
FPGA Implementation of IPv6 Header Processor

Zdravko Todorov, Danijela Efnusheva, Ana Cholakoska and Marija Kalendar
Computer Science and Engineering Department, Faculty of Electrical Engineering and Information Technologies,

Ss. Cyril and Methodius University, Rugjer Boshkovik 18, PO Box 574, 1000 Skopje, N. Macedonia

z_todorov@outlook.com, {danijela, acholak, marijaka}@feit.ukim.edu.mk

Keywords: IPv6 Protocol, FPGA, IP Header Processing, Multi-Gigabit Networks.

Abstract: With the increasing number of Internet devices, the emergence of IoT, 5G and the increased traffic between
the devices, the IPv6 is complementing IPv4. As IPv6 is becoming the protocol of choice by the new
technologies, in order to accommodate for the features demanded by these technologies it is necessary to
have high speed and low latency between the connected nodes. This paper introduces a hardwired IPv6
FPGA node, which processes IPv6 packets and is focused on high-speed transmission. Although, the code is
written VHDL, it is written in a way which enables the user to easily add new features and implement new
extension headers. The implementation of this IPv6 header processor is done on a Virtex7 VC709 FPGA
development board.

1 INTRODUCTION

As of 2021, almost three decades after the
appearance of IPv6, only 35% of all accesses to
Google have been made with IPv6. Google's chart of
accesses starts to grow throughout the year 2011,
and the official date of exhaustion of the IPv4
address-space was on 31 January 2011. Even though
the adoption rate is not equal in all countries, some
countries reach over 50% levels, and some have less
than 1% adoption in 2021 [1]. The IPv4 protocol has
2^32 (<4.3e9) possible addresses with total available
addresses ~3.7e9, the World's population counts
more than 7.5e9, leaving ½ devices for every
human. In comparison, IPv6 has 2^128 (~3.4e38)
possible addresses (~8e28 more than IPv4).
Processing the IPv6 header is different than
processing the IPv4. The main difference is the
checksum check, which in IPv6 is removed, and
instead, bit-level error detection for the entire IPv6
packet is performed by the link layer [2].
Additionally, each device in IPv6 will have its
public routable address, which makes it very suitable
for the new wireless devices and IoT devices.

The IPv6 processor logic is simple to design,
provided that it will be specially adapted to work
with IPv6 headers. The proposed header processor
will be used to read a single IPv6 header, modify the
header where necessary, and then send it to the next
node in the network. One of the unique features of

the IPv6 protocol compared to IPv4 are the
extension headers, which now are of variable non-
fixed size, can be placed in mixed order, and only
the ones used need to be sent. That means that the
protocol by itself requires a certain degree of
customizability. Manufacturing such a processor on
an ASIC proposes great challenges because of the
fast-paced development in the networks and, on the
other side, slow-paced IC development (½ to 2
years). Because this type of technology is not
suitable for such logic, we are exploring other types
of technologies [3].

The FPGA technology suits our requirements
with fast-paced development and customizability,
and where speed is necessary, we can easily modify
the code and trade chip resources for lower latency.
In other words, we get a good compromise of
performance, price, and re-programmability [4].
This design is developed on a reconfigurable
hardware platform – FPGA development board
Virtex7 VC709 [5].

The rest of this paper is organized as follows:
Section 2 gives an overview of different state of the
art solutions. Section 3 describes the proposed IPv6
header processor and explains its ability to provide
fast IPv6 header processing. Section 4 presents
simulations and synthesis results from the FPGA
implementation of the VHDL IP header processor
model. Section 5 concludes the paper, outlining the
benefits of the proposed IP header processor.

Proc. of the 9th International Conference on Applied Innovations in IT, (ICAIIT), April 2021

1

2 STATE OF THE ART

Every network device that is part of a computer
network is intended to examine field in the packet
headers to decide what to do with each packet. This
process of identifying and extracting fields in a
packet header is subject to a vast amount of research
[6]. With the ever-increasing speed of network links,
the research is mostly focused on hardware
acceleration for achieving suitable processing
speeds [7]. This is mainly achieved by combining
application-specific coprocessors with general-
purpose multiprocessor systems, or reconfigurable
FPGA platforms. In most cases, network processors
(NPs) [3] and [8], are used to perform fast data plane
packet processing. This includes processing of the IP
header, by analysing, parsing and modifying its
content. NPs might include some specialized
hardware units to perform task offloading, such as
lookup and pattern matching, classification of
packets, queue management and traffic control [9].

The most popular NPs used today, include one
or many parallel homo- or heterogeneous processing
cores. For instance, Intel's IXP2800 processor [10],
includes 16 identical multi-threaded general-purpose
RISC processors organized as a pool of parallel
homogenous processing cores that can be easily
programmed with great flexibility towards ever-
changing services and protocols. Furthermore,
EZChip has introduced the first NP with 100 ARM
cache-coherent programmable processor cores [11],
that is by far the largest 64-bit ARM processor yet
announced.

The discussed NPs confirm that most of the
operations in NPs are performed by general-purpose
RISC-based processing cores as a cheaper but
slower solution, combined with custom-tailored
hardware that is more expensive but also more
energy-efficient and faster. If network packet
processing is analysed on general-purpose
processing cores, then it can be easily concluded that
a significant part of processor cycles will be spent on
IP packet header parsing and processing.

On the other hand, some proposals of TCP/IP
offload engines [12] provide a certain amount of
processing relief compared to a classical network
interface card, but still, it requires a huge portion of
data processing from the main processor. The
sequential software flow, i.e. protocol processing
consumes CPU time and resources, creating a
dependency between processor load and available
throughput as well as latency. This reveals a major
drawback, especially for embedded systems where
resources are even more limited and CPU time is

needed for application-specific tasks. To overcome
these system-dependent limitations in throughput
and latency, the authors of [13], implement a
complete TCP/IP stack in hardware. This 10 GbE
hardware-based TCP/IP stack can handle a single
physical network interface and contain IPv4,
ICMPv4, TCP and UDP protocols.

Furthermore, the authors of [14] introduce a
novel architecture implementing a TCP/IP stack
capable of processing 10 Gb/s data full-duplex,
while handling thousands of concurrent sessions.
The architecture's resource requirements scale
linearly with the number of supported sessions to
over 115,000 given today's 20 nm devices. Similar
types of architectures appear in [15] and [16] - the
first being an open-source Gigabit Ethernet TCP/IP
IPv6 networking architecture, designed for packet
processing, IoT, test & measurement, and control
(e.g., sensors, motors, etc.) applications and the
second implementing a UDP/IP hardware protocol
stack that enables high-speed communication over a
LAN or a point-to-point connection. The core,
designed for standalone operation, is ideal for
offloading the host processor from the demanding
task of UDP/IP encapsulation and enables media
streaming with speeds up to 100Gb/s even in
processor-less SoC designs. Assuming that most of
the available research presents a hardware
implementation of IPv4 protocol, our research is
focused on developing a dedicated processor module
for IPv6 protocol. The emergence of novel
technologies, such as 5G, together with the
significant expansion of devices on the Internet and
the Internet of Things, makes IPv6 protocol a
necessity, compared to IPv4.

3 DESIGN OF IPV6 HEADER

PROCESSOR

The IPv6 header processor consists of three
processors: main processor, memory processor, and
error processor, which is shown in Figure 1. The
main processor is processing the header information
while receiving data from the memory processor and
is sending error data to the error processor. The
memory processor is the bridge between the on-
board RAM memory and the main processor. Its
purpose is to get the necessary data from the external
memory and prepare it for the main processor. The
error processor reads error data from the main
processor and sends the error messages back to the
source if necessary.

Proc. of the 9th International Conference on Applied Innovations in IT, (ICAIIT), April 2021

2

Figure 1: IPv6 header processor internal structure.

This device is designed to work with external
on-board RAM. The type of RAM is defined in the
memory processor. IPv6 headers have a maximum
length of 64kB, meaning that storing the whole
header inside the core would make the hardware too
complex. The main processor consists of three data
buffers, one main 16 octet data buffer and two
shared 16 octet data buffers. The communication
with the memory processor is realized through a
128-bit data bus and 16-bit address bus. The main
data buffer is used for reading the current header
continuously. Because there can be more than one
main processor in the whole implementation, the
shared memory can be reserved for use by each
separate main processor.

The size of the main buffer can be changed. The
secondary buffers are set to be 16 octets because we
can exchange two addresses in a single cycle.

Transferring data from memory to processor
takes three cycles with a 128bit data bus and a 16bit
address bus. The formula for necessary cycles (NC)
to transfer 128bit data given in (1),

C⌈⌉*3

where 1<=N<=128, and N is the width of the
data bus in bits. The address bus can be further
narrowed. This changes the formula for cycles and
adds further complexity to the circuit. For devices
with low latency, N=128 is recommended, and for
devices with lower logic space, N=16 is
recommended. Transferring a whole datagram of
40B takes 9 cycles.

Figure 2: Necessary cycles to transfer 16 data octets to the
main processor.

Processing the IPv6 header is done in two
phases. The first phase is with the first eight octets
of header data, which are always in the same
position. Therefore, this data is processed in parallel,
and if any errors are detected, the processor sends
unique error detection bits to the error processor. If
the header needs to be destructed, the memory
processor gets this information so that the header
can be deleted from the memory.

The first 8 octets of the IPv6 header contain the
following information:
 Version - 4 bits are used to indicate the

version of IP and is set to 6;
 Traffic class – is available for use by

originating nodes and/or forwarding routers to
identify and distinguish between different
classes or priorities of IPv6 packets;

 Flow label – may be used by a source to label
sequences of packets for which it requests
special handling by the IPv6 routers, such as
non-default quality of service or "real-time"
service;

 Payload length – Length of the IPv6 payload,
i.e., the rest of the packet following this IPv6
header, in octets;

 Next header – Identifies the type of header
immediately following the IPv6 header;

 Hop limit – Decremented by 1 by each node
that forwards the packet. The packet is
discarded if Hop Limit is decremented to zero;

Proc. of the 9th International Conference on Applied Innovations in IT, (ICAIIT), April 2021

3

The following 32 octets contain address
information, and once this information is checked
then the first phase is finished.

Once the first phase is complete, the main
processor starts to process the extension headers in
the second phase. The extension headers are
continually processed. In this implementation, we
are working on a node that is placed between the
source and the destination host. Therefore, we are
processing only the extension headers which are
subject to a change, and we are checking for errors
in the fields which need not be changed. The
extension headers are processed in the order in
which they are present. In RFC 2460 [17], it is
recommended that the extension headers are placed
in a particular order, but that is not necessary.
Additionally, not all extension headers are required
to be present. Because of these requirements, the
extension headers are processed continually.

Processing the first eight octets of the IPv6
header takes one cycle. Processing of the extension
headers depends on whether the header is changed
or checked.

In this implementation, we added processing of
the routing header extension as an example of the
possibilities that this device provides. As an
example, once the routing header extension 43 is
detected, the processor detects errors and processes
the header. The header states that two addresses
need to be exchanged and the addresses are stored in
the shared memory in order to be exchanged. The
shared memory is reserved only for a small portion
of time in order to provide possibility of multiple
main processors inside a single IC.

Once all extension headers are processed, the
second phase is finished. When the second phase
finishes, the processor waits for the next IPv6
header. The complete data flow diagram of IPv6
header processing is shown in Figure 3.

The error processor is a separate module which
communicates with the memory processor and each
main processor. Each main processor can signal the
error processor for an error. The error processor then
decides whether the packet should be discarded and
if so, the error processor sends location information
to the memory processor.

The memory processor is a bridge module that
connects the main processor with the on-board
RAM. When the main processor signals the memory
processor for necessary data, the memory processor
calculates the location of the data in the RAM. The
memory processor has IP (intellectual property) core
for communication with onboard DRAM provided
by VIVADO Suite. In this way the data is read and

written from the DRAM and sent to the main
processor.

4 FPGA IMPLEMENTATION OF

IPV6 HEADER PROCESSOR

The proposed IPv6 processor was described in
VHDL using the Xilinx VIVADO Design Suite tool.
This software environment includes a simulator for
performing functional analysis of VHDL models and
several other hardware syntheses and FPGA
implementation tools.

Simulations and functional analysis were made
only for the main processor and the error processor,
because the memory processor is implementation-
dependant.

Once the analysis is finished, the IPv6 header
processor is synthesized and implemented in Virtex7
VC709 evaluation board [5]. The synthesis results

Figure 3: Main processor logic diagram.

Proc. of the 9th International Conference on Applied Innovations in IT, (ICAIIT), April 2021

4

show that the IPv6 header processor can be
implemented in the Virtex7 VC709 development
board, by utilizing 962 FF and 2653 LUT without the
memory processor. More detailed results of the
FPGA utilization, after the synthesis of the proposed
IP header processor in VC709 FPGA board is shown
in Table 1. Furthermore, Figure 4 presents the
implemented IP header processor, after the place and
route on the appropriate VC709 FPGA board is
finished.

Table 1: Utilization of Virtex7 VC709 FPGA resources for
the proposed IP header processor.

Resource Utilization Available Utilization %

LUT 2653 433200 0.61

LUTRAM 16 174200 0.01

FF 962 866400 0.11

Figure 4: Implemented IP header processor on Virtex7
FPGA board (after place and route).

As a result of the low FPGA resource
utilization, the processor can be further extended and
then implemented on the same development board.
According to this, the FPGA technology makes the
proposed processor very flexible and cheap for
implementation. Additionally, the ability for ease
FPGA reconfiguration, makes the IP header

processor implementation suitable for further
modifications and improvements.

5 CONCLUSION

The main focus of this paper is the FPGA
implementation of the proposed IPv6 header
processor. Considering that the implemented IP
header processor utilizes less than 0.11% FF and
0.61% LUT FPGA resources, future work would
include the whole implementation of the IPv6
processor, including communication with on-board
RAM and ethernet port IO. It is evident that these
modifications would require more resources than
previously used, but this makes the IPv6 packet
processor a whole. The possibility of generating
various bus widths and different logic will make this
kind of processor suitable for less resourceful and
powerful FPGA boards.

This device will be very practical in device-to-
device communication, because with the
implementation of this code in every device, all of
the devices will be able to be used as a link between
the source and destination node.

This approach makes use of FPGA re-
configurability, which has proven to be an ideal
solution for achieving reasonable speed at low price.

REFERENCES

[1] Google, IPv6 adoption in the Internet [Online].
Available: https://www.google.com/intl/en/ipv6/
statistics.html, 2021.

[2] Ch. M. Kozierok, The TCP/IP Guide: A
Comprehensive, Illustrated Internet Protocols
Reference, 1st ed. CA: No Starch Press, 2005.

[3] P. C. Lekkas, Network Processors _ Architectures,
Protocols and Platforms (Telecom Engineering).
McGraw-Hill Professional, 2003.

[4] J. M. P. Cardoso and M. Hubner, Reconfigurable
Computing: From FPGAs to Hardware/Software
Codesign, NY: Springer-Verlag, 2011.

[5] Xilinx, VC709 Evaluation Board for the Virtex-7
FPGA, User guide, 2016.

[6] G. Gibb, G. Varghese, M. Horowitz, and
N. McKeown, “Design principles for packet parsers,”
in Proc. of ACM/IEEE Symposium on Architectures
for Networking and Communications Systems, pp.
13–24, 2013.

[7] J. Kořenek, “Hardware acceleration in computer
networks,” in Proc. of 16th International Symposium
on Design and Diagnostics of Electronic Circuits
Systems, 2013.

[8] R. Giladi, Network Processors - Architecture,
Programming and Implementation, Ben-Gurion

Proc. of the 9th International Conference on Applied Innovations in IT, (ICAIIT), April 2021

5

University of the Negev and EZchip Technologies
Ltd., 2008.

[9] B. Wheeler, A New Era of Network Processing.
LinleyGroup Bob Wheeler's White paper, 2013.

[10] Intel, Intel® IXP2800 and IXP2850 network
processors, Product Brief, 2005.

[11] B. Doud, “Accelerating the data plane with the
Tilemx manycore processor,” in Linley Data Center
Conference, 2015.

[12] Z. Bokai, Y. Chengye, and C. Zhonghe, “TCP/IP
Offload Engine (TOE) for an SOC System” in Nios II
Embedded Processor Design Contest-Outstanding
Designs, 2005.

[13] U. Langenbach, A. Berthe, B. Traskov, S. Weide,
K. Hofmann, and P. Gregorius, “A 10 GbE TCP/IP
Hardware Stack as part of a Protocol Acceleration
Platform,” in Proc. of 3rd IEEE International
Conference on Comsumer Electronics, 2013.

[14] D. Sidler, G. Alonso, M. Blott, K. Karras, K. Vissers,
and R. Carley, “Scalable 10 Gbps TCP/IP Stack
Architecture forReconfigurable Hardware,” in Proc.
of 23rd IEEE Annual International Symposium on
Field-Programmable Custom Computing Machines,
2015.

[15] Mind Chasers, Private Island: Open Source FPGA-
Based Network Processor for Privacy, Security, IoT,
and Control, White paper, 2020 [Online]. Available:
https://mindchasers.com/education.

[16] Xilinx, UDPIP-100G100G UDP/IP Hardware
Protocol Stack, Product Brief, 2020.

[17] Internet Society, “Internet Protocol, Version 6
(IPv6),” RFC 2460, 1998.

Proc. of the 9th International Conference on Applied Innovations in IT, (ICAIIT), April 2021

6

