6 header is different than 
processing the IPv4. The main difference is the 
checksum check, which in IPv6 is removed, and 
instead, bit-level error detection for the entire IPv6 
packet is performed by the link layer [2]. 
Additionally, each device in IPv6 will have its 
public routable address, which makes it very suitable 
for the new wireless devices and IoT devices. 

The IPv6 processor logic is simple to design, 
provided that it will be specially adapted to work 
with IPv6 headers. The proposed header processor 
will be used to read a single IPv6 header, modify the 
header where necessary, and then send it to the next 
node in the network. One of the unique features of 

the IPv6 protocol compared to IPv4 are the 
extension headers, which now are of variable non-
fixed size, can be placed in mixed order, and only 
the ones used need to be sent. That means that the 
protocol by itself requires a certain degree of 
customizability. Manufacturing such a processor on 
an ASIC proposes great challenges because of the 
fast-paced development in the networks and, on the 
other side, slow-paced IC development (½ to 2 
years). Because this type of technology is not 
suitable for such logic, we are exploring other types 
of technologies [3]. 

The FPGA technology suits our requirements 
with fast-paced development and customizability, 
and where speed is necessary, we can easily modify 
the code and trade chip resources for lower latency. 
In other words, we get a good compromise of 
performance, price, and re-programmability [4]. 
This design is developed on a reconfigurable 
hardware platform – FPGA development board 
Virtex7 VC709 [5]. 

The rest of this paper is organized as follows: 
Section 2 gives an overview of different state of the 
art solutions. Section 3 describes the proposed IPv6 
header processor and explains its ability to provide 
fast IPv6 header processing.  Section 4 presents 
simulations and synthesis results from the FPGA 
implementation of the VHDL IP header processor 
model. Section 5 concludes the paper, outlining the 
benefits of the proposed IP header processor. 
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2 STATE OF THE ART 

Every network device that is part of a computer 
network is intended to examine field in the packet 
headers to decide what to do with each packet. This 
process of identifying and extracting fields in a 
packet header is subject to a vast amount of research 
[6]. With the ever-increasing speed of network links, 
the research is mostly focused on hardware 
acceleration for achieving suitable processing 
speeds [7]. This is mainly achieved by combining 
application-specific coprocessors with general-
purpose multiprocessor systems, or reconfigurable 
FPGA platforms. In most cases, network processors 
(NPs) [3] and [8], are used to perform fast data plane 
packet processing. This includes processing of the IP 
header, by analysing, parsing and modifying its 
content. NPs might include some specialized 
hardware units to perform task offloading, such as 
lookup and pattern matching, classification of 
packets, queue management and traffic control [9]. 

The most popular NPs used today, include one 
or many parallel homo- or heterogeneous processing 
cores. For instance, Intel's IXP2800 processor [10], 
includes 16 identical multi-threaded general-purpose 
RISC processors organized as a pool of parallel 
homogenous processing cores that can be easily 
programmed with great flexibility towards ever-
changing services and protocols. Furthermore, 
EZChip has introduced the first NP with 100 ARM 
cache-coherent programmable processor cores [11], 
that is by far the largest 64-bit ARM processor yet 
announced. 

The discussed NPs confirm that most of the 
operations in NPs are performed by general-purpose 
RISC-based processing cores as a cheaper but 
slower solution, combined with custom-tailored 
hardware that is more expensive but also more 
energy-efficient and faster. If network packet 
processing is analysed on general-purpose 
processing cores, then it can be easily concluded that 
a significant part of processor cycles will be spent on 
IP packet header parsing and processing.  

On the other hand, some proposals of TCP/IP 
offload engines [12] provide a certain amount of 
processing relief compared to a classical network 
interface card, but still, it requires a huge portion of 
data processing from the main processor. The 
sequential software flow, i.e. protocol processing 
consumes CPU time and resources, creating a 
dependency between processor load and available 
throughput as well as latency. This reveals a major 
drawback, especially for embedded systems where 
resources are even more limited and CPU time is 

needed for application-specific tasks. To overcome 
these system-dependent limitations in throughput 
and latency, the authors of [13], implement a 
complete TCP/IP stack in hardware. This 10 GbE 
hardware-based TCP/IP stack can handle a single 
physical network interface and contain IPv4, 
ICMPv4, TCP and UDP protocols. 

Furthermore, the authors of [14] introduce a 
novel architecture implementing a TCP/IP stack 
capable of processing 10 Gb/s data full-duplex, 
while handling thousands of concurrent sessions. 
The architecture's resource requirements scale 
linearly with the number of supported sessions to 
over 115,000 given today's 20 nm devices. Similar 
types of architectures appear in [15] and [16] - the 
first being an open-source Gigabit Ethernet TCP/IP 
IPv6 networking architecture, designed for packet 
processing, IoT, test & measurement, and control 
(e.g., sensors, motors, etc.) applications and the 
second implementing a UDP/IP hardware protocol 
stack that enables high-speed communication over a 
LAN or a point-to-point connection. The core, 
designed for standalone operation, is ideal for 
offloading the host processor from the demanding 
task of UDP/IP encapsulation and enables media 
streaming with speeds up to 100Gb/s even in 
processor-less SoC designs. Assuming that most of 
the available research presents a hardware 
implementation of IPv4 protocol, our research is 
focused on developing a dedicated processor module 
for IPv6 protocol. The emergence of novel 
technologies, such as 5G, together with the 
significant expansion of devices on the Internet and 
the Internet of Things, makes IPv6 protocol a 
necessity, compared to IPv4.  

3 DESIGN OF IPV6 HEADER 

PROCESSOR 

The IPv6 header processor consists of three 
processors: main processor, memory processor, and 
error processor, which is shown in Figure 1. The 
main processor is processing the header information 
while receiving data from the memory processor and 
is sending error data to the error processor. The 
memory processor is the bridge between the on-
board RAM memory and the main processor. Its 
purpose is to get the necessary data from the external 
memory and prepare it for the main processor. The 
error processor reads error data from the main 
processor and sends the error messages back to the 
source if necessary. 
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Figure 1: IPv6 header processor internal structure. 

This device is designed to work with external 
on-board RAM. The type of RAM is defined in the 
memory processor. IPv6 headers have a maximum 
length of 64kB, meaning that storing the whole 
header inside the core would make the hardware too 
complex. The main processor consists of three data 
buffers, one main 16 octet data buffer and two 
shared 16 octet data buffers. The communication 
with the memory processor is realized through a 
128-bit data bus and 16-bit address bus. The main
data buffer is used for reading the current header
continuously. Because there can be more than one
main processor in the whole implementation, the
shared memory can be reserved for use by each
separate main processor.

The size of the main buffer can be changed. The 
secondary buffers are set to be 16 octets because we 
can exchange two addresses in a single cycle. 

Transferring data from memory to processor 
takes three cycles with a 128bit data bus and a 16bit 
address bus. The formula for necessary cycles (NC) 
to transfer 128bit data given in (1), 

C⌈⌉*3 

where 1<=N<=128, and N is the width of the 
data bus in bits. The address bus can be further 
narrowed. This changes the formula for cycles and 
adds further complexity to the circuit. For devices 
with low latency, N=128 is recommended, and for 
devices with lower logic space, N=16 is 
recommended. Transferring a whole datagram of 
40B takes 9 cycles. 

Figure 2: Necessary cycles to transfer 16 data octets to the 
main processor. 

Processing the IPv6 header is done in two 
phases. The first phase is with the first eight octets 
of header data, which are always in the same 
position. Therefore, this data is processed in parallel, 
and if any errors are detected, the processor sends 
unique error detection bits to the error processor. If 
the header needs to be destructed, the memory 
processor gets this information so that the header 
can be deleted from the memory. 

The first 8 octets of the IPv6 header contain the 
following information:  
 Version - 4 bits are used to indicate the

version of IP and is set to 6;
 Traffic class – is available for use by

originating nodes and/or forwarding routers to
identify and distinguish between different
classes or priorities of IPv6 packets;

 Flow label – may be used by a source to label
sequences of packets for which it requests
special handling by the IPv6 routers, such as
non-default quality of service or "real-time"
service;

 Payload length – Length of the IPv6 payload,
i.e., the rest of the packet following this IPv6
header, in octets;

 Next header – Identifies the type of header
immediately following the IPv6 header;

 Hop limit – Decremented by 1 by each node
that forwards the packet. The packet is
discarded if Hop Limit is decremented to zero;
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The following 32 octets contain address 
information, and once this information is checked 
then the first phase is finished. 

Once the first phase is complete, the main 
processor starts to process the extension headers in 
the second phase. The extension headers are 
continually processed. In this implementation, we 
are working on a node that is placed between the 
source and the destination host. Therefore, we are 
processing only the extension headers which are 
subject to a change, and we are checking for errors 
in the fields which need not be changed. The 
extension headers are processed in the order in 
which they are present. In RFC 2460 [17], it is 
recommended that the extension headers are placed 
in a particular order, but that is not necessary. 
Additionally, not all extension headers are required 
to be present. Because of these requirements, the 
extension headers are processed continually.  

Processing the first eight octets of the IPv6 
header takes one cycle. Processing of the extension 
headers depends on whether the header is changed 
or checked. 

In this implementation, we added processing of 
the routing header extension as an example of the 
possibilities that this device provides. As an 
example, once the routing header extension 43 is 
detected, the processor detects errors and processes 
the header. The header states that two addresses 
need to be exchanged and the addresses are stored in 
the shared memory in order to be exchanged. The 
shared memory is reserved only for a small portion 
of time in order to provide possibility of multiple 
main processors inside a single IC. 

Once all extension headers are processed, the 
second phase is finished. When the second phase 
finishes, the processor waits for the next IPv6 
header. The complete data flow diagram of IPv6 
header processing is shown in Figure 3. 

The error processor is a separate module which 
communicates with the memory processor and each 
main processor. Each main processor can signal the 
error processor for an error. The error processor then 
decides whether the packet should be discarded and 
if so, the error processor sends location information 
to the memory processor. 

The memory processor is a bridge module that 
connects the main processor with the on-board 
RAM. When the main processor signals the memory 
processor for necessary data, the memory processor 
calculates the location of the data in the RAM. The 
memory processor has IP (intellectual property) core 
for communication with onboard DRAM provided 
by VIVADO Suite. In this way the data is read and 

written from the DRAM and sent to the main 
processor. 

4 FPGA IMPLEMENTATION OF 

IPV6 HEADER PROCESSOR 

The proposed IPv6 processor was described in 
VHDL using the Xilinx VIVADO Design Suite tool. 
This software environment includes a simulator for 
performing functional analysis of VHDL models and 
several other hardware syntheses and FPGA 
implementation tools.  

Simulations and functional analysis were made 
only for the main processor and the error processor, 
because the memory processor is implementation- 
dependant. 

Once the analysis is finished, the IPv6 header 
processor is synthesized and implemented in Virtex7 
VC709 evaluation board [5]. The synthesis results 

Figure 3: Main processor logic diagram. 
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show that the IPv6 header processor can be 
implemented in the Virtex7 VC709 development 
board, by utilizing 962 FF and 2653 LUT without the 
memory processor. More detailed results of the 
FPGA utilization, after the synthesis of the proposed 
IP header processor in VC709 FPGA board is shown 
in Table 1. Furthermore, Figure 4 presents the 
implemented IP header processor, after the place and 
route on the appropriate VC709 FPGA board is 
finished.  

Table 1: Utilization of Virtex7 VC709 FPGA resources for 
the proposed IP header processor. 

Resource Utilization Available Utilization % 

LUT 2653 433200 0.61 

LUTRAM 16 174200 0.01 

FF 962 866400 0.11 

Figure 4: Implemented IP header processor on Virtex7 
FPGA board (after place and route). 

As a result of the low FPGA resource 
utilization, the processor can be further extended and 
then implemented on the same development board. 
According to this, the FPGA technology makes the 
proposed processor very flexible and cheap for 
implementation. Additionally, the ability for ease 
FPGA reconfiguration, makes the IP header 

processor implementation suitable for further 
modifications and improvements.  

5 CONCLUSION 

The main focus of this paper is the FPGA 
implementation of the proposed IPv6 header 
processor. Considering that the implemented IP 
header processor utilizes less than 0.11% FF and 
0.61% LUT FPGA resources, future work would 
include the whole implementation of the IPv6 
processor, including communication with on-board 
RAM and ethernet port IO. It is evident that these 
modifications would require more resources than 
previously used, but this makes the IPv6 packet 
processor a whole. The possibility of generating 
various bus widths and different logic will make this 
kind of processor suitable for less resourceful and 
powerful FPGA boards. 

This device will be very practical in device-to-
device communication, because with the 
implementation of this code in every device, all of 
the devices will be able to be used as a link between 
the source and destination node.  

This approach makes use of FPGA re-
configurability, which has proven to be an ideal 
solution for achieving reasonable speed at low price. 
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