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Abstract— In this paper, we present a novel architecture based
on field-programmable gate arrays (FPGAs) for the reconstruc-
tion of compressively sensed signal using the orthogonal matching
pursuit (OMP) algorithm. We have analyzed the computational
complexities and data dependence between different stages of
OMP algorithm to design its architecture that provides higher
throughput with less area consumption. Since the solution
of least square problem involves a large part of the overall
computation time, we have suggested a parallel low-complexity
architecture for the solution of the linear system. We have
further modeled the proposed design using Simulink and carried
out the implementation on FPGA using Xilinx system generator
tool. We have presented here a methodology to optimize both
area and execution time in Simulink environment. The execution
time of the proposed design is reduced by maximizing parallelism
by appropriate level of unfolding, while the FPGA resources
are reduced by sharing the hardware for matrix–vector mul-
tiplication across the data-dependent sections of the algorithm.
The hardware implementation on the Virtex6 FPGA provides
significantly superior performance in terms of resource utilization
measured in the number of occupied slices, and maximum
usable frequency compared with the existing implementations.
Compared with the existing similar design, the proposed struc-
ture involves 328 more DSP48s, but it involves 25 802 less slices
and 1.85 times less computation time for signal reconstruction
with N = 1024, K = 256, and m = 36, where N is the number
of samples, K is the size of the measurement vector, and m is the
sparsity. It also provides a higher peak signal-to-noise ratio value
of 38.9 dB with a reconstruction time of 0.34 µs, which is twice
faster than the existing design. In addition, we have presented a
performance metric to implement the OMP algorithm in resource
constrained FPGA for the better quality of signal reconstruction.

Index Terms— Compressive sensing, field-programmable
gate array (FPGA) implementation, hardware reconstruction,
low-complexity architecture, orthogonal matching pursuit (OMP)
algorithm, system-level modeling.
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I. INTRODUCTION

C
OMPRESSED sensing (CS) allows a signal to be

acquired and accurately reconstructed with significantly

fewer samples than those required by the sampling constraint

provided by the Nyquist rate [1]. It opens a radically new era

in the domain of signal acquisition. CS relies on the sparsity

of a signal and/or its optimal representation in an appropriate

transform domain. Sparsity of signal is found abundantly in

wide and diverse kind of signals and very much prevalent

in biosignals, medical images, and radar signals [2], [3].

CS is generally performed by multiplying the input signal by

a measurement matrix. The reconstruction of original signal

from compressively sampled signal requires the knowledge of

this matrix in advance. The reconstruction process consists

of finding the best solution to an underdetermined system of

linear equations given by y = �x, where the measurement

matrix � and the measured signal y are known. No knowledge

of the original signal x is required for reconstruction except

that it is sparse in the sampled domain.

Various algorithms have been proposed for the

reconstruction of signals from the compressively sensed

samples. Matching pursuit (MP) [4] is a common approach

for sparse signal reconstruction, which greedily computes

an approximation to the original signal [5]. MP algorithm

iteratively identifies the column of measurement matrix that

is most correlated to a current signal estimate, followed by

a simple update that computes an improved signal estimate.

While each iteration of MP requires very low computational

effort, the number of iterations heavily depends on the

sparsity level m, and consequently, MP is more suitable

for signals with high sparsity degrees [4], [6]. Orthogonal

MP (OMP) proposed in [7] is a more complex algorithm

that incorporate a least-squares (LS) step to compute a

signal estimate. In OMP, the LS step significantly reduces the

number of required iterations compared with MP, but it results

in a high computational complexity per iteration [6]. This

complexity is mainly due to the large number of inner-product

computation (IPC), several comparison operations, and matrix

inversion. Therefore, the high computational complexity of

OMP algorithm is a major concern for its implementation

to achieve real-time reconstruction of compressively sensed

signals.

Several software implementations on general-purpose com-

puter and graphic processor unit (GPU) have been proposed

1063-8210 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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in the literature. It is observed that the acceleration achieved

by the GPU-based implementation is significantly better than

CPU-based implementation [8]. However, the GPU-based

implementation has a major problem of intermittent memory

bandwidth between the main memory and the GPU, which

does not facilitate regular flow of data communication with the

host [8], [9]. Several schemes have been proposed to accelerate

individual computing stages of OMP algorithm in the hard-

ware solutions presented in [10]–[12]. We found only a few

proposed designs for the complete implementation of OMP

algorithm in hardware. Recently, Septimus and Steinberg [13]

and Stanislaus and Mohsenin [14] have presented a field-

programmable gate array (FPGA) implementation of OMP

algorithm. However, a close examination of the algorithm and

the proposed architectures reveals that those are from MP

implementation rather than OMP, as stated by the authors.

Septimus and Steinberg [13] have proposed an FPGA-based

design that involves significantly higher cycle period due to a

large-size inner product (IP) in the critical path. Stanislaus

and Mohsenin [14] and Mohsenin and Stanislaus [15] have

also proposed an FPGA implementation of MP algorithm

based on QR-decomposition scheme for matrix inversion to

reduce the computation complexity. Blaché et al. [16] and

Bai et al. [17] have presented FPGA implementations of recon-

struction algorithms based on OMP. In the design presented

in [16], the matrix inversion is based on CORDIC divider

with high latency and a sequential execution of several parts of

matrix multiplication. Bai et al. [17] have presented a hardware

design of OMP algorithm based on Q R decomposition and

consisting of a vector multiplication units with multiple oper-

ation modes and a square root reciprocal. The reconstruction

time of this design is 0.63 ms for N = 1024, K = 256, and

m = 36.

In the existing implementations of both MP and OMP

algorithms, the IPC performed during the search of nonre-

dundant columns of � takes an important number of cycles

and is generally optimized by exploiting inherent parallelism.

The simultaneous access to data is an important issue for an

efficient implementation of a parallel structure, which requires

an adequate memory organization. One of the most critical part

of MP and OMP algorithms is solving the LS problem (LSP).

However, while the LSP is solved once in the final stage of MP

algorithm, it should be solved in each iteration of the OMP

algorithm. The LSP involves several matrix arithmetics, partic-

ularly, the inversion, which requires division operation and sig-

nificantly affects the cycle period and computational latency.

In this paper, we have addressed all these challenges by

presenting an efficient pipelined architecture to implement the

OMP algorithm. In addition, we have proposed an efficient

design for IPC and inversion based on Newton–Raphson iter-

ation, and a scalable pipelined architecture of Moore–Penrose

pseudoinverse for low-latency solution of LSP. We have also

presented a Simulink-based design flow for the implementation

of the proposed OMP architecture. The proposed architecture

is also scalable and can be used for unknown sparsities.

The rest of this paper is organized as follows. In Section II,

we have given a detailed description of the OMP algorithm.

The proposed hardware architecture is described in Section III.

Algorithm 1: OMP Algorithm for Signal Recovery

FPGA implementation flow, the synthesis results, and the per-

formance of the proposed design are presented in Section IV.

The conclusion and the scope of the future work are outlined

in Section V.

II. OVERVIEW OF OMP ALGORITHM AND

ITS COMPLEXITY ANALYSIS

CS is based on the fact that the information from a signal

may be captured by a small set of nonadaptive linear measure-

ments when the signal is sparse in some basis [1]. An m-sparse

signal vector consists of at most m nonzero scalar components.

A signal vector x ∈ RN acquired via linear measurements is

given by

y = �x + n (1)

where � ∈ RK .N is a rectangular sampling matrix modeling

the sampling system, y ∈ RK is the measurement vector, and

n is a K -point vector that represents the measurement error

or noise. The columns of matrix � denoted φ1, φ2, . . . , φN

are K -point vectors (K < N), also called atoms. The length

of measurements vector y is in general assumed to be much

smaller than the length of signal vector x.

A. General Description of OMP Algorithm

The OMP algorithm proposed in [7] is given in Algorithm 1.

It takes the measurement matrix � and the measured vector y

as inputs and provides an estimate x̃ of the original signal x.

This algorithm is iterative. During each iteration, it chooses

one of the columns of �, which is most strongly correlated

with the residual of measurements y, and then it removes

the contribution of this column to compute a new residual.

It also computes a new estimate of the original signal; after
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m iterations, the algorithm will generate the finale estimate of

the original signal.

The optimization problem of step 2 of Algorithm 1 is solved

by calculating correlation vector w as follows:

w = �T ri−1 (2)

where ri−1 is the residual vector of (i–1)th iteration. The index

λi of the component of w having maximum absolute value is

identified, and the corresponding column is extracted from �

to constitute matrix �̃ of such extracted columns. According

to step 4 of Algorithm 1, an estimate of the reconstructed

signal x̃i is obtained by solving the following:

y = �̃x̃ (3)

where �̃ is a (K × m) rectangular matrix with K > m.

A common approach to invert such rectangular matrix is to

use the Moore–Penrose pseudoinverse, expressed by

�̃
† =

(

�̃
T
�̃

)−1
�̃

T
(4)

where �̃
†

is the pseudoinverse of Moore–Penrose. Therefore,

the solution of (3) is obtained by solving the following:

w = Cx̃ (5)

where C = �̃
T
�̃ is a symmetric matrix ∈ Rm×m . Equation (5)

can be solved by matrix inversion or by forward/backward

substitution [12].

Various methods can be used to find the inverse of a matrix,

such as Cholesky factorization, LU, and QR decomposition

methods. We have used the modified Cholesky factorization

method in [18] for matrix inversion since it does not require

square-root operations. Based on the modified Cholesky fac-

torization, matrix C can be expressed as the product of three

matrices as

C = LDLT . (6)

The lower triangular matrix L and diagonal matrix D are

computed using the following relations:

L i, j = 1

D j, j

{

Ci, j −
j−1
∑

k=1

(L i,k L j,k Dk,k)

}

, i > j (7a)

Di,i = Ci,i −
i−1
∑

k=1

(

L2
i,k Dk,k

)

. (7b)

The inverse of matrix C is obtained as follows:

C−1 = (L−1)T D−1L−1. (8)

The inversion of matrix D is obtained by taking inversion of

its diagonal components, while the inversion of matrix L is

performed iteratively using the relation

L−1
i, j = −

i−1
∑

k= j

L i,k L−1
k, j (9)

for i > j . In step 6 of Algorithm 1, the residue vector r is

updated for the next iteration using the relation

ri = y − �̃x̃. (10)

Fig. 1. Flow graph of one iteration of OMP algorithm. For MP algorithm,
functions 3 and 4 are executed once outside the loop and function 6 consists

of computing ri = ri−1 − �̃�̃
T

ri−1.

To apply backward/forward substitution approach, it is also

necessary to decompose matrix C into three matrices L, D,

and LT, as shown in (6). Solving (5) amounts to solving

three equations: Lz = w using forward substitution, Dr = z,

and LTx = r using backward substitution, where z and r are

intermediate vectors.

Matrix C is symmetric, and its size grows each iteration

from 1 × 1 to m × m. A simple analysis shows that the

calculation of L and D takes m(m+1)/2 cycles for m iterations

and that of L−1 and D−1 can be performed in parallel and takes

the same number of cycles. As will be demonstrated later

in this paper, the calculation of C−1 will take (m + 1)m/2

and that of C−1w can take 1, m, or m2, depending on the

degree of parallelism of the adopted architecture. In our case,

with m cycles, we obtain a total number of cycles equal

to (m + 2)m for matrix inversion approach. In the second

approach, the calculation of L and D, z, and x will take

(m + 1)m/2 cycles each, which corresponds to a total of

3(m + 1)m/2. For this reason, we have chosen to develop

the first approach that has more potential of parallelism.

Moreover, we adopted this approach for comparison with

similar proposed architectures [13], [17].

B. Complexity Analysis of OMP Algorithm

The OMP algorithm is iterative and consists of six ordered

functions. We have presented these functions and data depen-

dencies between them in the data-flow graph shown in Fig. 1.
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TABLE I

COMPUTATION COMPLEXITY OF OMP ALGORITHM (m DEGREE OF SPARSITY, K SIZE OF MEASUREMENT VECTOR, AND N NUMBER OF SAMPLES)

The computation of the six functions is performed sequentially

and repeated for each iteration. The functions 1 and 2 are the

computation of the correlation vector (2) followed by the com-

parison operation to extract the column of � having maximum

correlation and then update the matrix �̃ by augmenting such

extracted columns to construct the measurement-generation

matrix �̃. In functions 3 and 4, matrix C is reconstructed from

matrix �̃, and then its inverse is computed using Cholesky

decomposition method given in (7)–(9). Finally, an estimate

x̃ of the reconstructed signal x is computed according to (5),

and then the residual vector is updated for the next iteration.

We have estimated the complexity of these functions

involved in the OMP algorithm (Table I). The total number of

multiplications, additions, comparisons, negates, and divisions

is, respectively, 7m3/6 + (K + 1)m2 + (N K + K − 2)m,

4m3/6 + (K − 1)m2 + (N K − N − 2/3)m, (N − 1)m,

m(m − 1)/2, and m. As N > K ≫ m, we can observe from

Table I that functions 1, 3, and 6 present the most important

part of the overall complexity of OMP algorithm.

The main problem associated in accelerating the OMP

algorithm is that due to its iterative nature, it does not allow

parallel execution. In addition, the computational flow of

the six functions in each iteration of the algorithm is data

dependent. Therefore, the computation of six functions cannot

be performed concurrently. However, the processing can be

speeded up by introducing parallelism in some functions selec-

tively. We can perform all the N IPC in parallel and perform

fast comparison of the IP values to identify the maximally

correlated column of �. This will require huge resources.

Therefore, we have designed a pipeline IPC unit that performs

one IPC followed by a comparison in each cycle. The functions

1, 3, and 6 utilize the same IP unit, thus leading to a significant

resource optimization. We find from the existing designs that

Cholesky decomposition requires significantly large number

of clock cycles while it has less computation than other

functions of OMP algorithm. This is mainly due to the division

operation and the complex data dependency of the components

of matrices L and D. Hence, in this paper, we present an

optimized parallel structure for matrix inversion based on

Cholesky decomposition. The description of these structures

is presented in the following section along with the detailed

design of the proposed architecture for OMP algorithm.

III. PROPOSED ARCHITECTURE

The proposed structure for the implementation of OMP

algorithm is shown in Fig. 2. It has four computing blocks:

1) K -point inner product and comparator unit (K -IPCU);

2) Cholesky inversion unit (CIU); 3) residual computation unit;

and 4) reconstructed signal computation unit. In addition, it

has memory and control units. The measurement matrix �,

measurement vector y, and all intermediate matrices and

vectors are stored in the memory units. In the K -IPCU, the

K -point IP, which is shared between operations 1, 3, and 6,

receives columns of measurement matrix � and residual vector

ri−1 and computes matrix C or correlation vector W, or �̃x̃.

The K -IPCU also performs the necessary comparison to

identify the column of � that is maximally correlated with

the residual vector of the previous iteration. The results of

these computations are stored in memory units. Similarly, the

CIU receives the components of intermediate matrix C from

the memory units to calculate its inverse. The control unit

(not shown in Fig. 2) generates the address values to perform

read and write operations on the memory unit, and sends the

necessary control signals to the computing units to initiate

their operations.

A. Proposed Structure of the K-IPCU

The structure of K -IPCU is shown in Fig. 3 for N = 1024,

K = 256, and m = 36. It is composed of four 64-point inner

products (64-point IPs), a comparator, a dispatcher, and an

adder tree. The four 64-point IP is identical and composed of

64 parallel multipliers and 63 adders. The dispatcher is used

to transfer the adequate data to the four 64-point IP. Before

the execution starts, the residual vector ri−1 is initialized by

the input data vector y ∈ RK . The vector ri−1 is stored in

a RAM so that any of the K values can be accessed in one

clock cycle. The matrix � ∈ RK×N is also stored in a RAM
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Fig. 2. Proposed structure for OMP implementation.

Fig. 3. Structure of K -IPCU for N = 1024, K = 256, and m = 36.

of K modules allowing the access to a complete vector φn ∈
R

K (n = 1, . . . , N) in one clock cycle. During the first N

cycles of each iteration for the computation of K -IPCU, N

columns of � are retrieved from the memory unit in serial

order and fed to the K -IPCU. During the ith iteration, the

K -IPCU performs the IP of residual vector ri−1 with a column

of � available from the memory in each cycle of N cycles.

During nth clock cycle of the first N cycles of ith iteration, the

K -IPCU performs IP of φn with ri−1 and the product value

is sent to the comparator to find the maximum absolute of IP

among such successive N values.

The comparison operation is concurrently performed with

the IP. The comparator sends the column index λi of � that

results in the highest correlation, which in turn writes the

specified column of � to the measurement-generator matrix �̃.

After the search operation on the matrix � during N cycles of

every iteration, the construction of the matrix C is performed

by matrix–matrix multiplication between the transpose matrix

�̃
T

and �̃. We have used the same K -IPCU to perform

this matrix multiplication. For this, the K -IPCU receives one

row of the transpose matrix �̃
T

and one column of �̃ from

the memory unit and computes one component of matrix in

one cycle. As the matrix C is a symmetric matrix, it is not

necessary to compute all its components. The size of matrix

C increases from 1 × 1 in the first iteration to m × m in the

mth iteration. Therefore, the component of C is obtained in

m(m + 1)/2 cycles for m iterations. Matrix C is stored in the

memory unit to be used for calculation of its inverse.

B. Proposed Structure for CIU

Since matrix C is symmetric, only the diagonal and lower

triangular values are required by the CIU to calculate the

inverse of C. Due to the division operation and complex

inter data dependency of lower triangular matrix L and diag-

onal matrix D, a straightforward implementation of Cholesky

decomposition involves relatively more number of clock cycles

than other computing units of the OMP algorithm. Based

on our dependence analysis, we have proposed a maximally

parallel structure for CIU and pipelined the structure wherever

is necessary.

1) Matrix Decomposition: In Cholesky decomposition, the

square matrix C is decomposed into lower triangular matrix L

and diagonal matrix D. The elements of L and D are calculated

using (7). It can be observed from (7) that matrices L and D

are interdependent. Therefore, the components of L and D are

calculated in a specific order.

The elements of matrix C as well as those of L and D

are computed iteratively. A full parallel implementation is

not necessary in this case. To demonstrate this, we have

derived separate relations for individual components of each

matrix L and D to map the computation in each iteration for

m = 5 as follows.

Iteration 1

D−1
11 = C−1

11 . (11a)

Iteration 2

D21 = C21 (12a)

L21 = D−1
11 · D21 (12b)

D22 = (C22 − L21 · D21). (12c)

Iteration 3

D31 = C31 (13a)

L31 = D−1
11 · D31 (13b)

D32 = C32 − L21 · D31 (13c)

L32 = D−1
22 · D32 (13d)

D33 = (C33 − L31 · D31) − L32 · D32. (13e)
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Fig. 4. Data dependency and scheduled tasks between PEs. Di j and dk
i j are temporal variables computed by a PE and used locally or passed to the

adjacent PE.

Iteration 4

D41 = C41 (14a)

L41 = D−1
11 · D41 (14b)

D42 = C42 − L21 · D41 (14c)

L42 = D−1
22 · D42 (14d)

D43 = (C43 − L31 · D41) − L32 · D42 (14e)

L43 = D−1
33 · D43 (14f)

D44 = ((C44 − L41 · D41) − L42 · D42) − L43 · D43. (14g)

Iteration 5

D51 = C51 (15a)

L51 = D−1
11 · D51 (15b)

D52 = C52 − L21 · D51 (15c)

L52 = D−1
22 · D52 (15d)

D53 = (C53 − L31 · D51) − L32 · D52 (15e)

L53 = D−1
33 · D53 (15f)

D54 = ((C54 − L41 · D51) − L42 · D52) − L43 · D53 (15g)

L54 = D−1
44 · D54 (15h)

D55 = (((C55 − L51 · D51) − L52 · D52) − L53 · D53)

− L54 · D54. (15i)

From this decomposition, we can note that for all the

iterations i > 1, the couples (L i1, Di2) are computed using

similar equation involving multiplication and subtraction. This

observation is valid for the couples (L i2, Di3), (L i3, Di4),

and (L i4, Di5). Di j are computed in iteration i by PE j and

passed to the adjacent processing element (PE) (if exists).

In FPGA circuits, the multipliers and subtractors can be

implemented using the DSP48 blocks [19]. Fig. 5 shows the

proposed structure of the PE exploiting the DSP48 resources

for efficient computation of the elements of L and D.

2) Inversion of Matrix L: The inversion of matrix L

is performed iteratively, as shown in (16) for m = 5.

In each iteration i , only the elements L−1
i j are computed with

j ∈ [1, i − 1] and i > 1

L−1
21 = −L21 (16a)

L−1
31 = −(L31 + L32 · L−1

21 ) (16b)

L−1
32 = −L32 (16c)

L−1
41 = −(L41 + L42 · L−1

21 + L43 · L−1
31 ) (16d)

L−1
42 = −(L42 + L43 · L−1

32 ) (16e)

Fig. 5. Architecture of PEs (PE1, . . . , PEm).

L−1
43 = −L43 (16f)

L−1
51 = −(L51 + L52 · L−1

21 + L53 · L−1
31 + L54 · L−1

41 ) (16g)

L−1
52 = −(L52 + L53 · L−1

32 + L54 · L−1
42 ) (16h)

L−1
53 = −(L53 + L54 · L−1

43 ) (16i)

L−1
54 = −L54. (16j)

As shown in (16), for each iteration, the elements L−1
i j

are computed using the results of the previous iterations.

The operations involved are addition, multiplication, and

arithmetic negation. The proposed PE shown in Fig. 5 is

configured to compute the inverse of matrix L using negate,

multiply, and add operators. The inverse of matrix L is

computed in parallel with the inversion of D elements.

The number of cycles remains lower than those required

to compute the inverse of D. The proposed CIU generates

the matrices L−1 and D−1 in (i · d + r) cycles for the i th

iteration, where d is the latency of a multiply–subtract block

and r the latency of the reciprocal circuit.

3) Inversion of Matrix D: A diversity of division algorithms

and their implementations has been published. Most of these

algorithms are iterative and can be grouped into algorithms

with linear convergence, such as CORDIC and restoring and

nonrestoring division, and algorithms with quadratic conver-

gence, such as reciprocal. To invert the elements of matrix D,

we have developed a reciprocal operator based on the

Newton–Raphson method to calculate the inverse of the diag-

onal elements D. This method consists of finding a function

f (X) that has a zero at X = 1/M . In general, this function is

f (X) = 1/X − M (17)
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Fig. 6. Developed architecture of reciprocal operator PEd .

and the Newton–Raphson iteration gives

X i+1 = X i − f (X i )

f ′(X i )
= X i (2 − M X i ) (18)

which can be calculated from X i using only multiplication and

subtraction.

The Newton–Raphson method requires the initial start

value to compute the solution approximation iteratively.

Lookup table solutions for the initial value approximation

are common, but by nature, they need quite large memories

if high accuracy combined with low iteration counts is

required. Alternatively, the initial value can be computed

using a second-order polynomial, or linear approximation.

The approximate value of X0 = (48 − 32M)/17 is assumed

for 1 ≤ M < 2 (or 0.5 < X ≤ 1) [20].

Fig. 6 shows a detailed structure of the developed reciprocal

operator. The input data D can be either fixed-point or floating-

point value. This value is preprocessed to extract sign S, the

exponent N , and mantissa M (M ∈ [1, 2]). The initial value

X0 is computed using the approximation X0 = 3 − 2M .

We have replaced the numbers 48/17 and 32/17, respectively,

by 3 and 2 to avoid the multiplication during preprocessing

stage, thus only a subtraction and a right shift are used to

compute X0. Once X0 is computed, the Newton–Raphson iter-

ation is started. The result of approximation is postprocessed to

obtain the final inverse 1/D. A controller (not shown in Fig. 6)

schedules the operations of this PEs, particularly the number

of iterations, which has an impact on the precision of the

approximated value of the inverse 1/D. We have inserted

pipeline at various levels of the proposed inversion design

and studied their impact on latency, critical path, and resource

utilization. We have also computed the time necessary to

perform the inverse and found that the smallest is obtained for

a latency of tree cycles and a maximum frequency of 92 MHz.

The reciprocal element can operate at higher frequencies but

with different latencies.

4) Inversion of Matrix C: According to (8), L−1 and D−1

are multiplied to generate an intermediate symmetric matrix

Z = D−1L−1 that is further multiplied with transpose matrix

(L−1)T to generate the inverse matrix C−1 = (L−1)T Z, which

is also symmetric. As C−1 is symmetric, only its upper tri-

angular is calculated. According to (19), shown at the bottom

of the page, the elements of matrix C−1 are updated in each

iteration. The update consists of adding a new value, obtained

by multiplying three elements of matrices L−1 and D−1, to

the elements of C−1 computed in the previous iteration. This

operation requires one addition and two multiplications, which

are implemented by the proposed PE shown in Fig. 5.

5) Organization of CIU: The proposed structure for

Cholesky decomposition consists of a scalable linear array

of PEs with a complexity of O(m) number of PEs for an

m × m matrix. An in-depth analysis of data dependency has

demonstrated that an important number of operations can be

performed in parallel (all operations in the same column of

Fig. 4). This analysis led us to choose a structure of cascaded

identical PEs (Fig. 5) organized to exploit all the options for

parallelism (Fig. 7). The PEs are also pipelined to reduce

the critical path. The proposed cascaded structure computes

the elements of matrices L and D in i × d cycles in the

i th iteration, where d is the latency of a multiply-and-subtract

block (for the rest of this paper, we will call it a DSP

cycle). These PEs are also utilized for the computation of

L−1 and C−1.

The proposed structure is also composed of a division (PEd )

computing the inverse of diagonal elements of matrix D.

The activity of a PE depends on its position in the pipeline.

For example, PE3 will be active from the third to the mth

iteration and will take two DSP cycles in each iteration. This

means that PEi will take i − 1 DSP cycles and will be active

starting from the i th iteration. If we consider a sequential

execution for m iterations, the total DSP cycles will be

(2m3 + 6m2 − 2m − 6)/6, which requires computations of

cubic order, O(m3). The proposed linear array of PE takes

(m2 + m − 2)/2 DSP cycles for m iterations, which reduces

the computations to a square order O(m2) with a hardware

cost of O(m). PEd computes the division of one element of

Iterations 1 2 3 4 5

C−1
11 = D−1

11 + D−1
11 .L−1

21 .L−1
21 + D−1

11 .L−1
31 .L−1

31 + D−1
11 .L−1

41 .L−1
41 + D−1

11 .L−1
51 .L−1

51 (19a)

C−1
21 = + D−1

11 .L−1
21 + D−1

11 .L−1
31 .L−1

32 + D−1
11 .L−1

41 .L−1
42 + D−1

11 .L−1
51 .L−1

52 (19b)

C−1
22 = + D−1

22 + D−1
22 .L−1

32 .L−1
32 + D−1

22 .L−1
42 .L−1

42 + D−1
22 .L−1

52 .L−1
52 (19c)

C−1
31 = + D−1

11 .L−1
31 + D−1

11 .L−1
41 .L−1

43 + D−1
11 .L−1

51 .L−1
53 (19d)

C−1
32 = + D−1

22 .L−1
32 + D−1

22 .L−1
42 .L−1

43 + D−1
22 .L−1

52 .L−1
53 (19e)

C−1
33 = + D−1

33 + D−1
33 .L−1

43 .L−1
43 + D−1

33 .L−1
53 .L−1

53 . (19f)
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Fig. 7. Optimized and scalable linear array processors for matrix inversion based on Cholesky decomposition.

matrix D in each iteration, and will take the same number of

cycles.

The proposed structure for matrix inversion is a regular

and scalable hardware architecture. Due to its modularity, the

size of matrix inversion can be changed easily. The scalability

of the proposed architecture is closely related to its hardware

complexity. The logic (PE and MUXs) and memory elements

complexities are O(m) and O(m2), respectively. More

details on hardware and memory complexities are given in

Tables III and IV.

C. Organization of the Proposed Architecture

According to (5), two matrix–vector multiplications are

performed to compute an estimate of the original signal x̃.

In the first instance, transpose matrix �̃
T

is multiplied with

residual vector ri−1 to generate an intermediate vector W.

In the second instance, the inverse matrix C−1 is multiplied

with W to generate the estimate vector x̃. The K -IPCU

described previously is used to calculate the first matrix–vector

multiplication. The K -IPCU receives rows of �̃
T

and the

residual vector ri−1 from the memory and performs IPC.

This operation can be performed in parallel with the

functions 1 and 2 of the architecture, and the values are

saved in the memory unit. One of the four 64-point IP blocks

of K -IPCU is used to perform the second matrix–vector

multiplication. The rows of C−1 and intermediate vector

ri−1 are retrieved from the memory and sent to K -IPCU to

perform IPC. The estimate vector x̃ is saved in the memory

unit to calculate the residual vector for the next iteration. The

estimate vector x̃ is multiplied with the generator matrix �̃
T

,

and then subtracted from the current measurement vector to

find the residual vector for the next iteration. Multiplication

of �̃
T

with vector x̃ is performed by K -IPCU. It receives the

rows of �̃
T

and the vector x̃ from the memory and compute

the IP. The K -IPCU completes the matrix–vector multiplica-

tion in K cycles and generates an intermediate vector.

IV. FPGA IMPLEMENTATION AND

PERFORMANCE EVALUATION

In this section, we present the implementation and perfor-

mance evaluation of the proposed architecture, and the results

in the case of N = 1024, K = 256, and m = 36.

A. Design Flow and FPGA Implementation Approach

We have used MATLAB–Simulink tool along with

Xilinx system generator (XSG) and Xilinx LogiCore

for the system-level modeling and representation of the

proposed architecture for FPGA implementation of the OMP

algorithm [21]. Using these toolset, we have transformed

the abstract representation of our system-level design to a

high-level description language (HDL) code for gate-level

representation. XSG is a high-level design tool for Xilinx’s

line of FPGAs used as a plug-in to MATLAB–Simulink.

It consists of a set of configurable computing blocks ranging

from the basic combinational and sequential logic blocks to

more complex math functions and control logic, along with

a set of tools, such as system generator, resources estimator,

and ModelSim, to realize the necessary functionalities. XSG

supports both modular and hierarchical models of system rep-

resentation that simplifies the design of the complex system.

We have described the proposed architecture in Simulink

by block diagrams using the toolboxes available in Simulink

library. Since we model the system for fixed-point implemen-

tation, we have provided the fixed-point format for each of

the input blocks in Simulink description by specifying the

number of bits and binary point in the properties of the block.

We have also specified the parameters such as latency, and

implementation options (to optimize for speed or area, and use

of resources, such as embedded multipliers or DSP block set)

for each of the building blocks by modifying their properties.

The model of the system developed in XSG is simulated

in MATLAB using a MATLAB script and generic Simulink

blocks to create efficient test bench for simulation, test,
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and verification. The test bench defined in MATLAB–Simulink

consists of the measurement matrix, measurement vector, and

control signals, such as reset, enable, memory read/write,

and steering logic. Data and signals are transferred to

XSG–Simulink model through input gateways, and the recon-

structed signal is transferred to the MATLAB environment

for the visualization through output gateways. The simulation

results obtained in MATLAB environment are bit-accurate

and cycle-accurate and represent those which will be seen in

the actual FPGA implementation. We have performed system

simulation in Simulink and verified the functionality of the

overall system.

We have run the HDL generation process of XSG

that automatically compiles our design into low-level

representations by invoking Xilinx CoreGen) to generate

highly optimized netlists for the DSP building blocks. A close

examination of the generated files shows that the HDL

description is mainly structural, and a Xilinx native generic

circuit file is almost associated to all entities.

In the final step of the design flow, we have performed

validation followed by power and timing analysis. The project

files generated by XSG are used by the project navigator

tool of Xilinx Integrated Software Environment (ISE14.1).

We verify the correctness of generated code by HDL

simulation of test bench by utilizing ISE tool suite and

ModelSim. We have created a constraint file for timing and

power analysis of our design.

B. Validation and Evaluation Setup

The proposed architecture shown in Fig. 2 has been

prototyped for N = 1024, K = 256, and m = 36 using

the Simulink-based design flow discussed in Section IV-A.

The model of the proposed architecture is designed using

fixed-point data representation. The precision (number of

bits) and the scale (binary point) of the fixed point data

are defined as parameters. The system generator model of

OMP architecture is configurable through model properties.

In the model properties, model callbacks are used to initialize

several functions, such as pipeline stages, and data precision

parameter. To validate the proposed hardware implementation,

and to compare software and hardware reconstruction

efficiency, we have developed a MATLAB code of the

OMP algorithm.

C. Reconstruction Efficiency

To evaluate the construction efficiency of the hardware

approach, we have opted for an objective evaluation metric

using peak signal-to-noise ratio (PSNR) defined as

PSNR = 20log10

(

MAX√
MSE

)

(20)

MSE =
1

N
×

∑

i

[x(i) − x̃(i)]2 (21)

where MAX is the maximum possible value of the signal x ,

N is the total number of samples, x̃(i) is the sample value

at point i in the reconstructed signal, and x(i) is the sample

TABLE II

INFLUENCE OF DATA PRECISION ON QUALITY OF SIGNAL

RECONSTRUCTION FOR N = 1024, K = 256, AND m = 36

value at point i in the original signal. The average support-

cardinality error (ASCE) metric gives valuable information on

support-set distortion [22]. ASCE is defined as follows:

ASCE = 1 − #(�̃ ∩ �)

m
(22)

where m is the sparsity, and � and �̃ are, respectively, the

index set (or support set) of the original signal x and the

reconstructed signal x̃. For our experiment, the original signal

is represented in fixed-point representation and varies between

−1 and +1. We had conducted simulations for data format

n(. f ) with n the total number of bits (precision) and f the

number of fractional bits. The obtained results are presented

in Table II. ASCE = 0 corresponds to the cases where there is

no distortion between the reconstructed signal and the original

signal. In these cases, we observe a small increase in the

quality of reconstruction of 2.4 dB when data precision is

changed from 16(0.8) to 24(0.12) bits and 0.1 dB when data

precision is changed from 24(0.12) to 32(0.16) bits. Compared

with a similar architecture based on QR decomposition with

the same data format [14], the quality of reconstruction using

our architecture is superior by 10 dB. This is due to the fact

that the design of [14] is based on MP algorithm, whereas the

proposed design is based on the OMP algorithm. Note that, in

the MP algorithm, the LSP is solved once after all iterations

have been completed, whereas in the OMP algorithm, the LSP

is solved in each iteration leading to a more precise estimate of

reconstructed signal, obviously at the expense of computation

complexity.

D. Hardware Complexity

The hardware complexity of the proposed architecture is

evaluated and listed in Table III. It involves (K +3m) number

of multipliers, (K +2m) number of adder/subtractors, and one

reciprocal unit. In the proposed design, only one reciprocal is

used for the inversion of elements of matrix D.

Table IV shows the type, the size, and the number of

accesses per cycle in read and writes modes of memory
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TABLE III

THEORETICAL ESTIMATE OF HARDWARE COMPLEXITY OF THE PROPOSED DESIGN

TABLE IV

THEORETICAL ESTIMATE OF MEMORY RESOURCES

resources. Bloc RAMs (BRAMs) are utilized to store vectors

y and r and matrix �. The remaining memory element

is implemented in registers when it is necessary to exploit

the possible parallelism of different calculations. BRAM is

also organized for sequential or parallel access. For example,

vector y is accessed sequentially in read and write modes,

while register r is written in sequential mode and read in

parallel as the IP 〈ri−1, φj〉 is computed in parallel. Thus, the

K elements of vector ri−1 and φj should be read in one clock

cycle. Therefore, the memory bandwidth, expressed here in

words per cycle, depends on data access mode (read/write)

and the quantity of elements required per cycle.

E. Implementation Results and Timing Analysis

For this paper, we targeted the ML605 board equipped with

the Virtex6 FPGA (part xc6vlx240t-1ff1156). The algorithm is

prototyped using system generator in which several parameters

are modified allowing the architecture exploration. Among

these parameters, we explored the impact of data precision

and the latency of pipelining. For the comparison purposes

with similar work, we have used 18-bit data precision with

9 bits for the fractional part, which allows the reconstruction

of the signal with a PSNR of 38.9 dB and an ASCE of 0.

The reconstruction time is the product of minimum cycle

period and the number of cycles necessary to reconstruct

a vector data. The K -IPCU and the comparator have eight

pipeline stages and computes N IPs and comparison in

m(N + 8) cycles for m iterations, which corresponds to

37 152 cycles for N = 1024 and m = 36. The elements of

matrix C are computed by a part of K -IPCU, as explained in

Section III-A. The number of cycles depends on the iteration,

and the total is (m2 + 13m)/2. The latency of the CIU also

depends on the iteration; it takes 5 cycles in the first iteration

and 3i + 5 cycles in the i th iteration. This variation is due to

Cholesky decomposition that requires extra 3 cycles in each

iteration because of the growing size of matrix C , as explained

above. The proposed architecture for matrix inversion based

on the modified Cholesky decomposition takes (3m2+13m)/2

cycles to invert an m × m matrix, which corresponds to

2178 cycles in our case. The latency for the computation of x̃

is constant for each iteration and takes 3m. The total number

of cycles for the reconstruction of signal of the proposed

architecture is 2m2 +(N +37)m, which corresponds to 40 788

for the configuration (N = 1024, K = 256, and m = 36).

In the proposed architecture, the inversion is based on a

reciprocal IP core that allows significant reduction of latency.

Moreover, we have modified the controller to start the com-

putation of inverse of matrix L as soon as its elements are

available. To reduce the critical path, we have optimized archi-

tecture by inserting pipeline registers for different embedded

multipliers and for reciprocal IP core.

F. Comparisons With Existing Approaches

We have compared the performance of proposed design

with the existing similar designs proposed for the OMP

algorithm [17]. We have implemented the proposed design

for N = 1024, K = 256, and m = 36 using Virtex6 FPGA

device. We have used DSP48 offered by Virtex6 FPGA for the

implementation of multiplication–add/multiplication–subtract

operation. Similarly, we have used RAM blocks (RAMBs) of

Virtex6 FPGA for the implementation of all buffers required

by the proposed design for storing intermediate matrices and

vectors. We have considered 18-bit precision for all the inter-

mediate and output signals. The device utilization summary

and timing obtained from place and route report are listed

in Table V. The synthesis results of the existing design, as
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TABLE V

COMPARISON OF IMPLEMENTATION RESULTS OF THE PROPOSED

ARCHITECTURE AND THE EXISTING DESIGN FOR N = 1024,

K = 256, AND m = 36 USING VIRTEX6 FPGA FROM

XILINX, AND 18 DATA PRECISION

reported in [17] for N = 1024 and K = 256, are also listed

in Table V for comparison. Compared with [17], the proposed

structure involves 328 more DSP48s and 318 more RAMBs,

but it involves 25 802 less slices and 1.85 times less compu-

tation time for signal reconstruction. The proposed structure

offers 15 dB higher PSNR for signal reconstruction, which is

very significant for compressing sensed date. In addition, the

proposed structure is fully scalable for different size of OMP

algorithm and can be used for reconstruction of signals for

unknown sparsity. Most importantly, the proposed design can

be easily prototyped for resource constrained FPGA device for

better quality signal reconstruction by appropriate selection of

bit width.

V. CONCLUSION

We have presented a scheme for FPGA implementation

of the OMP algorithm for reconstruction of compressively

sensed signal. We have modeled the proposed design using

Simulink for the implementation on FPGA using XSG tool.

In addition, we have presented a methodology to optimize

both area and execution time. The execution time is reduced

by exploiting parallelism inside each of the dependent

functions, and the area consumption is reduced by reusing

the hardware of matrix–vector multiplication for other

components of the algorithm. We have evaluated the quality

of data reconstruction of our architecture using PSNR and

ASCE metrics for different data precisions. We have shown

that our proposed architecture provides a higher PSNR of

38.9 dB, which is superior by 15 dB compared with a recently

reported reconstruction architecture having similar parameters

(N = 1024, K = 256, and m = 36) with data precision of

18 and 9 bits for fractional. The proposed structure involves

328 more DSP48s, but it involves 25 802 less slices and

1.85 times less computation time for signal reconstruction.

The proposed design is fully scalable for higher sparsity

and can be adapted for unknown sparsities. In addition, we

have presented a complete high-level design flow for rapid

prototyping of OMP algorithm in resource constrained FPGA

for better quality signal reconstruction.
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