
FPGA Implementation of Matrix Inversion Using
QRD-RLS Algorithm

Marjan Karkooti, Joseph R. Cavallaro
Center for Multimedia Communication, Department of Electrical and Computer Engineering

MS-366, Rice University, 6100 Main St., Houston, TX 77005-1892.
{marjan, cavallar}@rice.edu

Chris Dick
Xilinx Inc., 2100 logic Dr., San Jose, CA, 95124

chris.dick@xilinx.com

Abstract— This paper presents a novel architecture for matrix
inversion by generalizing the QR decomposition-based recursive
least square (RLS) algorithm. The use of Squared Givens
rotations and a folded systolic array makes this architecture very
suitable for FPGA implementation. Input is a 4 × 4 matrix of
complex, floating point values. The matrix inversion design can
achieve throughput of 0.13M updates per second on a state
of the art Xilinx Virtex4 FPGA running at 115 MHz. Due
to the modular partitioning and interfacing between multiple
Boundary and Internal processing units, this architecture is easily
extendable for other matrix sizes.

I. I NTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) is a
popular method for high-rate data transmission in wireless
environments. In OFDM, the channel bandwidth is divided
into several narrow subbands. The frequency response over
each of these subbands is flat. Hence, a frequency-selective
channel is transformed into several flat-fading subchannels.
The time domain waveforms of the subcarriers are orthogonal,
yet the signal spectra corresponding to different subcarriers
overlap in frequency. Therefore, the available bandwidth is
used very efficiently. The data rate of the system is aggregate
of the data rate per subchannel. These features make OFDM
suitable for high data rate applications. Another advantage of
OFDM systems is that they are less susceptible to various
kinds of impulse noise. These characteristics result in reduced
receiver complexity.

MIMO (Multiple Input Multiple Output) systems use mul-
tiple antennas at both the transmitter and the receiver. Each
antenna simultaneously transmits a small piece of data using
the same frequency band to the receiver. By taking advantage
of the spatial diversity resulting from spatially separated anten-
nas, the receiver can process the data flows and put them back
together. This technique utilizes the bandwidth very efficiently.

MIMO channels become frequency-selective during high
data-rate transmission due to the multipath characteristics of
the environment. By combining OFDM and MIMO, these
frequency selective channels can be transformed to a set

of frequency flat MIMO channels. Hence decreasing the re-
ceiver complexity. Therefore, MIMO-OFDM systems are very
promising in broadband wireless systems [1] , [2].

Each receiver in MIMO-OFDM systems should equalize the
received signal to remove the effect of channel on the signal.
Most of equalization/ detection algorithms need to invert a
matrix which is either the channel state information (H) or
a nonlinear function of it (f(H)). Increasing the number of
transmitter and receiver antennas in the system, results in a
higher data rate. At the same time, dimensions of matrixf(H)
increase, requiring more computations to invert the matrix in
less time. This makes the matrix inversion block a bottleneck
in these systems.

In this work, we developed an architecture for matrix
inversion by generalizing the QR decomposition-based Re-
cursive Least Square algorithm (QRD-RLS) [3]. This algo-
rithm has wide applications in wireless communications and
signal processing such as beamforming, channel equalization
and HDTV. QRD-RLS is numerically stable and has rapid
convergence. It also involves local communication between
nodes which is suitable for hardware implementation.

Inverting a matrix using QR decomposition requires a num-
ber of rotations to nullify the unwanted values. The standard
rotation algorithm called Givens rotation(GR) requires square
root operations and divisions that are expensive for hardware.
Dohler [4] proposed a square-root-free version of the Givens
rotations or ”Squared Givens Rotation (SGR)” in 1991. This
algorithm eliminates the need for square-root operations and
also spares half of the multiplications.

Another algorithm, introduced by Gotze and
Schwiegelshohn [5] is the square-root and division free
(SDGR) version of the Givens rotations. This algorithm
works in a different number realization system and instead of
eliminating square roots and divisions, shifts these operations
to the final stages of computation. Compared to the SGR,
SDGR performs more operations to finish a similar task.
Table I compares the number of different operations in each
of these algorithms for inverting a4 × 4 matrix of real

TABLE I

NUMBER OF OPERATIONS USED BYSGRAND SDGRFOR INVERTING A

4X4 MATRIX OF REAL NUMBERS

Square root and
Squared division-free

Givens rotation Givens rotation

Multiplication 27 60
Addition 16 16
Division 10 10

Square root 0 4

numbers.
Another rotation algorithm which is very suitable for fixed-

point calculations, is CORDIC (COordinate Rotation DIgital
Computer) [6]. It is an iterative algorithm for calculating
trigonometric functions such as sine and cosine. This algorithm
is a combination of shifts and adds and does not require any
multiplications [7], [8], [9],.

The Squared Givens rotation algorithm is used in the
proposed architecture design. It has several advantages over
the classic Givens rotations and CORDIC. The SGR requires
no square roots and half of the multiplications compared to
the standard GR. It is much faster than CORDIC. It also can
be used with floating point arithmetic which needs20 percent
less number of bits comparing to fixed point and CORDIC
arithmetic for the same accuracy [10]. Reference [11] has a
comparison between the MMSE detector structures including a
matrix inversion core using CORDIC and SGR. The CORDIC-
based architecture results in hardware with twice as much area
and more than50% more latency compared to the SGR-based
architecture.

Floating point allows for rapid prototyping but has tradi-
tionally had higher hardware costs. New generations of FPGA
provide faster hardware structures for supporting floating point
operations. These pipelined units are very competitive with un-
rolled iterative algorithms like CORDIC for elementary func-
tion evaluation. For applications in which numerical properties
of input matrices are general and possibly unknown, rapid
prototyping with floating point hardware has great benefits.

The remainder of this paper is organized as follows. The
next section review matrix inversion and the QRD-RLS al-
gorithm. The Squared Givens rotation algorithm and systolic
array are described in sections III and IV. Architecture design
and FPGA implementation will be discussed in sections V and
VI. Concluding remarks will be in section VII.

II. M ATRIX INVERSION AND QRD-RLS

Inverting a matrix A using Gaussian elimination has a
complexity of O(n3). The complexity of matrix inversion in
hardware becomes prohibitive for real time applications and
large values ofn. Our goal is to invert a matrix of size12×12
in hardware. In this paper we present the results for inverting a
matrix of size4×4. The same idea and a slight modification in
hardware can be used for larger matrix sizes. In the hardware
design, we are using QR decomposition and systolic arrays.

B2

B4

B1

B3

I1

I5I3

P1I4I2

P2

I6

P4

P3

LB1

LI1

LI2

LI3

Inputs

Outputs

Fig. 1. Systolic Array for QR Decomposition.

Let A ben×p matrix of full rankp. The QR decomposition
is decomposing matrix A to a triangular matrixRp×p and an
orthogonal matrix Q using plane rotations.

A = QR (1)

Rotation algorithm can be Givens rotation or any of its
variations such as SGR, SDGR or CORDIC. Then, finding
the pseudo-inverse of matrix A, is equal to :

A−1 = (AHA)−1AH = (RHR)−1RHQH = R−1QH

Recursive least square algorithm based on QR decomposition
(QRD-RLS), can be used to find the inverse matrix. The main
idea of QRD-RLS algorithm is to find a solution for the system
of equations

Ax = b (2)

by minimizing the least square errormin(|b − Ax|). This
can be done by transformingA to an upper triangular matrix
using QR decomposition and systolic arrays and substituting
the elements backwards into the equations.

By generalizing the above procedure top dimensions and
solving the equation

AX = I (3)

in which I is the identity matrix, we can find the inverse of a
matrix A, X = A−1. The next section presents the SGR, the
rotation algorithm used in our architecture.

III. SQUARED GIVENS ROTATIONS

Squared Givens rotation was introduced by Dohler. Let
U be the upper triangularp × p matrix which results from
triangularization of A by Gaussian elimination. ThenU =
DRR andDR = diag(R) then (1)can be rewritten as:

A = QAD−1
U U (4)

in which QA = QDR and DU = diag(U) = D2
R. In SGR,

matrix U is calculated instead ofR. This requires one half of
the multiplications compared to the standard Givens rotation
and do not require square roots.

SupposeA to be already partially reduced. Leta =
(0, ..., 0, ak, ..., ap) be a row whose elementak 6= 0 is to
be annihilated by the next standard rotation. We suppose that
there is another rowr = (0, ..., 0, rk, ..., rp) with a sufficient
number of leading zeros. The standard Givens rotation :

q = (rk
2 + ak

2)1/2

r̄ = q−1(rkr + aka)
ā = q−1(−akr + rka)

generates new rows with an additional zero in thekth position
of ā. If we assume to replace the following values in the above
equations:

u = rkr

a = w1/2v

with a given scalarw > 0, then the Squared Givens Rotation
(SGR) will be:

ū = u + wv′kv (5)

v̄ = v− vk/uku (6)

w̄ = wuk/ūk (7)

After completely annihilating A (or V), U will be the upper
triangular matrix which is equal toU = diag(R)R. Later,
this matrix can be used to find the inverse of A by using back
substitution.

IV. SYSTOLIC ARRAYS

Use of systolic arrays for matrix triangularization is a well
known concept [12]. We adopt the idea and extend it to SGR
in our design. Fig. 1 shows a systolic array for the QRD-RLS
algorithm. The triangular part consists of two different node
types: Boundary cell and Internal cell. These nodes perform
rotations on each element in the input matrix to zero out the
unwanted elements of the matrix and transform it to an upper
triangular form.

The circularBoundary cellperforms the ”vectoring” opera-
tion on complex-valued inputs which means that it nullifies the
imaginary part of complex numbers and outputs the rotation
angle to the internal cells.

The squareInternal cell ”rotates” the input values with
the rotation-angle received from the boundary cell in each
row. The values move top-down and from left to right in this
system. The internal cells in the last column of the triangular
part in Fig. 1 update the ”b” values in (2).

The nodes in the linear part of the systolic array receive the
upper triangular matrix from the triangular part and perform
back-substitution to find elements of matrixX in (3). Final
outputs are generated in theLB1 cell. The next section will
describe the designed architecture in more detail.

B2

B4

B1

B3

I1

I5I3

P11I4I2

P21

I6

P41

P31

LB1

LI11

LI21

LI31

Matrix A

Matrix A
-1

LB2

LI12

LI22

LI32

LB3

LI13

LI23

LI33

LB4

LI14

LI24

LI34

P12

P22

P42

P32

P13

P23

P43

P33

P14

P24

P44

P34

Matrix I

Fig. 2. Systolic Array for 4x4 Matrix Inversion.

V. A RCHITECTUREDESIGN

The systolic array for inverting a4× 4 matrix is shown in
Fig. 2. If we implement every single node in this diagram,
it requires a large area and has very high throughput. In our
approach, we combined similar nodes, added memory blocks
and a scheduler that controls movement of data between nodes
(See Fig.3). In this figure, boundary and internal cells are
same as the ones in Fig. 1. The back substitution cell is a
combination of four cellsLI1i, LI2i, LI3i, LBi.

During the initialization step, the input matrix is stored in
A-Mem cells. After receiving the first value, the boundary
cell starts processing it. Because there is no data dependency
at the beginning of the process, boundary cell does not have
to wait for the initialization step to finish and these two steps
can be pipelined. The boundary cell performs vectorizing on
the values and sends the rotation angle to the internal cell. It
computes the equations:

ū = uk + wv′kv,

w̄ = wuk/ūk,

c = vk/uk

Fig. 4 shows a block diagram of this cell. Inputs are the values
for u andvk andw and outputs are the values forū, w̄ andc.
The outputs of boundary cells enter the internal cells for more
processing. They are also stored in the B-Mem memory cells.
Boundary cell and internal cell will be active during the next
step working on different sets of input data.

Internal cell runs on the elements2 to p in each row of the
input matrix A and the identity matrixI in (3). It computes

Boundary

cell

Internal

cell

Back

Substitution

Input Matrix

Inverse

A-Mem

B-MemC
on

tr
ol

le
r

Fig. 3. QRD-RLS Block Diagram.

 Add

Mult

Div

vkRe

w

u

Mult

Div

Div

wbar

cRe

cIm

ubarDelay

Delay

Delay

Delay

Delay

Mult

Mult

 Add
vkIm

vkRe

vkIm

Fig. 4. Boundary Cell Block Diagram.

the following equations:

ū = uold + wv′kv

v̄ = v − cuold

The block diagram of an internal cell is shown in Fig. 5.
Inputs are the values foruold,v,c,w andvk and outputs are the
values forū, v̄.

When all the values of triangular matrixU are computed,
and the identity matrix is also updated with new rotated
elements (P), then values enter the back substitution node.
This node computes the values of inverse matrixX = A−1:

x4j =
p4

u44
(8)

xij =
(pi −

∑4
k=i+1 uikxk)
uii

(9)

i = 3..1, j, k = 1..4

The final outputX or inverse of matrixA is stored in B-
Mem memories. The control unit controls the flow of inputs

uout_Re

uout_Im

Mult

Add

Mult

Mult

Mult

Sub

Mult

Add

Mult

Mult

Mult

Sub

Mult

w

vk_Im

Multvk_Re

v_Im

v_Re

Add

Add

uold_Re

uold_Im

Sub

Sub

CRe

CIm

vout_Re

vout_Im

Fig. 5. Internal Cell Block Diagram.

and outputs to each of the nodes and memory blocks of the
system.

VI. FPGA IMPLEMENTATION

The System Generator [13], a high level design tool from
Xilinx is used to implement and test the matrix inversion
design on the Virtex4-xc4vlx200 FPGA. Input is a4 × 4
matrix of complex, floating point values and output is the
inverse matrix. Table II shows the design statistics for a4× 4
matrix inversion core. We assumed 14 bits for mantissa, 6 bits
for exponent of floating point numbers and one sign bit. For
floating point operators (adder and multiplier) we have used
the available operators from Xilinx. Floating point divider is
designed in System Generator by using the division IP Core
v.3. All these operators are compatible with IEEE754 standard.
Table III shows the resources that each of the floating point
operators use on FPGA.

On a state of the art Virtex4-xc4vlx200 FPGA running
at 115 MHz, this matrix inversion architecture achieves a
throughput of8.1us or 0.13M updates per second. By pipelin-
ing the triangular section and the back substitution part of
the design, throughput can increase to0.15M updates per
second. The latency for generating the upper triangular matrix
is 777 cycles and back substitution has a latency of156 cycles.
These latencies can be decreased by adding more boundary or
internal nodes to the design or decreasing the word length
requirements. The design is easily extendable to other matrix
sizes ofn×p by changing the control unit. There is a tradeoff
between number of cells (and hence area of the design) and
throughput. For larger matrices, if throughput is less than
required, we can increase number of cells and use a semi-
parallel approach instead of the current folded model.

TABLE II

RESOURCES FOR4 BY 4 MATRIX INVERSION CORE ON A V IRTEX4-FPGA

4× 4 Matrix Inversion Core

Slices 9117
DSP48 22
BRAM 9

IOB 309

TABLE III

RESOURCES USED FOR FLOATING POINT OPERATORS ONX ILINX FPGA

Adder Multiplier Divider

Slices 433 112 808
DSP48 0 1 0

FFs 303 141 1534
LUTs 503 159 503

VII. C ONCLUSIONS

A matrix inversion core is designed and implemented on
Xilinx Virtex4 FPGAs using QRD-RLS and Squared Givens
Rotation algorithms. The design runs with a clock rate of 115
MHz and achieves a throughput of0.13M updates per second.
This design is easily extendable to other matrix sizes.

VIII. A CKNOWLEDGEMENT

This work was supported in part by Xilinx Inc., Nokia
Inc., National Instruments, Inc., and NSF under grants EIA-
0224458 and EIA-0321266.

REFERENCES

[1] H. Yang, “A road to future broadband wireless access: MIMO-OFDM-
Based air interface,”IEEE Communications Magazine, vol. 43, pp. 53
– 60, Jan 2005.

[2] J. Yue, K. J. Kim, J. Gibson, and R.A.Iltis, “Channel estimation and
data detection for MIMO-OFDM systems,” inIn Proceedings of IEEE
Global Telecommunications Conference, vol. 2, pp. 581 – 585, 1-5 Dec
2003.

[3] S. Haykin,Adaptive Filter Theory. Prentice Hall, third ed.
[4] R. Dohler, “Squared Givens Rotation,”IMA Journal of Numerical

Analysis, no. 11, pp. 1–5, 1991.
[5] J.Gotze and U.Schwiegelshohn, “A Square Root and Division Free

Givens Rotation for Solving Least Square Problems on Systolic Arrays,”
J. SCI. STAT. COMPUT., vol. 12, pp. 800–807, July 1991.

[6] J. Volder, “The CORDIC Trigonometric Computing Technique,”IRE
Transactions on Electronic Computers, vol. EC-8, no. 3, pp. 330–334,
1959.

[7] J. R. Cavallaro and F. Luk, “CORDIC Arithmetic for an SVD Processor,”
in Journal of Parallel and Distributed Computing, June 1988.

[8] N. Hemkumar and J. Cavallaro, “Redundant and Online CORDIC for
Unitary Transformations,” inIEEE Transactions on Computers, vol. 43,
pp. 941–954, August 1994.

[9] K. Kota and J. Cavallaro, “Numerical Accuracy and Hardware Tradeoffs
for CORDIC Arithmetic for Special-Purpose Processors,” inIEEE
Transactions on Computers, vol. 42, pp. 769–779, July 1993.

[10] R. Walke, R. Smith, and G.Lightbody, “Architectures for Adaptive
Weight Calculation on ASIC and FPGA,” inConference Record of the
Thirty-Third Asilomar Conference on Signals, Systems, and Computers,
vol. 2, pp. 1375 – 1380, 24-27 Oct 1999.

[11] M. Myllyla, J. Hintikka, J. Cavallaro, M. Juntti, M. Limingoja, and
A. Byman, “Complexity Analysis of MMSE Detector Architecture
for MIMO OFDM Systems,” in Proceedings of the 2005 Asilomar
conference,Pacific Grove, CA, Oct 30 - Nov 2 2005.

[12] H. K. W.M. Gentleman, “Matrix Triangularization by Systolic Arrays,”
Real-Time Signal Processing, vol. 298, pp. 19–26, 1981.

[13] “www.xilinx.com.”

