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ABSTRACT

We consider the problem of detecting a vector signal trans-

mitted over a multiple input-multiple output (MIMO) chan-

nel. A number of suboptimal detectors have been proposed to

solve that problem, given that maximum likelihood (ML) de-

tection is NP-hard. After reviewing the main concepts of the

ML and the minimum mean square error (MMSE) metrics,

we introduce an unbiased MMSE metric that can be applied

to existing MIMO detectors in order to improve their perfor-

mance. Applying the biased and unbiased MMSE metrics

together with a real-valued representation of the system, the

performance and complexity of a number suboptimal MIMO

detectors is compared in this paper, showing how the QR

decomposition-M (QRD-M ) can be used to approximate ML

performance with low complexity. In order to further validate

those results, the QRD-M algorithm has been implemented

on a field-programmable gate array (FPGA) platform, show-

ing an excellent fixed-point performance under real-time con-

ditions. Finally, the resulting real-time detector has been com-

pared to state-of-the-art detectors previously implemented, in

terms of complexity, error performance and throughput.

1. INTRODUCTION

For multiple input-multiple output (MIMO) systems without

any channel knowledge at the transmitter, e.g., the uplink of

a multi-user system [1] or a MIMO system with linear dis-

persion coding [2], maximum likelihood (ML) detection is an

NP-hard problem [3]. Therefore, many suboptimal schemes

were proposed with polynomial complexity. Besides linear

detection [1], the ordered decision feedback equalizer (DFE)

principle of vertical-Bell Labs layered space time (V-BLAST)

[4] has a quadratic complexity per received vector and the fil-

ters can be computed very efficiently via a symmetrically per-

muted Cholesky factorization [5]. However, there is a large

performance gap between ML and V-BLAST detection which

can be reduced by lattice reduction (LR) [6] schemes [7]-[10]

for high signal to noise ratio (SNR) [11].

Whereas the detection order of V-BLAST is based only

on the statistics of the signals, the dynamic nulling-and-

cancelling (DNC) of [12] computes the DFE detection or-

der based on the signal statistics and the received vector it-

self. The approach to precoding of [13] can also be applied

to detection, resulting in a multiple application of DFE with

different indices for the data stream detected first. In [14],

the underlying lattice of the detection problem is decomposed

into cosets with larger Voronoi cells and LR is applied. The

schemes of [12]-[14] lead to a cubic complexity per received

vector but clearly outperform V-BLAST with and without LR.

Semidefinite relaxation was applied to the ML detection prob-

lem in [15], leading to a complexity order of 3.5.

The MIMO detection problem can be interpreted as a tree

search [16], whose optimal solution is obtained with the al-

gorithms discussed in [17]. A powerful suboptimal breadth-

first decoder is the M -algorithm [18]. It is called the QR

decomposition-M (QRD-M ) algorithm if applied to the tree

search problem [19]-[21].

In [17], it was shown that using a minimum mean-square

error (MMSE) metric instead of the original ML metric leads

to sphere decoders (SDs) with less complexity and the supe-

riority of the MMSE metric compared to the ML metric for

suboptimal detectors was highlighted in [16]. Due to this re-

sult, we will concentrate on detectors based on the MMSE

metric in this paper, using the ML metric only on the SD to

ensure optimality.

Over the last years, several application-specific integrated

circuit (ASIC) and field-programmable gate array (FPGA)

implementations of the SD or close-to-ML detectors were re-

ported in [22]-[27]. Whereas an implementation of the SD

based on the l2-norm and l1-norm was proposed in [23], most

contributions focused on the M -algorithm (or K-best algo-

rithm) [22],[24]-[26]. In [27], a fixed-throughput SD was

proposed. Interestingly, all hardware implementation were

restricted to a zero forcing (ZF) formulation so far.

We first show how to derive the MMSE metric from the

ML metric, where it becomes clear that the MMSE metric

is also ML optimal for constant modulus alphabets. Second,

we present an unbiased MMSE metric motivated by the un-



biased MMSE DFE presented in [28]. Third, we describe the

different suboptimal detectors in a common framework and

compare their complexities. Fourth, we report the implemen-

tation of the QRD-M algorithm on an FPGA platform based

on the MMSE metric and compare it to the state-of-the-art

ASIC implementations of close-to-ML detectors.

2. SYSTEM MODEL

To keep the presentation simple, we use the standard MIMO

model with an N ×B channel matrix H , whose i.i.d. entries

are circularly symmetric complex Gaussian with unit vari-

ance. The received signal

x = Hs + η ∈ C
N (1)

is the superposition of the noise η ∼ NC(0N , Cη) and the

data signal s ∈ AB transformed by H . For quadrature ampli-

tude modulation (QAM) alphabets, i.e. the real and imaginary

parts of the elements of the alphabet A are weighted integers,

Hs is an element of a lattice. Additionally, we assume that

E[s] = 0B and E[ssH] = IB . Note that we use a notation

with complex vectors and matrices for conciseness, but our

simulations are based on a real-valued representation, since

the suboptimal detection schemes benefit from it [29].

3. ML AND MMSE METRIC

For ML detection, we assume that s is deterministic but un-

known and maximize the likelihood fx(x; s), i.e.,

s̃ML = argmax
s∈AB

fx(x; s).

Due to the Gaussianity of x for deterministic s, we obtain the

rule

s̃ML = argmin
s∈AB

µML(s) (2)

with the ML metric

µML(s) = (GZFx− s)
H

C−1

η
HHC−1

η
H (GZFx− s) (3)

and GZF = (HHC−1
η

H)−1HHC−1
η

is the zero-forcing fil-

ter. The corresponding MMSE metric can be written as

µMMSE(s) = µML(s) + sHs
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where GMMSE = (HHC−1
η

H + IB)−1HHC−1
η

is the lin-

ear MMSE equalizer and GMMSE-DFE = DLHΠHHC−1
η

is

the MMSE V-BLAST feedforward filter. The diagonal D and

the unit lower triangular L result from the symmetrically per-

muted Cholesky factorization of the MMSE matrix

Π
(

HHC−1

η
H + IB

)−1

ΠT = LDLH

and Π is a permutation matrix representing the detection or-

der [5]. Clearly, subtracting the term depending on x from

µML(s) does not change the minimizer of (2). However, mini-

mizing µMMSE(s) is only equivalent to minimizing µML(s) for

constant modulus alphabets, i.e. sHs = B for any s ∈ AB .

Otherwise, sHs depends on s and the MMSE rule

s̃MMSE = argmin
s∈AB

µMMSE(s) (5)

leads to slightly worse results than the ML rule (2), since the

MMSE metric µMMSE(s) has a bias.

4. UNBIASED MMSE METRIC

The form of the MMSE metric with the MMSE V-BLAST

feedforward filter GMMSE-DFE (cf. [5]) in (4) shows that

MMSE V-BLAST is a successive computation of s exploit-

ing the triangular structure of L−1. The k-th quantization

rule of the MMSE V-BLAST results from (4), when the ab-

solute value of the k-th entry of GMMSE-DFEx − L−1Πs is

minimized with respect to the k-th entry of Πs instead of the

whole norm (4).

According to [28], quantizing the outputs of an unbiased

MMSE feedforward filter is superior to quantizing the outputs

of GMMSE-DFE. The unbiased MMSE feedforward filter can be

found by forcing the weights of the symbols to be detected to

one. Thus, we weight the b-th output of the MMSE V-BLAST

feedforward filter with a scalar γb such that

γbe
T

b GMMSE-DFEHΠTeb = 1 b = 1, . . . , B.

Here, eb is the b-th column of the identity matrix IB . Due to

the definition of GMMSE-DFE, we have that

eT

b GMMSE-DFEHΠTeb = eT

b DLHΠHHC−1

η
HΠTeb

= eT

b L−1eb − eT

b DLHeb

= 1− eT

b Deb

where we exploited the diagonal structure of D and the prop-

erty of L to be unit triangular. Therefore, x must be trans-

formed by

GUB = (IB −D)
−1

GMMSE-DFE (6)

to fulfill the above requirements for unbiasedness. With this

result, we get

µMMSE(s) =
∥

∥

∥
DUB

(

GUBx− (IB −D)−1
L−1Πs

)∥

∥

∥

2

2

with DUB = D−1/2(IB − D). Since this expression is

equivalent to (4), a successive computation of the entries of



s again leads to MMSE V-BLAST. However, if we set the di-

agonal entries of (IB −D)−1L−1 to one, i.e., replace it by

(IB −D)−1L−1−D(IB−D)−1, a successive computation

of s results in an unbiased MMSE V-BLAST. After replacing

(IB −D)−1L−1 by (IB −D)−1(L−1 −D), we obtain the

unbiased MMSE metric

µUB(s) = ‖DUB (GUBx− (IB − FUB)Πs)‖2
2

(7)

where FUB = (IB − D)−1(IB − L−1) which is the

strictly lower triangular feedback filter for unbiased MMSE

V-BLAST. Since the MMSE metric µMMSE(s) is ML-optimal

for constant modulus alphabets, e.g. 4-QAM, a minimization

of the unbiased MMSE metric deteriorates the result, as the

unbiased MMSE metric is not ML optimal. However, subop-

timal detection of non-constant modulus alphabets is slightly

improved by imposing the constraint of unbiasedness.

5. SUBOPTIMAL DETECTION SCHEMES

The three metrics, viz., the ML, the MMSE, and the unbiased

MMSE metric, can be expressed as

µ(s) =
∥

∥

∥
D̂

(

x̂− L̂Πs
)
∥

∥

∥

2

2

.

The differences between the metrics lie in the diagonal ma-

trix D̂, the unit lower triangular matrix L̂ and the permuta-

tion matrix Π , and how the received signal is transformed to

get x̂. Therefore, we can rewrite any of the three metrics as

follows

µ(s) =
∑B
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∣

∣

∣
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−

∑i−1

j=1
ℓ̂i,jsbj

∣

∣

∣

∣

2

(8)

where the i-th element in the j-th column of a matrix A is

denoted by ai,j , x̂i is the i-th element of x̂, and sbj
is the j-th

element of Πs. The above expression for the metrics helps

to understand why the ML problem is a tree search. The first

term with i = 1 only depends on sb1 and the weights for the

|A| branches leaving the root of the tree result from the differ-

ent values for sb1 . Accordingly, |A| branches (corresponding

to all possible values of sbk+1
) leave from the branch belong-

ing to some choice of sb1 , . . . , sbk
. So, we end up with a tree

with |A|B leaves. ML detection tries to find the leave with the

least overall metric. Therefore, the complexity of ML detec-

tion is exponential in B.

The following orders of complexity are for complex op-

erations. When the real-valued representation is used, B and

|A| must be replaced by 2B and
√

|A|, respectively.

V-BLAST computes the symbols successively, i.e. s̃bk
is

computed by minimizing the k-th summand of (8), where the

already found s̃b1 , . . . , s̃bk−1
are fixed. The detection order

b1, . . . , bB is computed based on the signals’ statistics [5].

The complexity of O(3B2) per received vector results from

the computation of x̂ and the multiplication with L̂. The filter

computation has cubic complexity [5].

DNC applies the V-BLAST procedure to detect the sym-

bols, but the detection order is recomputed for every received

vector [12]. Thus, the filter computation must be repeated

for every vector resulting in a complexity of O(17B3/6) per

received vector. The pre-computation has cubic complexity

[12].

The approach of [14] divides the underlying lattice into M
cosets and solves the detection problem in every coset, where

V-BLAST is used. Consequently, the complexity per received

vector is O(3MB2). For the filter computation, the Lenstra-

Lenstra-Lovász (LLL) algorithm is applied several times and

the resulting complexity of the filter computation is quartic up

to quintic.

Applying the procedure of [13] to the MIMO detection

problem leads to a multiple application of V-BLAST with dif-

ferent values for b1. Let M be the number of values for b1.

Then, the complexity is O(2MB2 + 2B2) for M > 2. For

M = 1, the system converges to the original V-BLAST. To

come close to ML, M should be above B/2 and the complex-

ity is about O(B3). The filter computation has cubic up to

quartic complexity depending on the choice of M [13].

The QRD-M algorithm keeps the M best choices for

sb1 , . . . , sbk
at the k-th stage [19]. When moving to the next

stage, the |A| different values for sbk+1
are tested to find the

M best choices for sb1 , . . . , sbk+1
, where sbk+1

is added to

the given M choices for sb1 , . . . , sbk
. At the k-th stage, the

sum for i = 1, . . . , k is used as metric instead of the full

metric in (8). An efficient implementation of the QRD-M al-

gorithm, taking into account the redundancies present in the

computations and the properties of QAM alphabets, leads to

a complexity of O(M(B2 + 3B min(B, |A|)) + 2B2) per re-

ceived vector. We observed that M = log
2
(B) log

4
(|A|) is

a good choice for the number of survivors. In addition, the

filter computation has a cubic complexity [5].

Finally, the convex relaxation approach of [15] has a com-

plexity of O(B3.5) per received vector, i.e. it is above cubic.

Thus, we do not include this approach in our comparison.

6. FPGA IMPLEMENTATION

The QRD-M algorithm has been implemented, using a rapid

prototyping methodology, to evaluate its suitability for real-

time MIMO detection. A 4 × 4 system with 16-QAM modu-

lation with M = 4 has been considered where the real decom-

position of the system has been used for the implementation.

6.1. MIMO Prototyping System

An FPGA-based rapid prototyping system has been used for

the implementation of the QRD-4 algorithm, since it provides

the flexibility required to move quickly from a computer-

based simulation to its hardware implementation. As opposed
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Fig. 1. Hardware-in-the-loop MIMO system diagram.

to previous prototyping approaches that looked at the entire

MIMO system, the focus of our approach is on the analysis

of the MIMO detector. The FPGA platform has been pro-

vided by Alpha Data Ltd and it consists of an ADC-PMC

PCI adapter board that hosts an ADM-XP board with a Xilinx

Virtex-II-Pro FPGA (XC2VP70).

The rapid prototyping methodology selected is based on

The Mathwork’s MATLAB and Simulink and Xilinx’s DSP

System Generator tailored to Alpha Data’s FPGA boards. Ini-

tially, MATLAB is used to implement a complete MIMO sys-

tem including transmitter, channel and receiver. The QRD-4
algorithm is then implemented on the FPGA using the DSP

System Generator. The development of the FPGA model is

embedded in a Simulink testbench that facilitates the debug-

ging of the algorithm in the development stage, with the pos-

sibility of monitoring every signal in the FPGA model. The

QRD-4 design is then synthesized for the FPGA using Xil-

inx’s synthesis tools. The hardware design and a Simulink-

based memory interface are integrated into the MATLAB

MIMO system as shown in Fig. 1. This rapid prototyp-

ing methodology and system allows us to perform real-time

hardware-in-the-loop testing of the algorithm.

6.2. FPGA Architecture

The first step in the implementation of the QRD-4 is the parti-

tioning of the architecture between MATLAB and the FPGA,

shown in Fig. 2. Initially, MATLAB performs the sections of

the algorithm that are required only once per block, represent-

ing a single channel realization, in order to obtain the matri-

ces DUB, GUB and IB − FUB in (7). The FPGA contains the

matrix-vector product to obtain x̂ and the QRD-4 algorithm,

which are required once per MIMO symbol. A memory in-

terface is used between MATLAB and the FPGA in order to

pass the input/output parameters to/from the FPGA.

Given that the computation of x̂ corresponds only to a

matrix-vector product, we focus on the description of the

tasks performed by the QRD-4 block on the FPGA. In the

first level, i = 1, since we are at the root of the tree and

M = |A| = 4, the four constellation points corresponding

to the real (or imaginary) components of a 16-QAM constel-

lation are selected as best choices, as described in Section 5.

MATLAB (Once per frame) FPGA (Once per MIMO symbol)

Channel 
Processing

GUB x

QRD-4

x

H
sQRD-4
~

x̂

GUB

DUB

IB - FUB

Fig. 2. Partitioning of the QRD-4 between MATLAB and the

FPGA.

The weights of the branches associated to those constellation

points are also computed, i.e., the first term of the sum in (8)

for each sb1 , resulting in four child nodes originating from

the root node. Although those operations are independent and

could be performed in parallel, the weights are computed se-

quentially in four cycles, in order to reduce the resource use

on the FPGA and provide a more balanced trade-off between

hardware complexity and throughput performance (i.e., de-

tection speed). In levels i = 2, . . . , 7, the following tasks are

performed:

1. Each one of the M = 4 nodes from the previous level

is extended calculating the weights of the branches as-

sociated to the |A| = 4 constellation points, resulting in

a total of |A| ·M = 16 child nodes. All the child nodes

and branch weights originating from the same parent

node are computed in parallel. In addition, they are

directly sorted in increasing weight order using a look-

up-table (LUT) as detailed in [30].1 Thus, in every one

of the four cycles, a set of |A| child nodes, ordered ac-

cording to increasing weight, is obtained.

2. Since the QRD-4 needs to select the M child nodes

with the smallest associated weights, a sorting unit is

required in these levels, to select the best M choices out

of |A| ·M candidates. Making use of the fact that the

child nodes are grouped in four independently sorted

sets, a merge-sort algorithm can be used to obtain the

best M choices [31]. That algorithm, briefly described

at the end of this section, considerably reduces the com-

plexity of a same size odd-even transposition sorting al-

gorithm. The merge-sort algorithm is implemented in

two stages, one that selects the M child nodes out of

2|A| candidates every two cycles, and one that finally

selects the best M choices out of 2M candidates every

four cycles. Those M child nodes are then passed to

the following level i← i + 1.

In the last level, i = 8, each one of the M nodes from

the previous level is extended selecting only the child node

associated to the branch with the smallest weight. Thus, after

1Note that a LUT can be used because the real-decomposition of the sys-
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the four cycles required to go over the M nodes, M full paths

are obtained on the tree. The solution of the QRD-4 algorithm

is given then by the constellation points associated to the path

with the minimum metric as defined in (8).

6.3. Merge-sort algorithm

The merge-sort algorithm takes as an input two sets of n/2
independently sorted elements to generate an output set of

n sorted elements. The main advantage of this algorithm is

that it has a considerably reduced complexity, including the

sorting of the two input sets, compared to other parallel sort-

ing algorithms, like the odd-even transposition sorting algo-

rithm [31]. This is of special importance in the implementa-

tion of M -algorithm-based MIMO detectors, where the sort-

ing stages represent a considerable percentage of the algo-

rithm complexity [24]. The steps performed by a merge-sort

network of n elements are:

1. The two sets are merged using two merge-sort networks

of n/2 elements.

2. The merged set is finally sorted using a set of n − 1
comparators.

Therefore, a merge-sort network of n values can be con-

structed applying the same rule recursively, that is, by using

two n/2 merge-sort networks and a bank of n/2−1 compara-

tors. As stated above, the input sets to the merge-sort network

need to be previously sorted, which is guaranteed in the QRD-

4 by applying the LUT-based method proposed in [30]. Fig. 3

shows an example of the operation of a merge-sort network

of 8 elements once the two input sets of 4 elements have been

independently sorted. The shaded area shows the parts of the

merge-sort network that are not required in the QRD-4 algo-

rithm, since only the first M = 4 elements of the sorted set

are needed, further reducing the hardware complexity.

tem is used. In the complex case, a sorting procedure would be required as

shown in [23].
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7. RESULTS

This section shows the bit error rate (BER) performance of

different suboptimal MIMO detection schemes as a function

of the SNR per bit, defined as

Eb

N0

=
B

log2(|A|) tr(Cη)

where tr(·) denotes the trace operator. In addition, results

of the FPGA implementation of the QRD-4 algorithm are in-

cluded, comparing them to those of previously implemented

tree-search-based MIMO detectors. Unless otherwise stated,

all detectors used the real-valued representation of the system.

In Fig. 4, the BER performance of a number of detection

schemes is shown in an 8 × 8 system with 4-QAM modu-

lation. The MMSE metric in (4) has been applied to all the

detectors since the MMSE metric is ML-optimal and the un-

biased MMSE metric only leads to worse results for 4-QAM.

For comparison purposes, the ML metric has also been ap-

plied to the QRD-M algorithm. We observe that all schemes

outperform the MMSE V-BLAST detector, but only QRD-

M , with M = 3 and MMSE metric, and DNC come close to

ML. However, DNC has cubic complexity per received vec-

tor, whereas QRD-M only has about twice the complexity of

V-BLAST for M = 3.

When switching to 16-QAM, the differences are more

pronounced, as shown in Fig. 5. The unbiased MMSE met-

ric has been used, unless otherwise stated. Following our rule

of thumb, we chose M = 6 for the QRD-M algorithm in

this scenario. Again, QRD-M is the best suboptimal detec-

tor, with the unbiased MMSE metric being slightly preferable

compared to the MMSE metric.
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Xilinx XC2VP70 FPGA FSD [27] QRD-4

Slices (33,088) 38% (12,721) 54% (17,917)

Flip-flops (66,176) 23% (15,332) 36% (24,403)

4-input LUTs (66,176) 24% (16,119) 29% (19,560)

Multipliers (328) 48% (160) 29% (96)

RAM blocks (328) 25% (82) 25% (84)

Table 1. FPGA resource use of the QRD-4 algorithm com-

pared to the FSD in a 4×4 system with 16-QAM modulation.

The resource use of the FPGA implementation of the

QRD-4 algorithm in a 4×4 system with 16-QAM modulation

is summarized in Table 1. The result is compared to that of a

previously proposed fixed-complexity SD (FSD) [27] applied

to the same system. In order to establish a fair comparison,

both algorithms have been implemented so that they provide

the same constant throughput of 400Mbps with a clock fre-

quency of 100MHz and a similar BER performance. Initially,

it can be observed how the QRD-4 provides a 40% reduc-

tion in the number of multipliers, which is the limiting factor

in the FSD. This is achieved by making use of the unbiased

MMSE metric, which reduces the value of M compared to

previous implementations [22], [24] with unnoticeable per-

formance degradation. In addition, the number of multipliers

has also been reduced by making use of the real decompo-

sition of the system. Although the number of levels on the

tree is effectively doubled, the use of real arithmetic more

than halves the number of multipliers, resulting in an overall

reduction. On the other hand, the QRD-4 makes a more in-

tensive use of flip-flops and LUTs. This is due mainly to the

sorting stages required during the algorithm, shifting the lim-
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Fig. 6. BER performance of the QRD-4 and the FSD in a

4 × 4 system with 16-QAM modulation as a function of the

SNR per bit.

iting factor from the multipliers to the slices2. However, that

effect has been reduced by using 16-bit metric values instead

of the 32-bit metric values used in the original FSD.

Fig. 6 shows the FPGA BER performance of the QRD-

4 algorithm compared to that of the FSD in a 4 × 4 sys-

tem with 16-QAM. The input values to both algorithms are

quantized using 16 bits per real component. It can be ob-

served for both algorithms how a difference appears between

the FPGA and MATLAB BER performances at high EB/N0,

due to the quantization process. However, although the FSD

outperforms the QRD-4 in floating-point arithmetic (MAT-

LAB), the QRD-4 results in a more robust algorithm when

fixed-point arithmetic is used (FPGA). This is a consequence

of the MMSE metric used in the QRD-4, as opposed to the

ML metric used in the FSD. The normalization factor in the

MMSE metric reduces the dynamic range of the values of the

input matrices to the QRD-M algorithm, making the algo-

rithm more robust against the quantization process.

Table 2 compares the QRD-4 implementation presented in

this paper to previous implementations of tree-search-based

4×4 16-QAM MIMO detectors, in particular the K-Best lat-

tice decoder, the SD and the FSD. First of all, the QRD-4 al-

gorithm provides an improved performance compared to pre-

vious K-Best ASIC implementations. In order for the K-Best

to achieve a similar throughput performance, a small parame-

ter K is required [26], resulting in a non-negligible BER per-

formance degradation. The QRD-4 overcomes that problem

by using the MMSE metric presented in this paper, achieving

2Each slice on the FPGA contains two flip-flops and two LUTs, thus, a

high percentage of the slices are only partially used. Looking at the number

of flip-flops or LUTs gives a more accurate idea of the logic complexity of the

algorithm given that the number of slices can be affected by the configuration

of the synthesis tools.



K-best 1 [22] K-best 2 [24] SD [23] K-best 3 [26] FSD-16 [27] FSD-64 [32] QRD-4

Hardware platform ASIC ASIC ASIC ASIC FPGA FPGA FPGA

MIMO system 4× 4 4× 4 4× 4 4× 4 4× 4 4× 4 4× 4

Modulation 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 64-QAM 16-QAM

Metric l
2-norm l

2-norm l
1-norm l

1-norm l
2-norm l

2-norm l
2-norm

Floating-point BER quasi-ML quasi-ML close to ML error floor quasi-ML quasi-ML close to ML

Clock freq. (MHz) 100 100 71 132 100 (150) 100 (150) 100 (150)

Throughput (Mbps) 10 53.3 169† 424 400 (600) 300 (450) 400 (600)

Table 2. Comparison of real-time tree-search-based MIMO detectors and the QRD-4 presented in this work. († throughput

measured at Eb/N0 = 14dB.)

a quasi-ML BER performance with a small parameter M , as

shown in this section. It can also be seen how the QRD-4
achieves the same throughput as an FGPA implementation of

the FSD for the same MIMO system. In both cases, the clock

frequency and the throughput can be increased by a 50% in-

serting an additional pipeline stage in the multipliers causing

a 10% increase in the number of flip-flops used [32]. The pro-

totyping of the FSD for a 4×4 system using 64-QAM modula-

tion has also been included to show how the FSD concept can

be applied to high-dimensional systems, where the K-Best

or the SD would have a prohibitive complexity if quasi-ML

performance was to be achieved. It can be observed how the

higher complexity of the FSD-64 results in a reduced through-

put in order to make the implementation fit on the same FPGA

board. A similar behaviour should be expected for the QRD-

M algorithm, which could also be implemented for the 64-

QAM case, since it has been shown to be especially suited

for high-dimensional systems. An ASIC implementation of

the SD is included for reference purposes [23], showing how

it provides a lower throughput with the added disadvantage

of being dependent on the noise level and the channel condi-

tions. Finally, given that an FPGA-based rapid prototyping

methodology has been used, we believe that the implementa-

tion of the QRD-4 on an ASIC could lead to further improve-

ments in its performance.

8. CONCLUSION

An unbiased MMSE metric for MIMO detection has been

presented in this paper, leading to a slight BER performance

improvement compared to the MMSE metric. We have also

identified the QRD-M algorithm as the most promising can-

didate for suboptimal MIMO detection, since it offers the best

trade-off between complexity and performance, if the MMSE

metric is used together with a real-valued representation of

the system. Additionally, we have presented the FPGA im-

plementation, using a rapid prototyping methodology, of the

QRD-M algorithm based on the unbiased MMSE metric with

a real-valued system model. The comparison of the QRD-M

FPGA implementation to the state-of-the-art implementations

of [22],[23],[25]-[27] has shown that the best fixed-point BER

performance with 16-bit precision is offered by the QRD-M
detector, providing the same throughput as the FSD detector

in [27] but with a considerable reduction in the number of

multipliers.

9. REFERENCES
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